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Abstract

Real-time semantic matching is vital to web
and product search. Transformer-based mod-
els have shown to be highly effective at en-
coding queries into an embedding space where
semantically similar entities (queries or results)
are in close proximity. However, the computa-
tional complexity of large transformer models
limits their utilization for real-time matching.
In this paper, we propose KD-Boost, a novel
knowledge distillation algorithm designed for
real-time semantic matching. KD-Boost trains
low latency accurate student models by lever-
aging soft labels from a teacher model as well
as ground truth via pairwise query-product and
query-query signal derived from direct audits,
user behavior, and taxonomy-based data using
custom loss functions. Experiments on internal
and external e-commerce datasets demonstrate
an improvement of 2-3% ROC-AUC compared
to training student models directly, outperform-
ing teacher and SOTA knowledge distillation
benchmarks. Simulated online A/B tests us-
ing KD-Boost for automated Query Reformu-
lation (QR) indicate a 6.31% increase in query-
to-query matching, 2.76% increase in product
coverage, and a 2.19% improvement in rele-
vance.

1 Introduction

Accurate real-time semantic matching, i.e., iden-
tifying matching entities for a query, has be-
come increasingly essential for web search and
e-commerce product search. To address the seman-
tic gap between the pool of queries and results(e.g.,
products in product search), this matching is of-
ten performed in two steps shown in Figure 1: (1)
Automated Query Reformulation (QR), which
maps a poorly formed (e.g., including code-mixed
language, typos) user query to semantically simi-
lar well-formulated queries with wider coverage of
results. (2) Result/Product Sourcing (PS) which
retrieves matching results for a given user query. In
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Figure 1: Semantic Matching Model: Incorporating
Query Reformulation and Product Sourcing Workflow

this work, we focus on enhancing real-time repre-
sentation models for both queries and results aim-
ing to improve both QR and PS tasks. Since prod-
uct search is our primary application, we refer to
results as products though the matching problem
has broader applicability.

Existing SOTA techniques for semantic match-
ing are mostly based on Siamese networks (Huang
et al., 2013) (Ranasinghe et al., 2019) that com-
prise of two identical sub-networks that generate
semantic representations for the pair of entities
(query-query or query-product) to be compared. Of
these, transformer-based models such as BERT and
DistilBERT (Devlin et al., 2018) (Sanh et al., 2019)
have been shown to yield highly accurate matching
performance. However, these models fail to satisfy
the strict latency requirements of large scale prod-
uct search in B2C e-commerce. On the other hand,
smaller encoder models such as MiniLM (Wang
et al., 2020) with low latency often result in poor
matches. A common approach for addressing this
performance gap is via knowledge distillation (KD)
(Hinton et al., 2015) methods that transfer infor-
mation from a larger teacher model to a smaller
student model via soft labels from the teacher. The
resulting models are often superior to those ob-
tained via direct training of student models but in-
ferior to the teacher model. Further, this approach
does not permit the student models to correct for
errors in the teacher model itself.
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Contributions. In this work, we consider the
problem of semantic matching of queries with other
queries and products. We propose an efficient KD
techniques that learns via imitation of soft rele-
vance labels from a larger teacher model as well
as the original ground truth. This approach allows
the student model to capture the nuanced knowl-
edge from the teacher model and also incorporate
explicit guidance from the ground truth. Below we
summarize our key contributions:
1. We propose KD-Boost, a novel KD algorithm
designed for real-time semantic matching, which
leverages soft labels from one or more teacher mod-
els as well as ground truth to learn a highly accurate
and compute-efficient student model.
2. To address the dual needs of query reformulation
and product sourcing, we utilize multiple sources
of similarity and dissimilarity signals (e.g., query-
product pairs with editorial ordinal relevance labels,
user-behavioural data such as clicks and purchases,
product taxonomy) with tailored loss functions to
ensure that the model learns representations that
can effectively capture the nuances of relevance
and similarity.
3. Experimental evaluation of the proposed ap-
proach on both internal and external e-commerce
datasets (Reddy et al., 2022) results in a significant
boost of 2-3% ROC-AUC on the query-product rel-
evance task compared to training student models
directly and even surpasses teacher and SOTA KD
benchmarks.
4. Lastly, online A/B testing of the proposed ap-
proach in real-time product search resulted in an
increase of query-to-query automated query refor-
mulation rate by 6.31% which in turn yielded in
improved product coverage (+ 2.76%) and rele-
vance (+ 2.19%.)
Note that our KD approach has wider applicability
to other real-time semantic matching scenarios be-
yond product search. It can also be used with any
choice of student and teacher encoder models.

