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Abstract

Large language models (LLMs) have recently
demonstrated remarkable capabilities to com-
prehend human intentions, engage in reason-
ing, and design planning-like behavior. To
further unleash the power of LLMs to accom-
plish complex tasks, there is a growing trend to
build agent frameworks that equips LLMs, such
as ChatGPT, with tool-use abilities to connect
with massive external APIs.

In this work, we introduce ModelScope-Agent,
a general and customizable agent framework
for real-world applications, based on open-
source LLMs as controllers. It provides a
user-friendly system library, with a customiz-
able engine design to support model training
on multiple open-source LLMs, while also en-
abling seamless integration with both model
APIs and common APIs in a unified way. To
equip the LLMs with tool-use abilities, a com-
prehensive framework has been proposed span-
ning tool-use data collection, tool retrieval,
tool registration, memory control, customized
model training, and evaluation for practical
real-world applications. Finally, we showcase
ModelScopeGPT1, a real-world intelligent as-
sistant of ModelScope Community based on
the ModelScope-Agent framework, which is
able to connect open-source LLMs with more
than 1000 public AI models and localized
community knowledge in ModelScope. The
ModelScope-Agent online demo2, library3 are
now publicly available.

1 Introduction

Large language models (OpenAI, 2022, 2023;
Touvron et al., 2023; Chowdhery et al., 2022)
have gradually become common AI assistants

∗Corresponding author: <ym119608@alibaba-inc.com>
1https://modelscope.cn/studios/damo/ModelscopeGPT
2https://modelscope.cn/studios/lcl193798/Modelscope-

Agent
3https://github.com/modelscope/modelscope-agent

that demonstrate great potential in comprehend-
ing human intentions, performing complex rea-
soning tasks, and enabling content creation. De-
spite the rapid advancements of open-source LLMs,
e.g., LLaMA (Touvron et al., 2023) and Chat-
GLM (THUDM, 2023), they still remain limited
in performing complex tasks, such as following
user instructions to use external tools and capture
up-to-date information.

To further unleash the power of LLMs for real-
world practical applications, a rising trend of cur-
rent research (Schick et al., 2023; Shen et al., 2023;
Yang et al., 2023; Qin et al., 2023; Patil et al., 2023)
begins to enable LLMs with tool-use abilities to-
wards building an AI Agent. These include Hug-
gingGPT (Shen et al., 2023), Visual-ChatGPT (Wu
et al., 2023) and Gorilla (Patil et al., 2023) for
connecting with HuggingFace models, ToolAl-
paca (Tang et al., 2023) and ToolLLaMA (Qin et al.,
2023) for using massive common APIs such as
weather forecast and search engine. These methods
either directly rely on closed-source counterparts
like ChatGPT or focus on certain types of API tools.
Recently, there have also been public releases of
AI agents, such as Auto-GPT4, LangChain5 and
Transformers Agent (Huggingface, 2023), which
enable LLMs, such as ChatGPT or GPT-4, to use
tools and solve complex AI tasks. However, these
agents are mainly built with closed-source LLMs
and how to build a customizable agent system with
open-source LLMs remains largely unexplored.

In this work, we present ModelScope-Agent, a
general and customizable agent system for real-
world applications, based on open-source LLMs
as controllers. ModelScope6 is a public ML com-
munity, that seeks to bring together the most ad-
vanced machine learning models from the AI com-
munity, and streamlines the process of leveraging

4https://github.com/Significant-Gravitas/Auto-GPT
5https://github.com/langchain-ai/langchain
6https://modelscope.cn/models
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AI models in real-world applications. ModelScope-
Agent provides a flexible and user-friendly sys-
tem library, with a customizable engine design to
support model training on multiple open-source
LLMs, while also enabling seamless integration
with both model APIs and common APIs in a uni-
fied way. It features an LLM-centric system de-
sign, which includes open-source LLMs as core
controller, and further interact with a tool-use mod-
ule and a memory module to accomplish complex
tasks. At the core of ModelScope-Agent , the li-
brary supports flexible selection and training on var-
ious open-source LLMs, such as LLaMA (Touvron
et al., 2023), ChatGLM (THUDM, 2023), Chat-
PLUG (Tian et al., 2023) and other customized
LLMs in ModelScope. For tool use, ModelScope-
Agent provides a default tool library, which sup-
ports diverse AI model APIs across NLP, CV, Au-
dio and Multi-model fields, as well as massive com-
mon APIs such as search engine. It also supports
registering new self-defined API plugins and auto-
matic API retrieval from the large tool library. It is
easy for users to customize their most appropriate
LLMs, local API tools and functions to develop
real-world applications. Moreover, a memory mod-
ule is also introduced to better store and manage the
system message, user history, in-context examples,
tool message and localized knowledge.

