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Abstract

Multilingual sentence representations are the
foundation for similarity-based bitext min-
ing, which is crucial for scaling multilingual
neural machine translation (NMT) system to
more languages. In this paper, we introduce
MuSR: a one-for-all Multilingual Sentence
Representation model that supports 223 lan-
guages. Leveraging billions of English-centric
parallel corpora, we train a multilingual Trans-
former encoder, coupled with an auxiliary
Transformer decoder, by adopting a multilin-
gual NMT framework with CrossConST, a
cross-lingual consistency regularization tech-
nique proposed in Gao et al. (2023). Experi-
mental results on multilingual similarity search
and bitext mining tasks show the effectiveness
of our approach. Specifically, MuSR achieves
superior performance over LASER31 (Heffer-
nan et al., 2022) which consists of 148 indepen-
dent multilingual sentence encoders.2

1 Introduction

Multilingual sentence representation models
(Artetxe and Schwenk, 2019b; Yang et al., 2020;
Reimers and Gurevych, 2020; Feng et al., 2022;
Heffernan et al., 2022; Mao and Nakagawa, 2023)
align different languages in a shared representa-
tion space, facilitating similarity-based bitext min-
ing that extracts parallel sentences for learning
multilingual neural machine translation (NMT)
systems (Schwenk et al., 2021a,b). Specifically,
LASER3 (Heffernan et al., 2022) scales the origi-
nal LASER (Artetxe and Schwenk, 2019b) beyond
the 93 widely used languages and achieves the state-
of-the-art (SOTA) performance on the multilingual
sentence alignment tasks over 200 languages.

1In its original context, LASER3 refers solely to the
language-specific models presented in Heffernan et al. (2022).
For simplicity, we use LASER3 as an umbrella term encom-
passing the multilingual model LASER2 and the language-
specific models discussed in this paper.

2Previous presentations of this work are available at https:
//arxiv.org/abs/2306.06919.

Figure 1: The model architecture of our approach for
learning multilingual sentence representations.

Although LASER3 exhibits remarkable perfor-
mance, it is not a one-for-all multilingual sen-
tence representation model. Instead, it comprises
of one multilingual model called LASER2 and
147 language-specific models, which are learned
through a teacher-student training mechanism.
Such model strategy, although effective, results
in substantial storage overhead of 78GB and de-
graded transfer performance from high-resource to
low-resource languages, which hinders its practical
value in natural language processing (NLP).

In this paper, our primary goal is to learn a uni-
fied multilingual sentence encoder, MuSR, to han-
dle a wide range of languages such that semantic-
equivalent sentences in different languages are
close to each other in the representation space. In-
spired by the cross-lingual consistency for multilin-
gual NMT (Gao et al., 2023), we learn multilingual
sentence embeddings by utilizing a many-to-one
multilingual NMT training paradigm with cross-
lingual consistency regularization (Figures 1 and
2). In order to support a wide range of languages,
we collect about 5.5 billion English-centric parallel
sentences covering 223 languages from both open-
source and in-house datasets. To the best of our
knowledge, MuSR is the first one-for-all multilin-
gual sentence representation model that supports
more than 220 languages. The contributions of this
paper can be summarized as follows:
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Method #Models #Parameters #Languages Task Architecture Monolingual Pretrain
LASER2 1 45M 93 Seq2Seq Bi-LSTM
LASER3 1 + 147 N/A 205 Dual Encoder Transformer ✓
LaBSE 1 471M 109 Dual Encoder Transformer ✓ ✓
MuSR 1 434M 223 Seq2Seq Transformer

Table 1: Comparison between the related works and our approach. Note that language-specific models in LASER3
have different vocabulary size, and the number of parameters for each model can be approximately calculated
as 202M + vocabulary size × 1024. “Monolingual” denotes whether the monolingual data is used for training.
“Pretrain” denotes whether the model relies on the language model pretraining.

• We learn a one-for-all multilingual sentence
representation model, MuSR, by leveraging
many-to-one multilingual NMT training with
CrossConST regularization over 5.5 billion
English-centric parallel corpora.

• Our experimental results show that MuSR
achieves impressive performance on the mul-
tilingual benchmarks and outperforms the
SOTA models LaBSE (Feng et al., 2022) and
LASER3 (Heffernan et al., 2022).

