
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 12–19
December 6-10, 2023 ©2023 Association for Computational Linguistics

Enhancing Language Model with Unit Test Techniques for Efficient
Regular Expression Generation

Chenhui Mao, Xiexiong Lin, Xin Jin, Xin Zhang
Ant Group

{maochenhui.maochen, xiexiong.lxx, king.jx, evan.zx}@antgroup.com

Abstract
Recent research has investigated the use of
generative language models to produce regular
expressions with semantic-based approaches.
However, these approaches have shown short-
comings in practical applications, particularly
in terms of functional correctness, which refers
to the ability to reproduce the intended function
inputs by the user. To address this issue, we
present a novel method called Unit-Test Driven
Reinforcement Learning (UTD-RL). Our ap-
proach differs from previous methods by tak-
ing into account the crucial aspect of functional
correctness and transforming it into a differen-
tiable gradient feedback using policy gradient
techniques. In which functional correctness
can be evaluated through Unit Test, a testing
method that ensures regular expressions meets
its design and performs as intended. Exper-
iments conducted on public datasets demon-
strate the effectiveness of the proposed method
in generating regular expressions. This method
has been employed in a regulatory scenario
where regular expressions can be utilized to
ensure that all online content is free from non-
compliant elements, thereby significantly re-
ducing the workload of relevant personnel.

1 Introduction

Regular expressions are an essential tool for pro-
cessing text in an efficient, flexible, and powerful
manner (Friedl, 2006). For instance, an individual
whose work involves reviewing the language used
in an application to prevent the display of violent
or pornographic content to underage users. Manu-
ally checking each line can be a time-consuming
task. Therefore, the use of regular expressions can
greatly streamline this process. Nevertheless, writ-
ing and debugging regular expressions can be a
daunting task for those without expertise, as the
syntax can often be obscure and unintuitive (Kart-
tunen et al., 1996).

The use of natural language to generate regular
expressions has been explored in several works to

Figure 1: Pipeline of our works. And the whole pipeline
consists of 3 steps: the first step will generate prompt
from the original context; followed by the SFT with the
prompt generated from the first step; finally Unit-Test
Driven Reinforcement Learning is implemented

bridge the gap for the public in utilizing regular ex-
pressions. For instance, Ranta et al. (Ranta, 1998)
developed a rule-based system that generates regu-
lar expressions from template input. Subsequently,
Locascio et al. (Locascio et al., 2016) proposed the
use of LSTM-based Sequence to Sequence models
to generate regular expressions based on contex-
tual inputs. Furthermore, with the advancement of
large language models, researchers have discovered
that the performance can be improved by employ-
ing Supervised Fine-tuning (SFT) (Ouyang et al.,
2022) on Large Language Models (LLMs). Nev-

12



ertheless, regular expressions generated by these
models often encounter compilation failures and
inadequately capture the intended functionality of
the input requirements, which is a critical aspect in
practical applications. To address this, researchers
have explored the use of semantic correctness (Park
et al., 2019) as a criterion. However, adopting such
a method does not completely resolve the afore-
mentioned issues. We posit that the disregard for
functional significance in input specification may
be a significant factor contributing to these chal-
lenges.

Therefore, this paper emphasizes the importance
of functional correctness. To enhance the func-
tional correctness of the generated regular expres-
sion, it is important to consider the practical con-
text in which it will be used. Generally, assess-
ing its practical applicability requires conducting
"Unit Test". Specifically, if the generated regular
expression can accurately extract the desired re-
sults from a given sequence of inputs, it can be
considered to meet the functional requirements of
the user. Therefore, in this paper, we propose Unit-
Test Driven Reinforcement Learning (UTD-RL).
This approach utilizes policy gradient techniques
(Sutton et al., 1999) to learn from the feedback pro-
vided by the unit test results, enabling the model
to adjust its pattern generation process to better
align with the intended functionality. As a result,
it shows promise in improving the effectiveness
of regular expression generation in practical ap-
plications. Experimental results demonstrate that
regular expressions generated by this method can
better adhere to the input requirements, resulting
in a significant improvement in the performance
of the generated regular expression with respect to
Unit Test.