To enable the open-source LLMs to better con-
trol the whole agent system, we further propose
a comprehensive framework of tool-use data col-
lection, customized model training, evaluation and
deployment. Notably, we release a comprehen-
sive tool-enhanced dataset MSAgent-Bench, which
consists of 598k dialogues with various API cat-
egories, multi-turn API calls, API-Oriented QA,
and API-Agnostic instructions in both English and
Chinese. A simple training strategy of Weighted
LM, that enhances the training of generation of
API name and parameters, is used to better ensure
the correctness of API calls. Besides, an evalua-
tion framework is also supported in our library to
examine the tool-use abilities of the trained mod-
els in different aspects. Furthermore, we applied
ModelScope-Agent in a real-world application of
ModelScope Community namely ModelScopeGPT,
which is able to connect open-source LLMs with
more than 1000 public AI models and access lo-
calized community knowledge in ModelScope for
community QA.

To summarize, ModelScope-Agent is a general

and customizable agent system designed for devel-
opers to harness the power of open-source LLMs.
The library targets the following goals:

• Agent based on Open-Source LLMs: the con-
troller of ModelScope-Agent can be flexibly
selected from open-source LLMs that are opti-
mized through our agent training framework.

• Support and Customization of Diverse Tools:
Dozens of diverse model APIs and common
APIs are given by default. The library sup-
ports registering new self-defined APIs and
automatic API retrieval from the toolset.

• Customizable of Applications: ModelScope-
Agent can be flexibly applied in various in-
dustry applications. The agent and training
framework are documented describing its us-
age, construction and optimization.

ModelScope-Agent is in continual development
by the engineers at ModelScope and is released
under an Apache 2.0 license. Full documentation
is available through the project website.

2 The ModelScope Agent

ModelScope-Agent is designed to facilitate devel-
opers in building customizable agent systems based
on open-source LLMs. The overall system architec-
ture is shown in Figure 1. It includes open-source
LLMs as controller, a tool-use module and a mem-
ory module to interact with. Given human instruc-
tion, the Agent, which adopts the selected LLM
as the controller, will automatically plan tasks, se-
lectively use tools, leverage knowledge in memory,
and finally provide helpful responses to users.

2.1 LLMs as Brain
LLMs serve as the brain of the agent, responsible
for planning and decomposing user requests, se-
lectively calling tools, performing retrieval, and
integrating all the information from previous steps
to generate the final response. In order to make it
easier for users to customize the agent with their
own LLMs, we have added support for various
open-source LLMs by default, such as LLaMA,
ChatGLM and ChatPLUG, which have been op-
timized through our tool learning pipeline. The
details of the training strategy and tool-use datasets
can be referred to in Section 3. ModelScope-
Agent has integrated the LLM inference pipeline of
the ModelScope community, and replacing LLMs
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Figure 1: The overall system architecture of ModelScope-Agent.

can be done by simply setting the model_name
and model_config. In model_config, the model_id,
model_revision, and model parameter settings such
as max sequence length, should be configured.

# LLM config "cfg_file"
from modelscope.utils.config import Config
model_cfg = Config.from_file(cfg_file)
llm = LocalLLM(model_name, model_cfg)

Furthermore, the ModelScope-Agent also pro-
vides a standard way to integrate new LLM. Users
can add their own LLMs, by integrating the LLM
pipeline into ModelScope. After that, the agent can
select the new LLMs for training and inference.