2 Related Work

Semantic Matching: The Sentence-BERT
(Reimers and Gurevych, 2019) refines the BERT
algorithm by using a siamese network, thus mak-
ing it suitable for semantic matching tasks with
higher computational requirements, but not for real-
time semantic matching tasks. To reduce the in-
ference cost, many variants of BERT have been
proposed, such as PowerBERT (Goyal et al., 2020),

DistilBERT (Sanh et al., 2019). Despite these ad-
vances, these models are not suitable for real-time
applications. MiniLM (Wang et al., 2020), a 3-
layer transformer-based model that is less complex
than BERT, is more suitable for real-time semantic
matching, but suffers from a lack of performance
due to its limited number of encoder layers.
In Appendix B, Figure 3 illustrates the architec-
ture of both the teacher model, Siamese BERT
(S-BERT), and the low latency model, Siamese
MiniLM (S-MiniLM). We introduce S-MiniLM as
a low latency alternative to the teacher model, with
the key distinction being the use of the MiniLM
model for calculating embedding vectors for tokens
in the input text.
Knowledge Distillation (KD): Many efforts have
been made in KD to improve the performance of
the student models (Ankith et al., 2022) (Kim et al.,
2021). (Hinton et al., 2015) proposed a knowl-
edge distillation method, in which output from
the complex network is used as a soft target for
training the simple network. Since then, KD (Yim
et al., 2017) has been widely adopted in many learn-
ing tasks. Distilling complex models into simple
models has been shown to improve many NLP
tasks to achieve impressive performance (Kim and
Rush, 2016) (Mou et al., 2016). HISS (Ankith
et al., 2022) proposes a KD method for real-time
semantic matching to distill query-product rele-
vance knowledge encoded in BERT to a low latency
model DSSM, but its performance is still lower. In
addition to single-teacher knowledge distillation,
multi-teacher knowledge distillation has also been
explored (Vongkulbhisal et al., 2019). In some re-
cent studies (You et al., 2017) (Fukuda et al., 2017),
teachers have been assessed equally or their impor-
tance weights have been manually adjusted.

3 Problem Statement

Our primary goal is to improve the performance
of the student model on both query reformulation
and product sourcing tasks via effective representa-
tions of queries and products in a shared semantic
space while significantly reducing inference time.
Building such a versatile model would allow us to
minimize the costs associated with maintenance
and production.

We now define the problem formally in terms
of the three available input signals. (i) Expert
labels on product-query pairs: Let Dlabel

PQ =
{(qi, pi, yi)}ni=1 denote expert annotations on
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product-query pairs where i is the index over the
tuples, qi and pi represent the query and product
entities respectively, and yi represents the ground
truth label belonging to one of the three classes:
(i) High relevant, (ii) Low relevant, or (iii) irrele-
vant. (ii) User Behavioral data: Let Dpurchase

PQ =
{(qi, pi, ci)}mi=1 denote customer purchase behav-
ior data where qi and pi represent the query and
product as before and ci denotes the total num-
ber of purchases of product pi after issuing query
qi. While this data is too noisy for direct mod-
eling of product-query match, it can be used to
arrive at highly similar queries based on the over-
lap in the associated product purchases. Specifi-
cally, we define the distribution over query pairs
as the Gram matrix corresponding to the normal-
ized product-query purchase counts and identify
query pairs DQQ+ = {(qi, q′

i)}i that show much
higher occurrence relative to random chance by em-
ploying Normalized Pointwise Mutual Information
(NPMI) based criteria (Section 4.1.2). (iii) Prod-
uct Browse Taxonomy: Further, given a set of
queries and classifiers that can map the queries to
a product browse taxonomy, one can identify the
taxonomy labels for all the queries and construct
pairs DQQ− = {(qi, q′

i)}i with non-matching la-
bels which can be viewed as hard-negatives. (Sec-
tion 4.1.3).

Given all these signals, the objective is to learn
an efficient model M such that for a given query
q, product p and another query q′, the proximity of
corresponding embeddings M(q),M(p),M(q′) is
close to that expressed in the input signals.