As mentioned earlier, we consider functional
correctness to be the most crucial factor in this
task. However, we have observed that the previous
evaluation method, which computes equivalence
by converting each regular expression to a minimal
deterministic finite automaton (DFA) and leverag-
ing the fact that minimal DFAs are guaranteed to
be the same for semantically equivalent regular ex-
pressions, is inadequate for assessing the functional
correctness of the generated regular expression in
relation to the input requirements. Therefore, in
this paper, we propose the adoption of "Unit Test"
as an alternative method for evaluating the gen-
erated regular expression, in addition to utilizing

DFA.
To sum up our contributions:

1. we came up with the UTD-RL approach that
utilizes the outcomes of "Unit Test" to en-
hance the functional correctness of the gen-
erated regular expression in alignment with
input specifications.

2. we propose the use of "Unit Test" for eval-
uation, as it can better reflect the degree of
fulfillment of the input requirements.

3. we conducted several experiments to validate
the efficacy of the UTD-RL approach.

2 Related Work

Recent research has focused on automating the
generation of regular expressions from natural lan-
guage, employing both non-deep learning and deep
learning approaches. Early researchers highlighted
the ability to encode regular expressions into finite
state networks (Karttunen et al., 1996). Ranta et al.
(Ranta, 1998) capitalized on this property and de-
veloped a rule-based technique for converting for-
matted language specifications into regular expres-
sions. Sequentially, Locascio et al. (Locascio et al.,
2016) first introduced an LSTM-based sequence-
to-sequence model (Deep Regex) that translates
contextual information into regular expressions us-
ing a syntax-based objective: maximum likelihood
estimation (MLE). Zhong and Bhatia (Zhong et al.,
2018) optimized performance by employing policy
gradient techniques (Sutton et al., 1999)to train the
model with a semantics-based objective. Similarly,
Park et al. (Park et al., 2019) applied semantic
correctness as the reinforcement learning reward.
However, experiments conducted on these models
revealed significant overfitting on public datasets
resulting in limited generalizability to other input
requirements. We speculate that LSTM lacking
the capacity for induction and deduction compared
to the advanced large language models available
today.

Recently, Large language models (LLMs)
trained on extensive text corpora from diverse do-
mains have exhibited their capability to perform
zero-shot tasks, including code generation. This
zero-shot ability emerged when models reached an
adequate scale (Brown et al., 2020). Researchers
utilizing pre-trained LLMs and fine-tuning them
on pertinent datasets have achieved remarkable out-
comes. For example, CodeX (Chen et al., 2021),

13



a fine-tuned model on GPT-3(Brown et al., 2020),
outperforms prior state-of-the-art models on code
generation. Copilot, a highly renowned code sug-
gestion tool within the GitHub community, em-
ploys CodeX as its foundational model. Further-
more, CodeGeeX (Zheng et al., 2023), a multi-
lingual code generation model equipped with 13
billion parameters, attains the highest average per-
formance on publicly available datasets.

3 Methods

3.1 Language Model
We conducted experiments on large language mod-
els, such as llama, GPT-3, and text-davinci-003, to
evaluate their performance in solving public regular
expression problems. The results demonstrate their
ability to generate regular expressions, although
their performance may not be on par with prior
research advancements on public datasets. This
finding is significant, particularly because these
models are pretrained on a vast corpus rather than
being specifically designed for regular expression
generation. Consequently, it is essential to fine-
tune these language models specifically for the task
of regular expression generation to improve their
effectiveness.

3.2 Unit-Test Driven Reinforcement Learning

Figure 2: Unit test. Unit test are conducted on both
the generated regular expression and the target regular
expression. If the extracted outcome is the same, the
test case is considered passed. Otherwise, the test case
fails.

Ensuring functional correctness is a critical aspect
of regular expressions. To clarify, in practical ap-
plications, validating the correctness of a regular
expression usually involves unit test. If all the in-
tended patterns are successfully extracted from the
test cases and all of the extracted patterns match the
desired patterns, then the regular expression is con-
sidered valid. Unfortunately, previous researches

employing SFT on language models overlooked
this aspect. As a solution, we propose utilizing
policy gradient method (Sutton et al., 1999), which
optimizes parameterized policies through gradient
descent based on the expected return (reward) to
convert functional correctness into a differentiable
gradient.