2.2 Tool Use

Tool Library The tool library is used to config-
ure and manage various collections of APIs used in
the agent. ModelScope-Agent can support a wide
range of both common APIs such as search APIs,
and AI model APIs across NLP, CV, Audio and
Multi-modal models in ModelScope and Hugging-
Face. Each tool API consists of the API name, de-
scription, parameters and request functions. Users
can easily choose and configure proper APIs in
the library to build their own agents. The default
APIs supported in the library can be referred to in
Appendix A.1.

# tool default config file "default_file"
tool_cfg = Config.from_file(default_file)

Register and Customize New Tool The agent
allows users to register and customize new tools,
while also supporting quick integration of newly
registered tools into the agent, enabling LLMs to
selectively use the additional self-defined tools for
specific applications. This can be simply done

by inheriting from a base class, namely Tool, and
defining a new CustomTool with the API-related
schema of API name, description, parameters, and
request functions. More details about CustomTool
can be referred to in Appendix A.2.

from modelscope_agent.tools import Tool
class CustomTool(Tool):

# logic added here
# refer example in Appendix A.2

tool_list = {’customo-tool’: CustomTool()}

Tool Retrieval and Execution Due to the large
amount of tool APIs in the tool library, a tool
retrieval module is further introduced to recom-
mend appropriate APIs for each instruction prompt.
Specifically, we use the dense vector retrieval
method based on the unified multilingual text-
embedding API 7. We vectorize both the text de-
scriptions of the APIs and the instruction prompt
using the text-embedding API. The top-3 most rel-
evant APIs with the highest vector product scores
are selected for tool use. As a result, the schema
information of the retrieved APIs will be concate-
nated with other system prompts in the subsequent
memory module and sent to LLMs as input. With
the concatenated instruction prompt, the LLMs will
plan and generate the API request, which will be
executed by the agent. The agent will then return
the results to the LLMs for continuous generation.

2.3 Memory Control

The memory module is used to retrieve and assem-
ble a series of contextual information as input to the
LLMs. It consists of a knowledge retrieval submod-
ule and a prompt generator submodule, which are

7https://help.aliyun.com/zh/dashscope/getting-started-1
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responsible for external knowledge retrieval and
instruction prompt generation, respectively.

Knowledge Retrieval It enables the agent to
get access to up-to-date and localized information
related with query prompt, thereby augmenting
LLMs with dynamic and domain-specific knowl-
edge. We follow the same dense vector retrieval
method as the previous tool retrieval module and
support large-scale knowledge retrieval from local-
ized document corpus. Similarly, it allows users
to customize by changing to other open-source re-
trieval frameworks.

Prompt Generator The prompt generator is used
to assemble all available contextual information
such as system prompt, API schema, retrieved
knowledge, conversation history, and few-shot ex-
amples. According to the type of user query and
the maximum length of the LLM, the users can
selectively choose proper contextual information
and assemble the required input to the LLM. In our
agent, the prompt generator needs to be defined
before the agent is constructed.

2.4 Agent Pipeline
In summary, we build the agent by combining all
the modules: LLM controller, tool-use module, and
memory module. With agent.run, the agent can ef-
ficiently execute and complete the instruction in
a one-step generation. First, the agent retrieves
query-related tools through the tool retrieval and
combines the retrieved API schema with other con-
textual prompts in the memory module, to construct
a new instruction prompt. Then, the agent sends
this new prompt to the LLM, which plans whether
and which API to call and generate an API request.
Next, the agent will execute the selected API with
the extracted API parameters and return the API
results to the LLMs, which will continue to plan
whether to call other APIs. If another API call
is needed, the process is repeated, otherwise, the
LLMs generate the final response and the agent
returns the final result to the user.
agent = AgentExecutor(llm, tool_cfg,

additional_tool_list=tool_list)
agent.run("Draw a logo image of agent")