4 Proposed KD-Boost

Our solution approach comprises two key stages.
First, we build a teacher model that accounts for
the various signals mentioned in Section 4.1. Then,
we learn an efficient student model that not only
mimics the soft labels of the teacher model but also
uses the original ground truth (Section 4.2). In
Section 4.3, we discuss practical modifications that
further improve model performance.

4.1 Teacher Training Objective

During the training of the teacher model, we incor-
porate human annotated query-product pairs Dlabel

PQ

as well as similar and dissimilar query-query pairs
from the DQQ+ and DQQ− datasets. To establish a
comprehensive framework for training the teacher
model, we define custom loss functions that ac-

count for the complexity of the task at hand.

4.1.1 Ranking Loss
We construct our customized ranking loss (see eq 1)
on Dlabel

PQ dataset to take advantage of the ordinal
nature of hard labels. When considering any ith

training sample (qi, pi, yi), the idea behind ranking
loss is that cosine score should learn the actual
order of relevance while training the siamese model.
The relevance gradation ensures highly relevant
products are prioritized over low relevant products.

LPQ =
∑

(qi,pi,yi)∈Dlabel
PQ

(1yi=high(ŷi − 1)2+

1yi=low((min(0, ŷi − θL))
2

+(max(0, ŷi − θU ))
2)

+1yi=irrelevant(max(ŷi, 0))
2)

(1)

where θL and θU are hyper-parameters, ŷi is model
prediction score, and 1yi=. is an indicator function.

4.1.2 User Behaviour Data Loss
Generating human audited relevance data is a time-
consuming and costly task. In practice, it is not
feasible to generate audit data covering the entire
semantic space of e-commerce. In contrast, we
have copious amounts of data on customer behav-
ior (search query followed by purchase), Dpurchase

PQ ,
which implicitly contains the relevance signal. De-
spite customer data being abundant, it is noisy and
has to be used in conjunction with relevance audit
data to build a robust relevance model.
Laus (Lau et al., 2014) used Normalized Point-wise
Mutual Information(NPMI) to measure topic co-
occurrence, which we leverage to construct query-
query relevant pairs. In this study, we analyze the
possibility that two queries will co-occur, based
on their individual probabilities, and compare that
to the case when the two queries are completely
independent. A probability distribution can be cal-
culated by normalizing Dpurchase

PQ ’s purchase count
across queries. By analyzing their common prod-
ucts, it is possible to measure the joint distribution
of any two queries. Based on this definition, we
construct the semantically similar query-query data
DQQ+ using Dpurchase

PQ data with NPMI (eq. 2)
scores greater than τnpmi. Appendix E illustrates a
few QQ positive pairs derived through this method.

NPMI(qi, qj) =
log

P (qi,qj)
P (qi)P (qj)

−logP (qi, qj)
(2)
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where P (qi, qj) =∑Z
k=0

PC(qi,pk)∑Z
y=0 PC(qi,py)

.
PC(qj ,pk)∑Z

y=0 PC(qj ,py)
and

P (qi) =
∑Z

j=0 PC(qi,pj)∑Y
i=0

∑Z
j=0 PC(qi,pj)

. Y and Z rep-

resent the total number of distinct queries and
ad products in Dpurchase

PQ . PC(qi, pj) returns the

purchase count from Dpurchase
PQ for a given query

qi and product pj . By leveraging the DQQ+ data,
we define the following loss function for learning
query-query semantics.

LQQ+ =
∑

(qi,q
′
i)∈DQQ+

((min(0, ŷi − θL))
2

(3)

Unlike the loss function defined for low relevant
pairs in Equation 1, the cosine score in Equation
3 does not have an upper limit. The rationale be-
hind this loss function is that relevant query pairs
in DQQ+ do not indicate a specific degree of rele-
vance, such as high or low relevance.

4.1.3 Taxonomy Based Loss
E-commerce platforms employ predefined multi-
level taxonomies or browse nodes to categorize
their extensive product catalogs. These taxonomies
encode the relevance between products and of-
fer opportunities to derive various relationships.
Query classification models have been developed
by numerous e-commerce companies (Skinner and
Kallumadi, 2019), which assign a distribution score
to queries based on the taxonomy tree. Conse-
quently, two queries expressing distinct intents
within the taxonomy tree will receive different
scores. Appendix F showcases some Q-Q hard neg-
ative examples generated using this methodology.
This data allows us to effectively discern irrelevant
query-query pairs in the embedding space, even
if they share some common words. In our study,
we define taxonomy loss as follows, where DQQ−
represents the query-query hard negative dataset.