• We publicly release MuSR, the multilingual
sentence representation model that supports
223 languages.3

2 Background

2.1 Multilingual Sentence Representation
As an important component of cross-lingual and
multilingual NLP, multilingual sentence represen-
tation has attracted increasing attention in the NLP
community. One direction is to leverage dual-
encoder architecture to learn language-agnostic rep-
resentations. Guo et al. (2018) demonstrate the
effectiveness of the dual-encoder model for learn-
ing bilingual sentence embeddings, and Yang et al.
(2019) extend the dual-encoder model with addi-
tive margin softmax loss. Based on these works,
LaBSE (Feng et al., 2022) utilizes dual Transformer
encoders to learn language-agnostic embeddings
over 109 languages with additive margin softmax
loss, which is also pretrained with masked language
modeling (MLM) and translation language model-
ing (TLM) (Conneau and Lample, 2019). LEALLA
(Mao and Nakagawa, 2023) further constructs low-
dimensional sentence embeddings by leveraging
knowledge distillation based on LaBSE.

Another direction is to utilize encoders from mul-
tilingual NMT to produce universal representations
across different languages. LASER (Artetxe and

3Our implementations are available at https://github.
com/gpengzhi/CrossConST-SR.

Schwenk, 2019b) learns the multilingual sentence
embeddings over 93 languages based on the NMT
model with a Bi-LSTM encoder and a LSTM de-
coder. Heffernan et al. (2022) replace the original
LASER model with LASER2 by introducing Sen-
tencePiece (Kudo and Richardson, 2018) vocabu-
lary, up-sampling the low-resource languages, and
adopting a new fairseq4 implementation. LASER2
is used as the teacher, and 147 language-specific
sentence representation models are learned by uti-
lizing teacher-student and MLM training mecha-
nisms. LASER3 refers to a group of LASER2 and
147 language-specific models across 205 languages.
The comparison between the existing works and
our approach are summarized in Table 1.

2.2 Cross-lingual Consistency Regularization
for Multilingual NMT

The multilingual NMT model refers to a neural net-
work with an encoder-decoder architecture, which
receives a sentence in one language as input and
returns a translated sentence in another language as
output. Assume x and y correspond to the source
and target sentences respectively, and let S denotes
the multilingual training corpus. The standard train-
ing objective is to minimize the empirical risk:

Lce(θ) = E
(x,y)∈S

[ℓ(f(x,y; θ), ÿ)], (1)

where ℓ denotes the cross-entropy loss, θ is a set
of model parameters, f(x,y; θ) is a sequence of
probability predictions, i.e.,

fj(x,y; θ) = P (y|x,y<j ; θ), (2)

and ÿ is a sequence of one-hot label vectors for y.
Gao et al. (2023) introduce a cross-lingual con-

sistency regularization, CrossConST, to bridge the
representation gap among different languages in
the training of multilingual NMT model. For each

4https://github.com/facebookresearch/fairseq
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Figure 2: Illustration of CrossConST regularization for learning multilingual sentence representations, where the
original Chinese-English sentence pair ("今天天气很好", "The weather is good today") and the copied English-
English sentence pair ("The weather is good today", "The weather is good today") are fed into the multilingual
NMT model to generate two output distributions f(x,y; θ) and f(y,y; θ).

sentence pair (x,y), the training objective of Cross-
ConST is defined as:

LCrossConST (θ) = Lce(θ) + αLkl(θ), (3)

where

Lkl(θ) = KL(f(x,y; θ)∥f(y,y; θ)), (4)

KL(·∥·) denotes the Kullback-Leibler (KL) diver-
gence between two distributions, and α is a scalar
hyper-parameter that balances Lce(θ) and Lkl(θ).

3 Methodology

Following the similar problem formulation of
Artetxe and Schwenk (2019b), our approach is
based on a Transformer encoder-decoder architec-
ture trained with English-centric parallel corpora.
We discuss the details of our model architecture
and training strategy as follows.

3.1 Model Architecture
The overall model architecture is illustrated in Fig-
ure 1. Multilingual sentence embeddings are cal-
culated by applying a max-pooling operation over
the Transformer encoder’s output, which is subse-
quently concatenated to the word embeddings at
the Transformer decoder’s input. Note that we dis-
card the cross-attention module in the Transformer
decoder. The sentence embeddings are the only
connection between the encoder and the decoder
such that all relevant information of the input sen-
tences are captured by the corresponding sentence
representations. Note that our model does not need
language tags, as many-to-one multilingual NMT
does not rely on them, unlike LASER in Artetxe
and Schwenk (2019b).