Our approach aims to improve the functional cor-
rectness of the model by highlighting the unique
functionality of regular expressions and encour-
aging the production of functionally correct regu-
lar expressions, especially in challenging scenar-
ios where the generation process failed to com-
pile. The reinforcement phase will facilitate the
model in learning to generate regular expressions
that are both semantically and functionally correct,
leading to improved performance on "Unit Test".
Specifically, for a given problem context Ci, a de-
sired ground truth regular expression Ri and sev-
eral valid test cases Ti, we want to maximize the
expected reward r(y,Ri, Ti) for every regular ex-
pression y generated by language model pθ, namely
improving the ratio of the generated regular expres-
sion y that can pass the unit test.

J(θ) =
∑

(Ci,Ri,Ti)∈D
Ey∼pθ(·|Ci)r(y,Ri, Ti) (1)

During the training process, it is still desirable
for the regular expressions generated by the model
to have a minimal discrepancy with ground truth
annotated regular expressions. Therefore, we in-
corporate the supervise loss with the ground truth
regular expressions into the final objective function,
aiming to mitigate the disparity.

obj(θ) = βJ(θ) + γEC∼D log pθ(y|C) (2)

In this context, D is a regular expression problem
set. The reward coefficient, β, and supervise loss
coefficient, γ, control the magnitude of importance
between the reward and the supervise loss. Setting
γ to 0 would make the gradient depend solely on
the functional correctness of the generated regular
expression.

Measurement of Functional Correctness.
Since we have utilized the policy gradient method
(Sutton et al., 1999) to transform functional cor-
rectness into a differentiable signal, it is crucial
to define a criterion for evaluating functional cor-
rectness. In practical terms, a regular expression is
considered valid if it can successfully extract the

14



desired string pattern from a provided set of inputs.
This concept shares similarities with the pass@k
metric employed in code evaluation (Chen et al.,
2021). To accomplish this, we employ dedicated
unit test designed for regular expressions to assess
their functional correctness. These unit test, specif-
ically tailored to regular expressions, are illustrated
in Figure 2. The pseudo code in Algorithm 1 il-
lustrates the process of the reward function. If a
generated regular expression passes the current test
case tj , a positive value is added to the reward.
Otherwise, a negative value is added to the reward.

Algorithm 1: Reward Function
input :Label Regex Ri &

Predicted Regex y &
Test_Cases Ti = {t1, ..., tn}

output :r

1 r ← 0;
2 Initialize On p & n;
3 for tj ∈ Ti do
4 if y Fail the compilation then
5 r ← 0− n;
6 continue
7 end
8 str1 ← Pattern_Match(tj , y);
9 str2 ← Pattern_Match(tj , Ri);

10 if str1==str2 then
11 r ← r + p
12 else
13 r ← r − n
14 end
15 end

Test Case Generation. Generating appropriate
test cases is a crucial aspect of unit test. Although
manual generation is possible, it is often unnec-
essary due to the availability of automated tools
like rstr, which can generate test cases automat-
ically based on the provided regular expression.
For thorough testing, it is essential to include both
positive test cases, denoted as {t+i }, which match
the regular expression pattern, and negative test
cases, denoted as {t−i }, which do not produce any
matches. Accordingly, we define our set of test
cases as Ti = {t+1 , t+2 , ..., t−1 , t−2 , ...}, comprising
positive cases generated using rstr and negative
cases randomly selected from pre-generated test
case pools.

id regular expression
1 ∧[1-9]\d ∗ $
2 ∧([1-9][0-9]*){1,3}$
3 ∧\+?[1-9][0-9]*$

Table 1: Example on regular expression A common
regular expression problem that can be found on Stack-
Overflow: match non-zero positive integer

3.3 Evaluation
DFA Equivalence. We assessed the effectiveness
of our approach in generating regular expressions
by testing it with DFA Equivalence, a method that
converts a given regular expression into a mini-
mal DFA. As noted by Karttunen (1996)(Karttunen
et al., 1996), regular expressions can be repre-
sented by finite state networks. This approach is
grounded in the fact that two equivalent regular
expressions possess identical minimal DFAs, irre-
spective of their structural dissimilarities(Hopcroft
et al., 2001).

However, DFA Equivalence falls short when
dealing with large and complex regular expressions.
While DFA Equivalence converts a regular expres-
sion into a Deterministic Finite Automaton, its pri-
mary focus is on syntactical equivalence between
the generated regular expression and the reference
solution. However, functionally equivalent reg-
ular expression may have syntactically different
forms. For example, the regular expressions in
Table 1 capture the pattern of non-zero positive
integers; nevertheless, DFA Equivalence fails to
identify these regular expressions as representing
the same input specification. This limitation is espe-
cially significant in complex real-world scenarios
where different experts might create distinct regular
expressions for the same specification.

