
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 152–159
December 6-10, 2023 ©2023 Association for Computational Linguistics

Does Named Entity Recognition Truly Not Scale up to
Real-world Product Attribute Extraction?

Wei-Te Chen† Keiji Shinzato† Naoki Yoshinaga‡ Yandi Xia†

† Rakuten Institute of Technology, Rakuten Group, Inc.
‡ Institute of Industrial Science, The University of Tokyo

† {weite.chen, keiji.shinzato, yandi.xia}@rakuten.com
‡ {ynaga}@iis.u-tokyo.ac.jp

Abstract

The key challenge in the attribute-value extrac-
tion (AVE) task from e-commerce sites is the
scalability to diverse attributes for a large num-
ber of products in real-world e-commerce sites.
To make AVE scalable to diverse attributes, re-
cent researchers adopted a question-answering
(QA)-based approach that additionally inputs
the target attribute as a query to extract its val-
ues, and confirmed its advantage over a clas-
sical approach based on named-entity recogni-
tion (NER) on real-word e-commerce datasets.
In this study, we argue the scalability of the
NER-based approach compared to the QA-
based approach, since researchers have com-
pared BERT-based QA-based models to only
a weak BiLSTM-based NER baseline trained
from scratch in terms of only accuracy on
datasets designed to evaluate the QA-based ap-
proach. Experimental results using a publicly
available real-word dataset revealed that, under
a fair setting, BERT-based NER models rival
BERT-based QA models in terms of the accu-
racy, and their inference is faster than the QA
model that processes the same product text sev-
eral times to handle multiple target attributes.

1 Introduction

To serve better product search and recommenda-
tion to customers on e-commerce sites, industry
researchers have studied attribute value extraction
(AVE) to organize hundreads of millions of prod-
ucts in terms of their attribute values. In the litera-
ture, AVE has been formalized as sequence tagging
similar to named entity recognition (NER), which
recognizes attribute values in the given product text
while classifying them to corresponding attributes
defined by an e-commerce site (Figure 1) (Probst
et al., 2007; Wong et al., 2008; Putthividhya and
Hu, 2011; Bing et al., 2012; Shinzato and Sekine,
2013; More, 2016; Zheng et al., 2018; Rezk et al.,
2019; Karamanolakis et al., 2020; Zhang et al.,
2020). When we apply NER-based sequence tag-
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Figure 1: Overview of attribute value extraction.

ging to AVE, a larger number of classes (attributes),
which can exceed a thousand, poses a challenge.

To make AVE scalable to thousands of attributes,
Xu et al. (2019) have proposed models based on
question-answering (QA) to reduce the number
of classes by additionally inputting the target at-
tribute and extract only values for that attribute.
They reported that the NER-based model, Open-
Tag (Zheng et al., 2018) performed poorly on rare
attributes due to a data sparseness problem and
thus did not scale to the diverse attributes. Fol-
lowing this study, recent researchers focus on the
QA-based approach (Wang et al., 2020; Yang et al.,
2022; Shinzato et al., 2022).

In this study, we re-evaluate the scalability of the
NER-based approach to real-world AVE against
the QA-based approach in a more fair setting, in
terms of efficiency in inference as well as accuracy.
In the above comparison (Xu et al., 2019), Open-
Tag is based on a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) trained from scratch (Fig-
ure 2 (a)), whereas the QA-based approaches lever-
age a pre-trained BERT, which remedies the data
sparseness problem. Meanwhile, the NER-based
approaches may classify recognized values as ir-
relevant attributes and have issues in recognizing
overlapping values (Shinzato et al., 2023), whereas
the QA-based approaches bypass these issues by
explicitly giving a single target attribute. We should
also consider the scalability to a number of prod-
ucts on e-commerce sites, since the AVE model
will be applied to hundreds of millions of product
text on major e-commerce sites. The NER-based
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Figure 2: Comparison of model architectures for the AVE task. The common input to the models is text t =
{t1, . . . , tn}. ⊕ represents the concatenation operation. OpenTag (Zheng et al., 2018) and BERT-NER/CRF (Devlin
et al., 2019; Yan et al., 2021) introduce a set of chunk tags for each attribute (e.g., Ba). Meanwhile, SU OpenTag (Xu
et al., 2019) and BERT-QA (Wang et al., 2020) take a target attribute a = {a1, . . . , am} as an additional input; SU
OpenTag and BERT-QA thereby predicts a single set of chunk tags and starting and ending positions, respectively,
to extract a value corresponding to the given attribute. In our experiments, to enable BERT-QA to extract multiple
values for a given attribute, we replace a decoder part in the model with a feed forward layer used in (b).