3.2 Training Strategy

Following Gao et al. (2023), we adopt a two-stage
training strategy to stabilize the multilingual NMT
training procedure and accelerate the convergence
of the multilingual NMT model. Instead of uti-
lizing two target languages (English and Spanish)
as in Artetxe and Schwenk (2019b), we consider
only one target language (English) and formulate
our problem as a many-to-one multilingual NMT
task. We first train a multilingual NMT model as
the pretrained model and then finetune the model
with CrossConST objective function (3). Figure 2
illustrates CrossConST regularization for learning
multilingual sentence representations. Through the
application of CrossConST, sentence embeddings
of the target language are aligned to the representa-
tion space of the source languages. The alignment
process is facilitated by our many-to-one multilin-
gual NMT model, which effectively encodes all
languages into a shared representation space.

4 Datasets and Training Configurations

4.1 Datasets

We use a combination of open-source datasets and
in-house datasets in our experiments.5

Open-source Dataset We collect all English-
centric parallel datasets from the OPUS collec-
tion6 (Tiedemann, 2012) up to October 2022,
which is comprised of multiple corpora, ranging
from movie subtitles (Tiedemann, 2016) to Bible
(Christodouloupoulos and Steedman, 2015) to web
crawled datasets (El-Kishky et al., 2020; Schwenk

5See the list of the supported languages in Table 5.
6http://www.opus.nlpl.eu
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Figure 3: The distribution of the open-source and in-house cleaned datasets for each language in our training dataset.
Note that the sentences for each language are capped at 100 million for better illustration. Please check Figure 6 for
the complete distribution with the corresponding language name.

et al., 2021b). We download all available English-
centric corpora and concatenate them without cu-
rating the datasets or trying to balance the represen-
tation of different domains.

In-house Dataset We also leverage all English-
centric in-house datasets which consists of the fol-
lowing resources: 1) The parallel sentences are con-
structed from web pages by utilizing a bitext min-
ing system. The extracted sentence pairs are filtered
by a predefined scoring threshold. 2) We adopt
the 3.3B multilingual NMT model released by the
No Language Left Behind (NLLB) project7 and
translate the English sentences from the ParaCrawl
project8 (Bañón et al., 2020) into different lan-
guages. 3) We leverage our in-house multilingual
NMT model to translate the in-house English cor-
pus into different languages.

After we collect all parallel datasets, we adopt
the data cleaning process as follows: 1) We remove
duplicate sentence pairs and also discard sentence
pairs wherein the English sentences exceed 5000
characters. 2) Language identification filtering is
applied by utilizing fastText toolkit (Joulin et al.,
2016, 2017). If the language is not supported by the
identification model9, we simply check whether the
language is non-English. 3) Dual conditional cross-
entropy filtering (Junczys-Dowmunt, 2018) is per-
formed based on our in-house multilingual NMT
models. Specifically, for a sentence pair (x,y),
we identify they are translations of each other by

7https://github.com/facebookresearch/fairseq/
tree/nllb

8https://opus.nlpl.eu/ParaCrawl.php
9https://fasttext.cc/docs/en/

language-identification.html

leveraging the score defined as follows:

|H(y|x)−H(x|y)|+ 1

2
(H(y|x) +H(x|y)),

where H(·|·) denotes the word-normalized condi-
tional cross-entropy loss based on the multilingual
NMT model. After the cleaning process, we dis-
card the languages which have less than 1000 sen-
tence pairs. In summary, we collect about 5.5 bil-
lion cleaned English-centric sentence pairs cover-
ing 223 languages including English. The distribu-
tion of our training datasets for each language is
illustrated in Figure 3.

We can see that there is a discrepancy of 5 orders
of magnitude between the highest (Spanish) and
the lowest (Algerian Arabic) resource languages.
To strike a balance between high and low resource
language pairs, we adopt a temperature-based sam-
pling strategy (Arivazhagan et al., 2019; Bapna and
Firat, 2019). Sentence pairs are sampled accord-
ing to a multinomial distribution with probability
{qi}i=1,...,N , where

qi =
pαi∑N
j=1 p

α
j

with pi =
ni∑N

k=1 nk

, (5)

N denotes the number of languages, and ni denotes
the number of sentence pairs for each language. We
consider α = 0.5 in our experiments. Sampling
with this distribution increases the number of sen-
tence pairs associated to low resource languages
and alleviates the bias towards high resource lan-
guages. We collect 500 million sentences with
such sampling strategy and learn a shared dictio-
nary with 256K byte-pair-encoding (BPE) (Sen-
nrich et al., 2016) types using SentencePiece10. We
keep tokens occurring no less than 20, which re-
sults in a subword vocabulary of 344, 276 tokens.