LQQ− =
∑

(qi,q
′
i)∈DQQ−

(max(ŷi, 0))
2

(4)

4.1.4 Teacher Training
To acquire semantic understanding through the
teacher model, we commence by initializing our
BERT model with pre-trained weights. During
the initial epochs, we employ Dlabel

PQ and DQQ+

to train the model parameters, optimizing for loss
terms in equation 5. The importance of loss terms

MSE  
Loss

Ranking Loss, 
NPMI Loss and 
Taxonomy Loss

KD-Boost  
Loss

Figure 2: The training workflow of the student model
adheres to the KD-Boost method.

LPQ and LQQ+ is regulated by α1 and α2, respec-
tively.

L1 = α1 ∗ LPQ + α2 ∗ LQQ+ (5)

In the subsequent epochs, we generate hard neg-
atives using a taxonomy tree that encodes prod-
uct relevance, as explained in sec 4.1.3. For each
epoch, we identify query pairs that are semantically
similar but do not share a common browse node.
These pairs are added to the data DQQ− as hard
negatives, aiming to optimize the following eq.

L2 = α1 ∗ LPQ + α2 ∗ LQQ+ + α3 ∗ LQQ− (6)

The significance of the taxonomy loss is deter-
mined by the weight scalar α3.

4.2 Student Training using KD-Boost Method

Figure 2 presents our proposed KD-Boost frame-
work. Traditionally, KD methods force student
models to mimic only teacher predictions. This
is based on the idea that soft labels provide better
insight than hard labels. We propose to imitate
the soft label obtained by the teacher, along with
learning from the hard label, to aid in recognising
the areas where the teacher scores are not doing
well. Our loss function for learning student model
parameters is defined as follows:

LKD-Boost = γ[
∑

(qi,pi,yi)∈Dlabel
PQ

(ŷTi − ŷSi )
2+

∑

(qi,q
′
i)∈DQQ+∪DQQ−

(ŷTi − ŷSi )
2] + (1− γ)(L2)

(7)
In the equation mentioned above, ŷTi represents

a soft label obtained from a teacher model T, while
ŷSi denotes the prediction score from the Student
model S. The scalar value γ (where 0 < γ <
1) determines the relative significance of soft and
hard labels. For further insights into the effects of
altering γ from 0 to 1 on the performance of the
student model, please refer to Appendix D.3.
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4.3 Practical Modifications

To enhance the model performance in practice, we
incorporate the following modifications:
(1) During the teacher training process outlined in
Sec 4.1.4, we initially train the model using Equa-
tion 5, followed by Equation 6. By following this
sequence, we effectively manage the model’s stabil-
ity, allowing it to learn from the data in a controlled
and consistent manner.
(2) In addition, we introduce a multi-teacher KD-
Boost algorithm that enables knowledge distillation
from multiple teachers simultaneously. By amalga-
mating the knowledge from multiple teachers, the
student model can gain access to a broader range of
insights and information, resulting in a more com-
prehensive understanding of the underlying data.
The multi-teacher KD-Boost algorithm involves the
utilization of m soft labels, which are incorporated
through m MSE loss functions.

5 Experiments and Results

We start by presenting the datasets and the setup
of the experiments. Note that further details on
dataset generation and experimental setup are pre-
sented in Appendix A.
Dataset Generation We collected anonymized cus-
tomer behaviour Dpurchase

PQ data between Oct’22
and Feb’23 from India marketplace historical logs.
This data is further cleaned by removing query-
product pairs without sufficient purchases (<20).
To generate data using taxonomy, we gather browse
node associations for 400K queries randomly se-
lected from Dpurchase

PQ data. DQQ− is generated us-
ing browse node mapping to keep irrelevant query-
query pairs apart in the embedding space. In case
of Dlabel