models can extract values for multiple attributes
at once, whereas the QA-based models can extract
values for only a single target attribute at once and
require multiple runs if the input text includes val-
ues for more than one attribute.

We evaluate BERT-NER (Devlin et al., 2019)
models (Figure 2 (b)) on a publicly available real-
world AVE dataset (Yang et al., 2022), and con-
firm that BERT-NER scales up to a thousand of
attributes in terms of accuracy, with a smaller in-
ference cost. In fact, the BERT-based NER model
performs as well as the BERT-based QA model
when it does not predict irrelevant attributes and
the input does not include overlapping values.

Our contribution is as follows.

• We evaluated BERT-based NER models for
AVE using a publicly available real-world
dataset for the first time.

• We found that the QA models are superior
to the NER models in that they i) can han-
dle overlapping values for multiple attributes
and ii) can avoid predicting wrong attributes
thanks to their formulation that explicitly in-
puts the target attribute for extraction.

• We confirmed the BERT-based NER models
require a smaller inference cost against the
QA-based models, thus showing better scala-
bility to the number of products.

2 Related Work

Traditionally, most previous studies formulated
AVE as a sequence tagging problem and adapted
NER techniques (Probst et al., 2007; Wong et al.,
2008; Putthividhya and Hu, 2011; Bing et al., 2012;
Shinzato and Sekine, 2013; More, 2016; Zheng
et al., 2018; Rezk et al., 2019; Karamanolakis et al.,
2020; Zhang et al., 2020; Zhu et al., 2020; Yan
et al., 2021). These studies introduce a set of chunk
tags (e.g., BIO tags) for each attribute and clas-
sify each token in text into one of the chunk tags.
Therefore, NER-based models can extract values
for multiple attributes at the same time. However,
since the number of attributes in real-world AVE
easily exceeds a thousand (Xu et al., 2019), the
models are required to perform a large-scale multi-
class classification at the token level.

To address a large number of attributes in the
AVE task, recent studies (Xu et al., 2019; Wang
et al., 2020; Yang et al., 2022; Shinzato et al., 2022)
adopted a QA-based approach (e.g., Figures 2 (c)
and (d)). These QA-based approaches take an at-
tribute as query and a product title as context, and
extract attribute values from the context as answer
for the query. By taking attributes as the input,
QA-based models achieved the best performance
on publicly available AVE datasets (Wang et al.,
2020; Yang et al., 2022). On the other hand, un-
like NER-based models, QA-based models cannot
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extract values for multiple attributes at the same
time. This is because the models jointly encode
a given title and attribute, and it is necessary to
perform extraction multiple times when there are
values for multiple attributes in the title. Hence, the
QA-based models are more time-consuming than
NER-based models, which incurs a critical issue in
business contexts.