Unit Test. In Section 3.2, we introduced the use
of unit test to capture functional correctness during
the reinforcement learning process. At the evalua-
tion stage, this technique can be employed to assess
the functional correctness of the generated regular
expression. For better clarity, we have created a
dedicated test case pool for each regular expression
problem, as depicted in Figure 2. The problem is
considered solved only if the generated regular ex-
pression passes all the test cases. Therefore we can
define the metric as the number of solved regular
expression problems out of the total numbers.

passi =

{
1 if pass all test cases
0 otherwise

(3)

15



Unit Test =
∑

i 1{passi = 1}∑
i 1

(4)

4 Experimental Setup

In this section, we evaluate our work on different
pre-trained language models to verify its effective-
ness. Additionally, we conduct test case analysis
and present case studies to provide further insights.

4.1 Model Configuration

We conducted experiments to evaluate the effective-
ness of UTD-RL on large language models: GPT-3
(Brown et al., 2020) and LLaMA (Touvron et al.,
2023). The pretrained GPT-3 models were pro-
vided by ModelsScope 1, a platform developed by
the Alibaba DAMO team. The pretrained LLaMA
weights can be found on Hugging Face 2.

4.2 Reinforcement Learning Setup

We perform a hyper-parameter search to determine
the best hyper-parameters: β and γ were set to
0.01 and 1.0, respectively. The number of test
cases was set to 10. Out of these test cases, 9 were
derived from positive cases, and 1 was derived from
a negative case.

4.3 Dataset

Our experiments are conducted on the following
datasets.
NL-RX-Pub. A merge dataset from KB13 (Kush-
man and Barzilay, 2013), NL-RX-Synth (Locas-
cio et al., 2016) and NL-RX-Turk(Locascio et al.,
2016). The pairs are divided into three subsets: a
65% training set, a 10% development set, and a
25% testing set (testing set are divided back into
KB13, NL-RX-Synth, NL-RX-Turk accordingly).
In order to avoid data leakage problem, the division
is followed by the target regular expression.
NL-RX-ST3, In order to test the generalizability on
public regular expression problems, we manually
mount 100 regular expression problems from pub-
lic resources including but not limited to github,
wikipedia, and stackoverflow. To be noted this
dataset should only be used for testing.

1model weight can be found in https://modelscope.
cn/models/damo/nlp_gpt3_text-generation_1.3B/
summary

2model weight can be found in https://huggingface.
co/decapoda-research/llama-7b-hf

3Dataset available on https://github.com/
Morris135212/NL-RX

4.4 Results and Analysis
We demonstrate the effectiveness of our approach
by comparing it to the existing approaches includ-
ing Deep Regex(Locascio et al., 2016) and Soft-
Regex(Park et al., 2019). Moreover, we fine-tune
text-davinci-003 (SFT API provided by OpenAI)
on same data. We also conduct the ablation ex-
periments to compare the results obtained from
different language models with and without UTD-
RL.

Baseline Comparison. Table 2 provides a sum-
mary of our results across various methods.

1. Deep Regex & SoftRegex Both the Deep
Regex(Locascio et al., 2016) and Soft-
Regex(Park et al., 2019) have a simple model
structure based on LSTM and utilize a syntax-
based objective (MLE) for training. These
methods perform well on public datasets, but
they exhibit limited generalization ability on
unseen problems, as demonstrated by the re-
sults on NL-RX-ST. This demonstrates that
they severely over-fit on training data. Such a
shortcoming stem from the model itself being
too simplistic and the insufficient utilization of
functional correctness of the generated regular
expression. We conducted futher fine-tuning
of the training data using a more sophisticated
model with an increased number of parame-
ters. The obtained results provide substantial
support for our claim.

2. text-davinci-003 It is widely acknowledged
that scaling up language models, such as
increasing training compute and model pa-
rameters, can significantly improve perfor-
mance and sample efficiency across various
downstream NLP tasks(Wei et al., 2022).Text-
davinci-003, as one of the current state-of-
the-art large language model provided by ope-
nai, shows promising performance across all
datasets. It even demonstrates some ability to
generalize to unseen problems. However, the
model treats the problem as a black box, only
leveraging the syntax similarity of regular ex-
pressions. Therefore, by better utilizing the
inherent functionality of the regular expres-
sion, we can further enhance the effectiveness
of the model. This point has been proven in
subsequent ablation studies.