3 Training

3.1 Dataset
To facilitate building an agent with the ability to use
tools while upholding an optimal level of user en-

gagement, we release a comprehensive tool dataset,
MSAgent-Bench, utilizing ChatGPT synthetic data
and the existing instruction-following datasets. Our
released dataset encompasses 598k dialogues. Ta-
ble 1 outlines the key differences between the re-
leased dataset and other publicly available tool
learning datasets, while the data distribution of
our dataset is illustrated in Figure 2. As demon-
strated in the Table and Figure, we have made cer-
tain efforts to construct a comprehensive dataset
that enables the effective training of an agent:
Multilingual: We collect instances in both Chi-
nese and English, ensuring that the trained agent is
capable of functioning in both languages.
Various API Categories: Our dataset supports
Common APIs that have been registered by users
or applied through online API platforms, as well as
model APIs that can call neural models.
Multi Turn Dialog: In real-life scenarios, agents
may need to request more specific clarification
from users to complete a task or receive additional
instructions after completing a previous task. Our
dataset accounts for these scenarios and supports
multi-turn user-agent interactions when using tools.
API-Oriented QA: An effective agent should pos-
sess knowledge of APIs. Our dataset incorporates
API document QA tasks and task planning tasks
which requires agents to offer appropriate sugges-
tions to users on how to use various APIs to solve
complex tasks.
API-Agnostic Instructions: To enhance the
agent’s ability to follow common instructions and
increase user engagement, we have incorporated
both Chinese and English API-agnostic instructions
within our dataset. These instructions place greater
emphasis on the agent’s inherent capabilities rather
than reliance on API invocation.

The data was collected by prompting ChatGPT
(gpt-3.5-turbo) to generate instructions, API re-
quests, and answers based on the API calling re-
sults, more details can be accessed in Appendix D.

3.2 Model Training

We use the MSAgent-Bench to fine-tune multi-
ple open-source LLMs, including LLaMA (Tou-
vron et al., 2023), Qwen (QwenLM, 2023), Chat-
PLUG (Tian et al., 2023) etc. We train all the
open-source LLMs in a multi-round conversation
mode and concatenate all the prompts and answers.
Compared to common instruction tuning data, the
tool learning samples focus more heavily on the
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Dataset Language Instance Type # Instances API type Avg. Turn Avg. Step
API-Bank (Li et al., 2023) English Tool Use 264 Common API 3.27 1.92
ToolAlpaca (Tang et al., 2023) English Tool Use 3.9 K Common API 1 1.66
Gorilla (Patil et al., 2023) English Tool Use 16.4 k Model API 1 1
GPT4Tools (Yang et al., 2023) English Tool Use 71.4 K Model API 1 1
ToolBench (Qin et al., 2023) English Tool Use 26.9 K Common API 1 4.1
MSAgent-Bench (ours) English + Chinese Tool Use + Common Chat 598 K Common API + Model API 1.52 1.31

Table 1: The statistics of MSAgent-Bench and other existing tool learning datasets.

MSAgent-
Bench

Model API
• Text-to-Image
• Text-to-Video
• Text-to-Audio
• Translation
• Image Chat
• Universal IE
…
Common API
• Weather
• Web Search
• Calculator
• Map
…

API-Agnostic Instructions
• Story Generation
• Open QA
• Code
• Chit Chat
• Paraphrase
• STEM
• Role Play
…

API-Oriented QA
• Document QA
• Task Planning
…

Figure 2: The instance types and distribution of our collected MSAgent-Bench.

accuracy of tool selection and API parameter pre-
diction. Therefore, we propose a simple training
strategy, Weighted LM, which enhances the train-
ing of generation of API names and parameters,
while zero-out the loss of tokens from the user
prompt and the tool execution. More details can be
referred to in Appendix B.3.

kwargs = dict(model=model, ...)
trainer: EpochBasedTrainer = build_trainer

(name=args.trainer, default_args=kwargs)
trainer.train()

4 Evaluation

Our evaluation system, MSAgent-Eval, comprises
two modules: an automatic evaluation framework
that comprehensively evaluates the API usability
of the agents and a human evaluation framework
implemented by an agent arena that reflects the
preferences of human users.