PQ , we collected a sample of 4.2 Million
human-annotated <query, ad title> pairs from IN
marketplace which is anonymized, and is not rep-
resentative of production. We generated validation
and test datasets by randomly sampling 60K query-
ad pairs each from IN marketplace, and removed
these 120K pairs from training. As a result of our
evaluation of performance, high and low relevant
are considered positive classes, while irrelevant is
considered a negative class.
Algorithm Baselines We compare our proposed
method with the following baselines in this paper.
These baselines are all trained on the same dataset
to ensure a fair comparison.
(i) KD-DSSM (Nigam et al., 2019) The low la-
tency DSSM model is trained using soft labels from

the SBERT model.
(ii) S-MiniLM (Wang et al., 2020) directly train
S-MiniLM model without using any KD.
(iii) KDSoft (Hinton et al., 2015) S-MiniLM
model is trained only using soft labels from a
teacher model.
(iv) HISS (Ankith et al., 2022) The author pro-
poses a KD method of real-time semantic matching
using an additional alignment loss.
(v) Teacher Model (Devlin et al., 2018) (Sanh
et al., 2019) Teacher model is directly trained us-
ing a training dataset.
(vi) Ensemble This baseline was evaluated in case
of Multi-teacher KD-Boost which ensembles sev-
eral teachers.
Evaluation Metric As a performance metric, we
use roc-auc (Brown and Davis, 2006).

5.1 Main Results
We summarize the results of our proposed method
on our internal dataset in Table 1 where it is com-
pared to strong SOTA baseline methods. We
demonstrate the effectiveness of our proposed
method using two teacher models separately, S-
BERT and S-DistilBERT. In addition, we use S-
BERT and S-DistilBERT to prove the efficacy of
the multi-teacher KD-Boost algorithm. In our
experiments, KD-Boost outperforms all baseline
methods by a significant margin. Furthermore, KD-
Boost outperforms the respective teacher model,
which has never been achieved using any previ-
ous knowledge distillation method. Regarding the
External Amazon Shopping Dataset, summarized
results are presented in Table 2. In this study, S-
BERT serves as the teacher model. Among all
the baselines, KD-Boost outperforms them by a
significant margin, establishing its superiority in
comparison to the state-of-the-art methods.

5.2 Simulated A/B Experiments
To assess the effectiveness of KD-Boost, we con-
ducted a real-time QR A/B testing for a duration
of 7 days. For more detailed information about the
QR system, please refer to Appendix C. During
the testing period, we utilized three key metrics to
evaluate the performance of our proposed method
in comparison to the current production model: i)
Increase in query reformulations ii) Increase in
product coverage iii) Reduction in irrelevancy. No-
tably, we observed a considerable 6.31% increase
in query reformulations, highlighting the effective-
ness of KD-Boost in generating semantically di-
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Model roc-auc/gain% P/R @0.7
KD-DSSM 0.8732/0% 95.11/79.48
S-MiniLM 0.9280/6.27% 97.41/80.45
Teacher: S-DistilBERT, Student: S-MiniLM

Teacher 0.9382/7.44% 97.74/82.76
KDSoft 0.9324/6.78% 97.68/81.38
HISS 0.9364/7.23% 97.98/80.50

KD-Boost 0.9441/8.12% 98.04/82.8
Teacher: S-BERT, Student: S-MiniLM

Teacher 0.9461/8.34% 98.13/83.04
KDSoft 0.9394/7.58% 97.80/82.88
HISS 0.9442/8.13% 98.12/82.86

KD-Boost 0.9473/8.48% 98.15/83.72
Multi-Teachers, Student: S-MiniLM

Ensemble 0.9471/8.46% 98.14/83.62
KDSoft 0.9428/7.97% 98.02/82.54
HISS 0.9452/8.24% 98.07/82.97

KD-Boost 0.9489/8.67% 98.16/84.37

Table 1: The ROC-AUC of several models based on
the query-product labelled dataset. P and R denote pre-
cision and recall at 0.7 threshold, respectively. Since
KD-DSSM serves as the baseline, gain% is 0. Ensem-
ble in the Multi-teachers section refers to the ensemble
performance of several teachers.

verse queries. Furthermore, there was a noticeable
expansion of 2.76% in product coverage, encom-
passing a broader range of products. In addition,
through a comparison of relevance judgments made
by human evaluators, we found a significant 2.19%
improvement in reducing irrelevancy.