Previous studies (Xu et al., 2019; Wang et al.,
2020; Yang et al., 2022) reported that NER-based
models did not scale up to large-sized attributes in
AVE through the evaluation of OpenTag (Zheng
et al., 2018), which was referred to as the state-of-
the-art NER-based model. However, since Open-
Tag relies on bidirectional LSTMs (Hochreiter and
Schmidhuber, 1997) and GloVe (Pennington et al.,
2014), it is debatable whether NER-based models
are truly unscalable, as large-scale pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
have become the de-facto standard as a text en-
coder. Although Yan et al. (2021) verified the per-
formance of BERT-based NER models using their
own dataset consisting of 12 attributes, the size of
attributes is far from the AVE task in the real-world
scenario. This paper is the first work that reports
the performance of BERT-based NER models on a
publicly available real-world dataset for AVE.

3 Attribute Value Extraction

We formalize AVE as a sequence labeling problem.
Let A be the set of all possible attributes in train-
ing data and Y be the tag set containing all the
tags. If we choose BIO as our chunk tag scheme,
then Y = {{A× {B, I}}∪ O}. Given a product
data (text) t = {t1, t2, . . . , tn} where n is the num-
ber of tokens in t, the model is trained to return
y = {y1, y2, . . . , yn} where yi ∈ Y . In short, the
model performs multiclass classificaition over each
token. In the inference, attributes and values are
decoded from the sequence of predicted tags.

In what follows, we describe BERT (Devlin
et al., 2019) and BERT-based NER models.

3.1 Preliminary: BERT

BERT is a large-scale language model based on
Transformer (Vaswani et al., 2017). It is pre-trained
with a large-scale text corpus following masked-
language modeling (MLM) and next-sentence pre-
diction (NSP). MLM learns the semantics of each
word from the surroundings, while the NSP learns
the relation between text segment pairs.

BERT can be fine-tuned for downstream tasks
such as sentiment classification and NER. In gen-
eral, a task-specific layer is placed on top of BERT
and is trained using labeled data for downstream
tasks. Even if the size of the labeled data is small,
BERT performs better because of pre-training with
large-scale data. Thus, BERT has achieved great
success as a text encoder in various NLP tasks.

3.2 NER with BERT
BERT-NER (Devlin et al., 2019) is composed of
BERT followed by a sequence tagging layer (Fig-
ure 2(b)). BERT accepts a sequence of tokens t as
input, and then encodes it into a list of contextual-
ized dense vectors h, each representing one token.
Next, a sequence tagging layer classifies token ti
into a possible tag y ∈ Y following dense vector
hi. As a sequence tagging layer, we can use a feed-
forward layer followed by a softmax layer received
hi. The probability of y given ti is calculated as:

P (y|ti) =
exp(σ(y, hi))∑

y′∈Y exp(σ(y′, hi))

where σ is a learnable scoring function to estimate
the score that the dense vector hi and target y ap-
pear together.

However, the sequence tagging based on the
feed-forward layer fails to classify tokens because
it cannot capture the association between the neigh-
borhood labels. To better consider the label associ-
ation, a conditional random field (CRF) (Lafferty
et al., 2001) layer is placed on top of BERT instead
of the feed-forward layer. A linear-chain CRF layer
considers the omission and transition scores simul-
taneously with the following probability formula:

P (y|t) =
exp(

n∑
i=1

σ(yi, hi) +
n−1∑
i=1

τ(yi, yi+1))

Z(t)

where σ and τ are the learnable omission and tran-
sition scoring functions. Z(t) is a partition term
to normalize the probability distribution. The τ
function estimated the score of transiting from the
label yi to the next label yi+1. Thus, the τ function
easily causes memory exhaustion when the label
size is large; it requires O(|Y |2) memory space.

In this paper, however, we did not use a CRF
layer and adopted a simple BERT-NER for evalu-
ation. This is because in addition to the memory
space, Yan et al. (2021) reported that replacing
the feed-forward layer with the CRF layer showed
slightly poor performance in the AVE task.
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Train Dev. Test TestNER

Number of product data 640,000 100,000 290,773 248,493
Number of attribute value annotations 2,294,309 358,773 1,039,286 806,021
Number of attribute value annotations w/o NONE 1,901,226 297,527 862,308 650,992
Number of unique attributes 693 660 685 670
Number of unique values 54,200 21,734 37,092 30,178
Number of unique attribute-value pairs 63,715 25,675 43,605 34,953

Table 1: Statistics of the MAVE dataset. We randomly selected 640,000 examples from the entire training data
following (Yang et al., 2022).