4.1 Automatic Evaluation Framework

In automatic evaluation, we mainly focus on eval-
uating the agent’s ability to generate accurate API
requests and the proper answers according to the
API calling results. Specifically, we use the action
exactly match score (Action EM) which measures
whether the agent uses the correct API as the ref-
erence gold API, and the ROUGE-L score which
measures the similarity between the generated re-
sponse and the gold answer. Additionally, we intro-

duce a novel metric called Argument F1 for fully
evaluating the quality of API requests. To com-
pute Argument F1, we categorize the arguments
in the agent’s API request into two cases, namely
Half match (HM) and Full match (FM), represent-
ing the correct argument but with the wrong value
and the correct argument with the correct value,
respectively. Suppose the gold argument number
in the API is |A|, and the number of arguments in
the agent API request is |A∗|, we compute the new
Recall and Precision as follows:

R = (0.5× # HM + # FM)/|A| (1)

P = (0.5× # HM + # FM)/|A∗| (2)

and the final argument F1 is computed as:

F1 = 2(R ∗ P )/(R+ P ). (3)

A sample code for the automated evaluation of
agents is provided below:
from tool_agent_finetune import evaluation
EM, F1, ROUGE = evaluation(refs, preds)

Expert annotators were engaged to annotate the
evaluation instances, with the task of providing
diverse instructions, manually documenting cor-
rect API calling requests, and writing appropriate
responses. The statistics of our currently assem-
bled test data is in Appendix B.1, and the auto-
matic evaluation scores of our trained agents can
be found in Appendix B.2. We also guarantee the
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(a) ModelScope Intelligent Assistant (b) Register and Use New Tools on Alibaba Cloud

Figure 3: Demo cases of ModelScopeGPT based on ModelScope-Agent .

users to upload their own annotated test examples
to accurately evaluate the performance of agents in
customized scenarios.

4.2 Human Evaluation with Agent Arena

Inspired by the Arena for ChatBots (Zheng et al.,
2023), we have built an accessible Agent Arena 8

that allows users to furnish instructions to two
anonymous agents, based on the provided APIs.
Subsequently, users have the opportunity to vote
on which Agent performs better in tackling the in-
struction with the given APIs. In accordance with
the framework presented by Zheng et al. (2023),
we adopt a system of ELO ratings and leaderboard
maintenance for the participating Agents.

5 Usage Example of ModelScopeGPT

In this section, we showcase a successful
application of ModelScope Community, Mod-
elScopeGPT9, based on our ModelScope-Agent.

ModelScope Intelligent Assistant Based on
ModelScope-Agent , we have developed an intel-
ligent assistant for the ModelScope Community,
namely ModelScopeGPT. It uses LLMs as a con-
troller to connect dozens of domain-specific AI
models in the ModelScope open-source community,
covering NLP, CV, Audio, and Multi-Modal fields.
To make the pipeline more practical, we have in-
cluded API retrieval and knowledge retrieval tools
to automatically select proper APIs and get access
to the local ModelScope knowledge. As shown
in Figure 3a, ModelScopeGPT can support API
calls in multi-turn conversations and generate cor-
rect API call parameters using information from

8https://modelscope.cn/studios/LLMZOO/Chinese-
Arena/summary

9https://modelscope.cn/studios/damo/ModelScopeGPT
/summary

previous conversations. More cases can refer to
Appendix C. As a result, ModelScopeGPT has
achieved a total request number of over 170k from
40k user visits within one month after its release.

Register and Use New Tools Another key fea-
ture of an agent is its generalization capability to
unseen APIs. This allows users to quickly register
their own APIs and customize their specific applica-
tions. Therefore, we test the generalization ability
of ModelScopeGPT by applying it to an Alibaba
Cloud application scenario. As shown in Figure 3b,
we first found an API for renewing an ECS in-
stance on Alibaba Cloud. Then, we registered the
API schema defined in the tool library to the agent.
Finally, we entered the prompt "Please help me re-
new an ECS..." in the demo. The agent generated a
request through planning, selected the appropriate
API, called the API to renew the instance success-
fully, and provided a reply to inform the user that
the renewal was completed. This test demonstrates
that the open-source LLM optimized based on the
released API dataset has a strong generalization
ability towards unseen APIs.