3. GPT-3 & llama. Both models are currently
open-source, large language models. From

16

https://modelscope.cn/models/damo/nlp_gpt3_text-generation_1.3B/summary
https://modelscope.cn/models/damo/nlp_gpt3_text-generation_1.3B/summary
https://modelscope.cn/models/damo/nlp_gpt3_text-generation_1.3B/summary
https://huggingface.co/decapoda-research/llama-7b-hf
https://huggingface.co/decapoda-research/llama-7b-hf
https://github.com/Morris135212/NL-RX
https://github.com/Morris135212/NL-RX


Model UTD-RL
DFA-Acc Unit Test DFA-Acc Unit Test DFA-Acc Unit Test Unit Test

KB13 NL-RX-Synth NL-RX-Turk NL-RX-ST
Deep Regex / 0.6611 0.6627 0.9180 0.9218 0.6420 0.6535 0.12
SoftRegex / 0.6621 0.6601 0.9222 0.9233 0.6623 0.6676 0.15

text-davinci-003 / 0.6899 0.7422 0.9043 0.9323 0.6753 0.7191 0.43
GPT-3 1.3B 0.6749 0.6869 0.9230 0.9314 0.6636 0.6864 0.31
GPT-3 1.3B ✓ 0.6814 0.7234 0.9219 0.9312 0.6782 0.7119 0.37
GPT-3 2.7B 0.6734 0.6889 0.8959 0.9209 0.6663 0.6884 0.33
GPT-3 2.7B ✓ 0.6843 0.7297 0.9307 0.9349 0.6813 0.7221 0.40

llama 7B 0.6764 0.7381 0.8998 0.9278 0.6664 0.708 0.37
llama 7B ✓ 0.7534 0.7674 0.9223 0.9481 0.6995 0.7219 0.48

llama 13B 0.7442 0.7409 0.899 0.9398 0.6865 0.7235 0.41
llama 13B ✓ 0.7582 0.7789 0.9237 0.9497 0.7097 0.7348 0.53

Table 2: The experiment results on different approaches (using DFA accuracy and unit test as metrics)

the results, we find that after basic fine-tuning
(without UTD-RL), these baselines demon-
strate the ability to approximate the perfor-
mance exhibited by text-davinci-003. How-
ever, it treats the problem as a black box, only
utilizing the syntax similarity of regular ex-
pressions, which we believe is insufficient for
functional corpora like regular expressions.
Therefore, a later ablation study will show
that considering functional correctness greatly
improves the performance not only on public
datasets but also in terms of generalization
ability.

Ablation study. We conducted comprehensive
ablation experiments to evaluate the use of UTD-
RL on GPT-1.3B, GPT-2.7B, llama-7B, and llama-
13B. Table 2 demonstrated a significant enhance-
ment in overall performance by incorporating UTD-
RL. The utilization of UTD-RL resulted in an av-
erage improvement of 2.06% in DFA-Acc for KB-
13, NL-RX-Synth, and NL-RX-Turk, and 2.27%
in Unit-Test. Furthermore, it led to an average im-
provement of 9% in generalization tests for NL-RX-
ST. The most notable experimental results were
observed with the llama-13B model when employ-
ing the UTD-RL approach. The use of UTD-RL
with the llama-13B model exhibited considerable
improvements across various datasets, surpassing
even the results achieved with the text-davinci-003
model. This demonstrate that considering the func-
tional properties inherent in regular expression can
enhance the functional capabilities of the model in
generating regular expressions. This approach also
promotes the generalization ability of the model,
enabling it to generate regular expression that meet
the functional requirements of input even for un-
seen problems.