4 Experiments

We evaluate BERT-based NER models on a pub-
licly available real-world AVE dataset, namely the
MAVE dataset (Yang et al., 2022).1 The statistics
of the dataset are listed in Table 1.

Similar to (Yang et al., 2022), we verify the mod-
els on the following setups.

All attributes To evaluate the capability of scal-
ing up to large-sized attributes, we evaluate the
models on all attributes in the dataset.

Selected attributes To demonstrate the perfor-
mance on individual attributes, we evaluate the
models on a set of selected attributes; five head
attributes that contain a large number of attribute-
value annotations in the dataset and five tail at-
tributes that have very few examples in the dataset.
Those attributes were selected by Yang et al.
(2022).

4.1 Dataset
The MAVE dataset (Yang et al., 2022) is composed
of a curated set of 2.2M products from Amazon
Review Data (Ni et al., 2019). The dataset contains
various kinds of products such as shoes, clothing,
watches, books, and home decor decals. Table 2
shows an example of product data in MAVE. As
you can see, the textual data of the product consists
of multiple sources. We simply concatenate all of
them using a [SEP] token as a delimiter and regard
the resulting text as an input to models.

The product data provide spans for each value
and NONE for attributes if the values are not men-
tioned. Yang et al. (2022) employed the AVEQA
model (Wang et al., 2020) and heuristic rules to ob-
tain those spans and NONE. We straightforwardly
use beginning and ending positions in each span to
annotate values in the text for the experiments on
all attributes. On the other hand, for experiments on

1https://github.com/google-research-datasets/
MAVE

Source Text

Title Wireless Mobile Mouse 1000 - Maus - 3
Taste(n)

Description Microsoft Wireless Mobile Mouse 1000 -
MAGENTA PINK

Feature 1 9.09
Feature 2 18.18
Brand Microsoft

Attribute Value

Connectivity {Wireless, Title, Span(0, 8)}, {Wireless,
Description, Span(10, 18)}

Sensitivity NONE

Table 2: Example product data in the MAVE dataset.

the selected attributes, we only annotate the values
of the selected attributes.

There are issues in using the MAVE dataset to
evaluate the NER-based AVE models. First, the
datasets provide a few target attributes for each
example to evaluate the QA-based models. Since
NER-based models do not utilize these attributes,
they may recognize values as attributes other than
the target attributes. Moreover, the datasets in-
clude redundant overlapping attributes (Table 4
in (Shinzato et al., 2023)), which require nested
NER (Wang et al., 2022) to handle by the NER-
based approach. Note that the QA-based approach
unfairly bypasses these issues by explicitly giving
one target attribute for extraction.

To see the impact of these issues, we use not
only the original MAVE test set but also its subset
(TestNER) in which i) the BERT-NER model did
not predict attributes other than the target attributes
(19,278 examples) and ii) examples do not include
overlapping values for multiple attributes (24,042
examples). As the training set, similarly to (Yang
et al., 2022), we randomly selected 640,000 prod-
uct data from the original 2.2M training data to
make the training faster. As the development set,
we randomly selected another 100,000 product data
from the original training data.
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Test TestNER

Attributes BERT-NER BERT-QA BERT-NER BERT-QA

P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1

(All Attributes)
96.35 83.22 89.30 95.39 91.74 93.53 96.48 89.49 92.85 95.44 92.51 93.95