6 Conclusion

ModelScope-Agent aims to facilitate building AI
Agent applications and research based on open-
source LLMs by providing a general and customiz-
able agent framework covering flexible system de-
sign, data collection, model training, evaluation
and usage examples in real-world applications. It
provides an open-source, community-driven library
for AI Agent learning and best practices for build-
ing an agent system with open-source LLMs. We
hope ModelScope-Agent can help pave the way
towards a new era of AI Agent.
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Ethics Statement

Intended Use. ModelScope-Agent is designed
to facilitate building AI Agent applications and
research based on open-source LLMs, by providing
a general and customizable agent system.

Potential Misuse. Although we have only trained
with the tool-use datasets and gone through certain
data filtering rules, it is still possible that the cus-
tomized model may generate some biased, fake,
and unsafe information. Our agent framework also
provides users with the freedom to select proper
LLMs and upload their own clean data for training.
It is also important to design specific methods to
improve the safety of the agent framework in the
future.
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A Library

A.1 Tool List

API Name (language) Description Type
Text-to-Image(en) Converts text to an image. Model API
Text-to-Image(zh) Converts text to an image. Model API
Text-to-Video(en) Converts text to a video. Model API
Text-to-Audio(en) Converts text to audio. Model API
Text-to-Audio(zh) Converts text to audio. Model API
Image-Chat(en) Image chat. Model API
Translation-zh2en Translates Chinese text to English. Model API
Translation-en2zh Translates English text to Chinese. Model API
Universal-IE(zh) Extracts structured information. Model API
Text-to-Geographic(zh) Extracts geographic information. Model API
NER(zh) Recognizes named entities in text. Model API
API-Retrieval Retrieves relevant APIs Common API
ModelScope-Retrieval Retrieves modelscope docs. Common API

Table 2: The statistics of default tool list. Supported
input languages for the APIs are listed in parentheses.

A.2 CustomTool
User can customize their own tools by inheriting a
base tool and defining the tool names, descriptions,
and parameters according to a pre-defined schema.
Moreover, you can implement _local_call() or _re-
mote_call() depending on your specific require-
ments. To illustrate, below is an example of a
custom tool:

class CustomTool(Tool):
description = ’xxx’
name = ’xxx’
parameters: list = [{

’name’: ’xxx’,
’description ’: ’xxx’,
’required ’: True

}]

def _local_call ():
...

def _remote_call ():
...

B Experiment Setup

B.1 Evaluation Benchmark
To assess the generalization of the trained agent,
we include 10 in-domain APIs that appear in the
training set of ModelScope-Agent and 10 real un-
seen APIs10. We also account for the multi-turn
ability of the agent by annotating several multi-turn
scenarios in our evaluation benchmark. Our test
instances were annotated by asking the human ex-
perts to write diverse instructions first. Then the
human experts were ask to write the JSON API
request and answer the instructions properly after
obtaining the API calling results. Our final testing

10In progress, we will include more APIs in the future.

dataset consisted of 360 conversations with 2059
text snippets as the references to be compared with
the agent prediction, which comprise 798 API re-
qusts and 1261 plain text answers according to the
previous calling results.

B.2 Evaluation Results

Model ROUGE-L Action EM Argument F1
ChatGPT (2-shot)∗ 36.70 34.82 25.51
LLaMA 39.16 58.60 44.98
ChatPLUG 46.45 68.29 55.12
MSAgent-7B 51.35 87.23 68.09

Table 3: Automatic evaluation results. ∗ represents that
we do not fine-tune ChatGPT but use in-context learning
with 2 demonstrations.

We compare the models trained in our proposed
ModelScopeGPT. The automatic evaluation results
are shown in Table 3. Based on the findings ob-
tained from our experimentation, it is evident that
ChatGPT with in-context learning yielded infe-
rior results as compared to other models that were
subjected to finetuning. Furthermore, LLaMA un-
derperformed when compared to other fine-tuned
models. Our error study revealed that the lower
performance of ChatGPT and LLaMA could be at-
tributed to a large proportion of Chinese test cases
in our test set. The models (ChatPLUG, MSAgent-
7B11) that performed better were those that predom-
inantly focused on Chinese data. Our investigation
revealed that ChatGPT and LLaMA exhibited limi-
tations in user intent recognition, which ultimately
led to their suboptimal performance on Action
EM. Among the models examined, MSAgent-7B
displayed the most favorable performance, which
could be attributed to the superior performance of
its basic model.