Latency We assessed the retrieval latency of
BERT, DistilBERT and MiniLM models in online
settings for embedding-based semantic matching.
To achieve this, we built all models in PyTorch
and converted them to ONNX (Bai et al., 2019).
In an online setting, we use the Deep Java Li-
brary https://github.com/deepjavalibrary/
djl to load ONNX models and generate em-
beddings for a user query. We mapped a user
query to k-nearest neighbor products ((k=100)
in real-time by leveraging the HNSW library
(Malkov and Yashunin, 2018) (mlinks=64 and
ef_construction=256). Based on our latency results,
BERT/DistilBERT have a higher inference latency
of 10.46ms/5.64ms on CPU cores (on m5.4xlarge)
than MiniLM, 1.22ms, which means more hard-
ware is required to reach the same TPS (transac-
tions per second).

Model roc-auc gain%
KD-DSSM 0.8468 0 (baseline)
S-MiniLM 0.8723 3.01%

Teacher: S-BERT, Student: S-MiniLM

Teacher Model 0.8868 4.72%
KD with Soft Label 0.8789 3.79%

HISS 0.8821 4.16%
KD-Boost 0.8905 5.16%

Table 2: Main Results on External Amazon shopping
query dataset

Model roc-auc
Q-Q

Irrelevance
S-BERT: wo/w 0.948/0.946 22.8%/10.9%

S-MiniLM: wo/w 0.931/0.928 24.5%/12.8%
KD-Boost: wo/w 0.952/0.947 21.5%/9.6%

Table 3: An analysis of the ROC-AUC of Query-Product
human audited test dataset and QQ Irrelevance of vari-
ous models with (w) and without (wo) taxonomy loss.

5.3 Taxonomy Loss Effect

We gathered an anonymized dataset comprising
10K Q-Q samples, which were subsequently au-
dited by our in-house human auditing team. In
Table 3, we present the AUC values of various
models on test datasets, both with (w) and without
(wo) taxonomy loss, alongside the measure of Q-Q
irrelevance. Our findings demonstrate that optimiz-
ing for taxonomy loss slightly reduces the AUC,
but significantly decreases Q-Q irrelevance. Main-
taining a low level of Q-Q irrelevance is crucial,
as query reformulation (QR) relies on selecting
products from semantically similar queries.

6 Conclusion

In this paper, we introduce KD-Boost, a novel
knowledge distillation technique specifically de-
signed for real-time semantic matching. KD-
Boost effectively trains low latency student models
by leveraging soft labels from a teacher model,
along with ground truth information obtained from
pairwise query-product and query-query signals
sourced from diverse channels. Through the utiliza-
tion of both internal and public datasets, we show-
case the superior efficiency of our proposed method
compared to existing SOTA KD benchmarks.
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Ethics Statement

Our primary objective is to enhance the student
model’s performance in semantic matching tasks
by creating effective representations of queries and
products in a shared semantic space while achiev-
ing a significant reduction in inference time. The
underlying motivation for these efforts is to de-
crease maintenance and production costs by con-
structing a multi-application model. This approach
aims to broaden the accessibility of the technol-
ogy to a wider community while ensuring minimal
adverse environmental impact. Throughout this
NLP research study, we meticulously planned and
executed our methodology, adhering rigorously to
ethical principles and guidelines. Prior to submis-
sion, the study underwent a thorough review and
approval process by our company’s research leads.
Additionally, we fully complied with the guidelines
established by the EMNLP conference regarding
the use of language data. The researchers take com-
plete responsibility for ensuring the ethical conduct
of the study and are resolute in their dedication to
upholding the utmost standards of ethical research
practices in the field of NLP.
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A Experimental Setup

A.1 Dataset Generation

External Shopping Query Dataset This dataset
consists of 420K training samples and 91K test
samples. To create a validation dataset, 10% of the
training dataset is randomly selected and removed
from the training dataset. Each query-product pair
in this dataset is annotated with labels denoted
as E/S/C/I, which stand for Exact, Substitute,
Complement, and Irrelevant. In the context of
search, the pairs labeled as Exact and Substitute
are considered relevant (positive class), while the
pairs labeled as Complement and Irrelevant are
considered irrelevant (negative class). As such, the
task can be formulated as a binary classification

problem, with the goal of comparing performance
in terms of roc-auc. When calculating the ranking
loss, the label Exact represents the highly relevant
class, Substitute represents the low relevant class,
and both Complement and Irrelevant represent the
irrelevant class.