(Selected Attributes - Head)
Type 95.89 90.03 92.87 95.42 91.77 93.56 95.89 91.20 93.49 95.40 92.48 93.92
Style 96.48 88.55 92.34 96.32 92.60 94.42 96.72 90.73 93.63 96.33 93.24 94.76
Material 96.50 87.56 91.82 95.54 93.23 94.37 96.62 89.27 92.80 95.76 94.06 94.90
Size 93.79 76.32 84.16 91.18 90.76 90.97 94.24 78.64 85.74 91.38 91.17 91.27
Capacity 96.96 87.48 91.98 95.44 93.41 94.41 96.24 86.06 90.87 94.65 92.49 93.56

(Selected Attributes - Tail)
Black Tea Variety 100.00 25.71 40.91 87.88 82.86 85.29 No extraction results 62.50 100.00 76.92
Staple Type 98.08 77.27 86.44 96.72 89.39 92.91 100.00 79.66 88.68 100.00 93.22 96.49
Web Pattern 95.45 70.00 80.77 100.00 93.33 96.55 95.45 70.00 80.77 100.00 93.33 96.55
Cabinet Configuration 100.00 68.29 81.16 97.50 95.12 96.30 100.00 62.07 76.60 96.43 93.10 94.74
Power Consumption 92.11 77.78 84.34 97.56 88.89 93.02 90.91 88.24 89.55 96.97 94.12 95.52

Table 3: Performance of models on all and selected attributes in MAVE. Average refers to averaged performance on
the selected attributes. The number of parameters in BERT-NER and BERT-QA is 110M and 108M, respectively.

4.2 Models
We compare the following models:

BERT-NER NER-based model used in (Devlin
et al., 2019) (Figure 2 (b)). It utilizes a feed-
forward layer to decode hidden representations to
tags.

BERT-QA QA-based model proposed in (Wang
et al., 2020) (Figure 2 (d)). It jointly encodes a
given text and attribute by feeding a string con-
catenating them to BERT. Then, it computes the
probabilities for the start index s and the end index
e of the value span for the given attribute.

s = argmax
i

(softmax(wshi))

e = argmax
i≥s

(softmax(we(Concat(hi, hs))))

where hi is hidden representation of the i-th token
in the given text. ws and we are two matrices that
map the hidden representations to the output logits
for the start and end indices, respectively. By con-
catenating hi and hs, the model incorporates the
begin-end dependency. Since this decoding method
cannot extract multiple values for a given attribute,
we replace it with a feed-forward layer that we use
in BERT-NER.

For all models, we adopt BILOU (Sekine et al.,
1998; Ratinov and Roth, 2009) as a chunk tag
scheme. Therefore, the total number of labels is
N × 4 + 1, where N is the number of distinct
attributes in the training data in the case of BERT-
NER whereas N = 1 in the case of BERT-QA.

4.3 Evaluation Measure
Following the literature (Yang et al., 2022), we
used micro precision (P), recall (R), and F1 score
as evaluation metrics, and computed those metrics
by span basis. In the MAVE dataset, there are at-
tributes whose values do not appear in the given
text (negative). For the ground truth with such no
attribute values, models can predict no values, or in-
correct values (FPn) while for the ground truth with
concrete attribute values, the model can predict no
values (FN), correct values (TP), or incorrect values
(FPp). Based on those types of predicted values, P
and R are computed as follows:

P =
|TP|

|TP|+ |FPp|+ |FPn|
, R =

|TP|
|TP|+ |FN|

F1 is computed as 2× P × R / (P + R).
As mentioned in Section 4.2, while BERT-QA

refers to an attribute as input, the NER-based mod-
els do not. To fairly compare the NER-based mod-
els with BERT-QA, we discard extracted values if
there are no ground truth labels for the attributes
for evaluation with all test examples.