B.3 Weighted LM

We give an example of the training strategy
Weighted LM. As show in Figure 4, tokens with
different colors have different loss weights. For the
user input prompt, we set the loss weight to 0, so
that the model does not calculate the loss for the
prompt. For the API-Agnostic text of the assistant,
we keep the loss weight as 1. Finally, for the im-
portant text of the API calling, such as API name,
parameters, URL, etc., we set the loss weight to 2,
which can improve the generation accuracy of API
calling.

11https://modelscope.cn/models/damo/ModelScope-
Agent-7B
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Figure 4: Example of training strategy for weighted LM. Different colored tokens have different loss weights.

Figure 5: Single-step tool-use instructions, text-to-video cases. We have captured a few frames of the video to
display. Testing the model using the same semantic instruction in both English (left) and Chinese (right).

Figure 6: Single-step tool-use instructions, image-chat cases. Testing the model using the same semantic instruction
in both English (left) and Chinese (right).

C Cases

In this section, we show the qualitative results
about ModelScopeGPT implementation based on
ModelScope-Agent.

Single-step Tool Use As shown in Figure 5 and
6, the instruction expects the model to generate a
video and chat about the image respectively. These
instructions can be completed with a single step of
tool use.

Multi-step Tool Use As shown in Figure 7, the
instruction expects the model to write the promo-

tional copy first, then read it, and finally generate a
video. These instructions require the model to have
the ability of multi-step Tool use. In the Chinese
case, our model accurately completed the three-
step tool use.

Multi-turn Tool Use As shown in Figure 8, the
instruction requires the model to have the ability to
multi-turn conversation and use the history conver-
sation. Our model can accurately call the API and
capture the content of the previous conversation to
generate API parameters.
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Figure 7: Multi-step tool-use instructions. We have captured a few frames of the video to display. Testing the model
using the same semantic instruction in both English(left) and Chinese(right).

Figure 8: Multi-turn tool-use instructions, text-to-speech and text-to-image cases. Testing the model using the same
semantic instruction in both English(left) and Chinese(right).

Figure 9: Multi-turn tool-use instructions, text-to-speech and text-to-image cases. Testing the model using the same
semantic instruction in both English(left) and Chinese(right).

In-domain Knowledge QA As shown in Figure
9, the instruction requires the model to retrieve in-

domain knowledge and use the retrieved knowledge

576



to answer questions.

as User

as Agent

API Gallery

Instruction or
Clarification

API request

Follow-up or
Final Answer

Result

Figure 10: The data collection procedure of MSAgent-
Bench.

D Data Collection Procedure

We collected our dataset by using prompt engineer
to simulate the agent scenarios with two ChatG-
PTs (gpt-3.5-turbo). One of the ChatGPTs was
prompted to act as the user, while the other was
assigned to act as the agent. In order to expand
the domains and functionalities of APIs presented
in the training data, rather than the exsisting real
APIs, we also included a number of synthetic APIs
that were generated by ChatGPT. When these syn-
thetic APIs were incorporated into the dialogues,
we prompted another ChatGPT to serve as the API
and return the relevant calling outcomes.

The data collection procedure is shown in Fig-
ure 10. Initially, a set of random in-context demon-
strations were provided to ChatGPT for generating
an instruction. This instruction could either be a
regular one or one that requires solving with APIs,
depending on the demonstrations provided. Subse-
quently, ChatGPT was prompt to act as an agent by
first thinking about which action to undertake. If
no API calls were deemed necessary, or if the user
clarification is needed, the agent would respond
with a follow-up response to the user. Otherwise
the agent will send API request to the API gallery.
After receiving the result of the API call, the agent
would assess the situation and decide on the next ac-
tion. This iterative process of the "user-agent-API"

loop would continue until the agent determined
that it was appropriate to terminate the conversa-
tion with the final answer. After acquiring the raw
dataset, we applied filtering mechanisms to elim-
inate instances in which ChatGPT generated API
requests containing hallucinated API names and
parameters that were absent from the retrieved API.
Additionally, we excluded instances in which Chat-
GPT generated illegal API requests, thus resulting
in a refined and finalized dataset.