Figure 3: Compilation Test on GPT3 1.3B and LLaMA
7B

Another observation is presented in Figure 3.The
use of UTD-RL has resulted in the improved suc-
cess rates for regular expressions during compila-
tion. Specifically, for gpt-3 1.3B, there were av-
erage improvements of 5.06% on KB-13, NL-RX-
Synth, and NL-RX-Turk tests, and 8% improve-
ments on NL-RX-ST. For llama-7B, the average im-
provements were 3.19% on KB-13, NL-RX-Synth,
and NL-RX-Turk tests, and 9% improvements on
NL-RX-ST. Section 3.2 provides an illustration of
the reward function used in UTD-RL, which in-
corporates a form of "punishment" for generated
regular expressions that do not pass compilation.
The experimental results support the notion that
this reward system enables the model to generate
more robust regular expressions.

In conclusion, our method shows great poten-
tial for significantly enhancing the functional cor-
rectness of natural language-based approaches in

17



generating regular expressions, In addition, the use
of UTD-RL can effectively improve the model’s
generalization ability in other regular expression
problems.

5 Practical application

In our context, the app hosts numerous registered
merchants. In compliance with market regulatory
requirements, these registered merchants are obli-
gated to undergo internal compliance reviews be-
fore publishing new advertisement landing pages
or text content. This is done to ensure that the con-
tent does not contain any non-compliant elements.
Given the large number of merchants involved and
the complexity of the rules, the conventional ap-
proach relied heavily on manual creation of regular
expressions to identify non-compliant text scenar-
ios. For instance, one requirement for advertise-
ment landing pages was the exclusion of promo-
tional expressions. Unfortunately, this approach
often resulted in significant time and labor costs
associated with the development and testing of reg-
ular expressions. Now a new solution has been
introduced: an automated workflow that utilizes
the large language model trained with UTD-RL.
To make it more specific, This language model
is capable of generating production-ready regu-
lar expressions and automatically conducting unit
test, thereby enabling an automated workflow that
greatly facilitates the public’s use of regular expres-
sions. The process is depicted in Figure 4.

Figure 4: Pipeline for generating a valid regular ex-
pression in a practical application. Language model
generates a regular expression based on users’ requests.
Subsequently, a unit test is implemented to assess the
validity of the regular expression. If the outcome of the
unit test exceeds the threshold, the regular expression is
considered valid. Conversely, the input prompt is con-
catenated with the failed cases to regenerate the regular
expression.

6 Conclusion

In conclusion, ensuring the functional correctness
of regular expressions is crucial in practical appli-

cations. This paper proposes the use of UTD-RL
to effectively utilize the outcomes of unit test as
rewards for the model, thereby enhancing the func-
tional correctness. Furthermore, "unit test" are em-
ployed to assess the functional correctness of the
generated regular expressions.

This paper solely focuses on evaluating the effec-
tiveness of the proposed method in the generation
of regular expressions. However, it is believed that
this approach can be extended to generate any cor-
pus that necessitates functional specifications (e.g.,
Python code generation, SQL generation, etc.). Fu-
ture research will investigate the applicability of
this method in these domains, and we encourage
interested researchers to experiment with this ap-
proach.

18



References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Jeffrey EF Friedl. 2006. Mastering regular expressions.
" O’Reilly Media, Inc.".

John E Hopcroft, Rajeev Motwani, and Jeffrey D
Ullman. 2001. Introduction to automata theory,
languages, and computation. Acm Sigact News,
32(1):60–65.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefen-
stette, and Anne Schille. 1996. Regular expressions
for language engineering. Natural Language Engi-
neering, 2(4):305–328.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. North American Chapter
of the Association for Computational Linguistics
(NAACL).

Nicholas Locascio, Karthik Narasimhan, Eduardo
DeLeon, Nate Kushman, and Regina Barzilay. 2016.
Neural generation of regular expressions from natural
language with minimal domain knowledge. arXiv
preprint arXiv:1608.03000.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Jun-U Park, Sang-Ki Ko, Marco Cognetta, and Yo-Sub
Han. 2019. Softregex: Generating regex from natural
language descriptions using softened regex equiva-
lence. In Proceedings of the 2019 conference on
empirical methods in natural language processing
and the 9th international joint conference on natu-
ral language processing (EMNLP-IJCNLP), pages
6425–6431.

Aarne Ranta. 1998. A multilingual natural-language
interface to regular expressions. In Finite State Meth-
ods in Natural Language Processing.

Richard S Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods

for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processing
Systems, volume 12. MIT Press.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao
Xie, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2018. Semregex: A semantics-based approach for
generating regular expressions from natural language
specifications. In Proceedings of the 2018 conference
on empirical methods in natural language process-
ing.

19

http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