A.2 Experimental Details

Teacher Training: We conducted all experi-
ments using the PyTorch framework (Paszke et al.,
2019) and the HuggingFace library (Wolf et al.,
2019). Two teacher models, namely S-BERT and
S-DistilBERT, were employed with identical hyper-
parameter settings. S-BERT utilized the bert-base-
uncased EN model (Devlin et al., 2018)1, while
S-DistilBERT utilized the distilbert-base-uncased
EN model (Sanh et al., 2019)2. During the training
phase, we employed pre-trained checkpoints and
trained the models for 10 epochs, incorporating
early-stopping criteria. A batch size of 512 and
a learning rate of 5*10−5 were utilized with the
Adam optimizer. We set the values of θU and θL to
0.85 and 0.7, respectively. The experiments were
conducted on an AWS p2.8xlarge EC2 instance
with a single GPU. Throughout this study, the hy-
perparameters were selected empirically based on
the results obtained from various experiments.

KD-Boost Architecture Training: As outlined
in Section 4.2, the weights of the trained teacher
models are frozen. To train the student model
(S-MiniLM), we utilize a pre-trained checkpoint
from sentence-transformers/paraphrase-MiniLM-
L3-v2 (Wang et al., 2020)3 as a starting point and
train the model for 10 epochs, employing early-
stopping criteria. The hyperparameters used for
training the S-MiniLM model are identical to those
used for the teacher models. This includes a batch
size of 512, a learning rate of 5*10−5, and the
Adam optimizer. Similar to the teacher models, we
set the values of θU and θL to 0.85 and 0.7, respec-
tively. In Equation 7, we set γ to 0.9. To ensure
statistical significance, we repeat the experiments
5 times while altering the random seeds.

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/

distilbert-base-uncased
3https://huggingface.co/sentence-transformers/

paraphrase-MiniLM-L3-v2
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Figure 3: Teacher Model (S-BERT) and Low-Latency
Encoder Model (S-MiniLM)

B Teacher and Student Models

The model architecture of both a teacher model and
a low-latency student model is depicted in Figure
3.

C Realtime QR System Workflow

The QR (Query Reformulation) process enables the
retrieval of relevant ads from the system based on
the query Q = q1, q2, ..., qk, where q1,...,qk repre-
sent different query reformulations. Our online QR
system encompasses the following components:
(1) PCQC (Pre-Curated Query Cache) - The
semantic representation of a pre-curated list of
queries is generated by our proposed model and
subsequently stored in a cache. These queries are
carefully selected based on their historical perfor-
mance, particularly the high number of products
retrieved in the past.
(2) Query Processor - When a user requests a
query, our proposed model converts it to a seman-
tic representation in real-time.
(3) K-Nearest Neighbour (KNN) Search - Us-
ing KNN search on the semantic representation,
the user query is matched to semantically sim-
ilar queries, often referred to as reformulated
queries, within the PCQC. The resulting reformu-
lated queries are passed to the search index to return
relevant products to customers.

D Ablation study

D.1 Robustness to misspelled user queries:
Given the lack of clarity and rarity of misspelled
queries, semantic models often struggle to identify
relevant products for such queries. Considering the
superior performance of KD-Boost over teacher
models on the overall test data, we also sought to
evaluate its effectiveness specifically on data in-
volving misspelled user queries. To accomplish
this, we focused solely on samples from the test

data that contained at least one misspelled word
in the user query. Our experiments demonstrate
roc-auc values of 0.9074 and 0.8973, respectively,
when utilizing the KD-Boost and S-BERT teacher
models on the misspelled query data. These re-
sults indicate that our proposed method exhibits
a higher roc-auc than the teacher model, suggest-
ing that KD-Boost is more resilient to incorrectly
spelled queries. As a result, it can retrieve more rel-
evant products even in instances where the queries
contain misspellings. Table 4 provides examples
of <query, product> pairs where our proposed
model successfully retrieves products with mis-
spelled queries, whereas the teacher model fails
to do so.

Query Product Title

jonk hiyar oil
Nature Sure™ Combo

- Kalonji Tail 110ml and
Jonk Tail (Leech Oil) 110ml

godex flashes Godox Portable Lightweight
Pocket Flash AD200

sheos combo packs Ethics Perfect Combo Pack
of 4 Loafer Shoes for Men

Table 4: Few <query, product> pairs involving mis-
spelled user queries.