As introduced in Section 3.1, we collect in-
stances across different languages and topics, the
detailed statistics of our collected data are shown
in Table 4.

Instance Type # Instances
Chinese 532,436
English 66,444
Common API 211,026
Model API 58,338
API-Oriented QA 5,000
API-Agnostic Instruction 329,776

Table 4: The statistics of our collected dataset.

E Related Work

E.1 Large Language Models

Recent years have witnessed rapid development in
the field of Large Language Models (LLMs). Typ-
ical models, such as GPT3 (Brown et al., 2020),
Gopher (Rae et al., 2021), Chinchilla (Hoffmann
et al., 2022), PaLM (Chowdhery et al., 2022) and
LLaMA (Touvron et al., 2023), have shown im-
pressive zero and few-shot generalization abilities
on a wide range of NLP tasks, by scaling up the
model and data size. A remarkable milestone is the
release of ChatGPT (OpenAI, 2022) or GPT4 (Ope-
nAI, 2023), which has greatly revolutionized the
paradigm of AI development. As a result, a rising
trend of open-source LLMs has emerged to chal-
lenge and catch up their closed-source counterparts
like ChatGPT and Claude, such as BLOOM (Muen-
nighoff et al., 2022), LLaMA (Touvron et al.,
2023), Falcon (Almazrouei et al., 2023), Chat-
GLM (THUDM, 2023). Despite the great break-
through, LLMs are trained as text generators over
plain text corpora, thus performing less well on
other tasks such as multi-modal tasks. It also falls
short on tasks that require up-to-date information,
which are beyond the pretraining data. Using tools
or external APIs can help overcome the limitations
and harness the power of LLMs to facilitate seam-
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less connections with downstream applications. In
ModelScope-Agent , we provide the whole cus-
tomizable framework and best practices for build-
ing an agent system, which enables open-source
LLMs to use tools and external APIs.

E.2 Agent & Tool Learning

The utilization of Large Language Models (LLMs)
as a controller to construct an agent system has
emerged as a prominent research area. Several re-
lated works employ prompt engineering techniques
on closed-source LLMs, such as ChatGPT (Ope-
nAI, 2022) and Claude, to enable their applica-
tion in specific domains. For instance, Visual-
ChatGPT (Wu et al., 2023) and HuggingGPT (Shen
et al., 2023) facilitate the HuggingFace model call-
ings accessible to OpenAI LLMs. SayCan (Ahn
et al., 2022) and inner monologue (Huang et al.,
2023) integrate LLMs with robots to achieve
robotic systems. Notably, recent works such
as Langchain and Auto-GPT encompass a wide
range of tools, including common APIs and neu-
ral models, and enhance long-term reasoning
and human-agent interaction whilst solving tasks,
which demonstrate the immense potential for build-
ing a generalized agent.

Numerous endeavors have also been made
to enable open-source LLMs to utilize tools.
For instance, Gorilla (Patil et al., 2023) and
GPT4Tools (Yang et al., 2023) generate training
data using self-instruction techniques to train open-
source LLMs to effectively utilize neural mod-
els. ToolAlpaca (Tang et al., 2023) and ToolL-
LaMA (Qin et al., 2023) train LLAMA using com-
mon APIs, with the distinction that ToolAlpaca
employs synthetic APIs from LLMS, whereas Tool-
LLaMA utilizes real APIs.

Overall, compared to the above-mentioned meth-
ods, ModelScope-Agent differs in the following
aspects. Firstly, our method includes a universal
training framework that supports user-customized
agent learning for open-source models to meet in-
dustrial needs. Secondly, ModelScope-Agent can
support various APIs in different fields, including
model APIs and common APIs, while previous
works only support certain specific APIs.

F Future Work

In the future, we will evolve to support more
sophisticated agent architectures such as ReAct
and code interpreter. In the meantime, we will

continuously improve the capabilities required by
open-source LLMs as agents. ModelScope-Agent
relies on the ModelScope community and will
adapt to more new open-source LLMs in the fu-
ture, providing more applications developed based
on ModelScope-Agent, such as personal-assistant-
agent, story-agent, motion agent, and so on.
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