4.4 Implementation Details
We implemented all models in PyTorch (Paszke
et al., 2019) in ver. 1.11.0. For the underlying
BERT pre-trained model, we used the “bert-base-
cased”2 in transformers (Wolf et al., 2020). We
used 2 NVIDIA 80 GB A100 GPUs in all exper-
iments. In training, we used Adam (Kingma and

2https://huggingface.co/bert-base-cased
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Ba, 2015) as the optimizer for all the models. The
learning rate is set to 5× 10−5 for all BERT-based
models. We trained models up to 20 epochs with
a batch size of 32. We selected the best model
according to micro F1 on the dev set.

4.5 Results

Accuracy
Table 3 shows the experimental results on all and
selected attributes in the MAVE dataset.

All attributes Similarly to (Wang et al., 2020),
BERT-QA shows better performance than NER-
based models for all test examples in our experi-
ments. However, the BERT-NER model exhibits
comparable accuracy to the BERT-QA model on
testNER where the model does not predict attributes
that are not included in the target attributes and
test examples do not include overlapping attributes.
Thus, the advantage of the BERT-QA model is ba-
sically obtained by supporting overlapping values
for multiple attributes and by avoiding generating
irrelevant attributes by giving a target attribute.3

Selected attributes Similarly to the results on all
attributes, the BERT-QA model outperforms the
BERT-NER model for all text examples. Again,
this gain was reduced when the models are evalu-
ated on testNER.

Inference time
Table 4 shows the inference time of the BERT-
NER and BERT-QA models on all test examples.
The BERT-NER model is faster than the BERT-QA
model because the QA-based model must be ap-
plied to the same product text multiple times vary-
ing input attributes of interest. Meanwhile, NER-
based models perform only once regardless of the
number of attributes. This performance gap be-
comes larger when we apply the models to product
text that contains more attributes (Shinzato et al.,
2023) or when the taxonomy cannot narrow down
the target attribute.

To make QA-based models accurate and effi-
cient, it is a must to prepare a comprehensive at-
tribute taxonomy to cover necessary and sufficient
attributes for the target product (text) to avoid the

3The accuracy gain of BERT-QA models was attributed
mostly to supporting extraction of overlapping values; The
P/R/F1 of the BERT-NER model was 96.28/89.14/92.58 for
test examples without overlapping values, while those of the
BERT-QA model was 95.44/92.35/93.87.

Model Time (sec)

BERT-NER 905
BERT-QA 1,464

Table 4: Inference time on Test.

wrong extraction of irrelevant attributes and to min-
imize the number of runs on the same inputs and
not to extract irrelevant attributes. If such a tax-
onomy is not available, we need to run the QA-
based model with all possible attributes. It will
result in a long inference time as well as the extrac-
tion of irrelevant attributes. In light of the above,
the BERT-NER model, which works without us-
ing a comprehensive taxonomy, could be a robust
and practical solution to AVE; researchers should
revisit the NER-based approach as an important
research target in AVE.

5 Conclusions

In this study, we have revisited the NER-based ap-
proach to attribute-value extraction (AVE) from
e-commerce sites, and evaluated the scalability of
BERT-based NER models on the AVE task. We
performed experiments using a publicly available
real-world dataset and confirmed that even NER-
based models scaled up to large-sized attributes.
These results showed that experiments with Open-
Tag are insufficient to verify the scalability and
performance of NER-based models in real-world
AVE.

We observed that the BERT-based NER model
rivals the BERT-based QA model in terms of ac-
curacy for test examples in which the model does
not predict attributes other than the target attributes
and examples do not include overlapping values for
multiple attributes; these issues are bypassed in the
QA-based approach by explicitly giving a single
target attribute for extraction. Even in the NER-
based approach, limiting the output tag space to
the target attributes will remedy the first issue, and
the use of nested NER models (surveyed in (Wang
et al., 2022)) will remedy the second issue.

Moreover, QA models are more time-consuming
since the models must be applied to the same prod-
uct text for each target attribute (for thousands of at-
tributes when a comprehensive attribute taxonomy
narrows down the candidates). We thus conclude
that the NER-based models still can be a practi-
cal solution to AVE, and worth a target for future
research.
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