D.2 Query Length Level Results:

Table 5 showcases the auc results obtained by vary-
ing the number of tokens in a query. This analysis
aims to assess the impact of increasing token length
on the performance of our proposed method. No-
tably, for each token length, both KD-Boost vari-
ants, namely KD-Boost [Teacher:S-DistilBERT,
Student:S-MiniLM] and KD-Boost [Teacher:S-
BERT, Student:S-MiniLM], consistently outper-
form their respective teacher models, S-DistilBERT
and S-BERT. However, it is worth noting that
KD-Boost Multi Teacher surpasses all other sin-
gle teacher KD-Boost variants in terms of perfor-
mance.

D.3 Effect of γ (equation 7):

The KD-Boost loss, calculated by Equation 7, in-
corporates a weighting mechanism using γ and 1-γ
for the loss functions. Our experimental findings
indicate that maintaining a higher γ value, which
assigns more weight to soft labels, leads to im-
proved performance of the student model. Figure 4
presents the results of the KD-Boost method across
different γ values ranging from 0 to 1. Notably, our
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Teacher1 : S −DistilBERT, Teacher2 : S −BERT, Student : S −MiniLM

#Tokens
in Query

Student
(No KD) Teacher1

KD-Boost
Teacher1

Teacher2
KD-Boost
Teacher2

Multi-Teacher
KD-Boost

1 0.9235 0.9297 0.9292 0.9368 0.9374 0.9370
2 0.9282 0.9344 0.9424 0.9403 0.9407 0.9425
3 0.9236 0.9337 0.9375 0.9427 0.9436 0.9452
4 0.9350 0.9434 0.9482 0.9511 0.9515 0.9539
5 0.9357 0.9431 0.9476 0.9498 0.9506 0.9537

>5 0.9461 0.9498 0.9547 0.9578 0.9574 0.9592

Table 5: Table comparing the ROC-AUC of different models based on the tokens in query text

findings reveal that our student model surpasses the
S-BERT teacher model within a specific range of
γ values, specifically between 0.8 and 0.9.

Figure 4: The figure illustrates the relationship between
the increasing value of γ (as mentioned in equation
7) and the roc-auc performance. It is observed that
the roc-auc steadily rises with an increasing γ value
until it reaches a peak of 0.9, after which it starts to
decline. These results are demonstrated using S-BERT
as the teacher model. Similarly, when S-DistilBERT
is employed as the teacher model, a similar trend is
observed.

D.4 Is it possible to enhance efficiency by
training the teacher and student models
concurrently?

An alternative approach that can be considered
is training the student and teacher networks si-
multaneously, eliminating the need for pretrain-
ing the teacher model and freezing its weights dur-
ing the knowledge distillation process. However,
our experimental findings reveal that co-training
the teacher and student models results in a sig-
nificant decline in the performance of both the
teacher (SBERT AUC drop to 0.9258) and the stu-
dent (AUC drop to 0.8945).

D.5 Results on tail queries:

Search engines typically classify queries into three
categories: head, torso, and tail, with tail queries be-
ing less frequent. Our experimental results demon-
strate that our proposed method outperforms the
BERT teacher model for tail queries. Specifically,
we achieve a roc-auc of 0.8621 with the KD-Boost
student model and 0.8538 with the BERT teacher
model for tail query human annotated samples.
This indicates that our approach is more effective
in addressing the unique challenges posed by tail
queries.

E Query-Query positive pairs

Table 6 displays the outcomes of several positive
query-query (QQ) pairs obtained through the ap-
plication of Normalized Pointwise Mutual Infor-
mation (NPMI) to customer purchase data. This
data enables us to capture semantic relationships
between entities, irrespective of whether they share
any common terms.

Query1 Query2
bottle for kids baby sipper
drawer lock child safety lock

tv unit for living room Low Height Television
wireless earbuds boat airdopes

baking paper butter paper for baking

Table 6: Examples of NPMI-identified semantically
similar Q-Q pairs

F Query-Query Hard Negative Pairs

In Table 7, we showcase a collection of challenging
hard negative query-query (Q-Q) pairs that were
generated using taxonomy browse node informa-
tion. This data enables us to effectively separate
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irrelevant Q-Q pairs within the embedding space,
even when they share certain common words.

Query1 Query2
zoom camera camera lens

pencil kit for girls classmate gel pen
smart tv inch dell 21.5 inch monitor

mens denim jeans mens t shirt full sleeves

Table 7: Examples of hard negative Q-Q pairs generated
using taxonomy browse node information
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