10https://github.com/google/sentencepiece
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Model Tatoeba Flores-101 Flores-200
xx↔ en xx↔ en xx ↔ zh xx ↔ yy xx↔ en xx ↔ zh xx ↔ yy

LASER2 69.95 67.78 64.47 44.90 56.98 52.76 31.96
LaBSE 83.23 96.43 95.46 91.00 88.48 86.06 74.92

LASER3 78.08 98.30 96.18 93.62 93.71 90.64 82.26
MuSR 83.96 99.23 98.48 97.83 97.37 95.95 93.21

Table 2: Our approach achieves the superior performance over the existing SOTA models on the Tatoeba and
Flores benchmarks. The detailed experimental results in English (xx↔ en) and Chinese (xx↔ zh) directions are
summarized in Tables 6, 7, 8, 9, and 10. The experimental results on the Flores-200 benchmark in all language (xx
↔ yy) directions are illustrated in Figure 5.

4.2 Training Configurations

We implement our approach on top of the Trans-
former (Vaswani et al., 2017). We apply a Trans-
former with 12 encoder layers and 3 decoder lay-
ers, 8 attention heads, embedding size 768, and
FFN layer dimension 768 × 4 and 768 × 2 × 4
for encoder and decoder respectively. We apply
cross-entropy loss with label smoothing rate 0.1
and set max tokens per batch to be 1024. We use
the Adam optimizer with Beta (0.9, 0.98), 10000
warmup updates, and inverse square root learning
rate scheduler with initial learning rates 7e−4. We
set max source positions and max target positions
to be 256 and use dropout rate 0.1. We apply the
same training configurations in both pretraining
and finetuning stages. We fix α to be 1.0 in (3) for
CrossConST. We train all models until convergence
on 8× 4 NVIDIA Tesla V100 GPUs.

5 Experimental Evaluation

Following the evaluation setup of Heffernan et al.
(2022), we here investigate the performance of mul-
tilingual sentence embeddings on two tasks: multi-
lingual similarity search and bitext mining.

5.1 Multilingual Similarity Search

Given the parallel sentence pairs, we find the near-
est neighbor for each sentence in the other language
according to the sentence embedding cosine simi-
larity and compute the corresponding accuracy. We
conduct our experiments on the following datasets:

Tatoeba Tatoeba is a multilingual dataset cover-
ing 112 languages (Artetxe and Schwenk, 2019b),
which contains up to 1000 sentences per language
along with their English translations.11

Flores-200 Flores-200 is a multilingual dataset
made publicly available by the NLLB project

11https://github.com/facebookresearch/LASER/
tree/main/data/tatoeba/v1

(Costa-jussà et al., 2022), which covers 204 lan-
guages.12 We perform the evaluation on the devtest
which includes 1012 sentences for each language.
We also evaluate on Flores-101 which is a subset
of Flores-200 and covers 102 languages.

We report the averaged bidirectional similarity
search accuracy on the Tatoeba, Flores-101, and
Flores-200 benchmarks in Table 2. The English
direction represents the supervised performance of
MuSR, while the Chinese direction exemplifies the
effectiveness in the zero-shot scenario. Note that
there are 5151 and 20706 bidirectional language
directions (xx↔ yy) in Flores-101 and Flores-200
benchmarks respectively. We can see that our ap-
proach significantly outperforms the current SOTA
models LaBSE and LASER3. It is worth men-
tioning that MuSR achieves an improvement of
over 4.7% accuracy on average over LASER3 that
consists of 148 independent sentence embedding
models. The performance gap between English
and Chinese in LaBSE, the model with the small-
est discrepancy, stands at 0.97% and 2.42% on
Flores-101 and Flores-200 respectively. In contrast,
MuSR exhibits a substantially smaller divergence
of 0.75% and 1.42% on these two directions, in-
dicating our superior capability to model various
languages within the shared representation space.

As discussed in Heffernan et al. (2022), Tatoeba
is less reliable for evaluating multilingual sentence
embeddings since it mainly contains very short sen-
tences which can introduce a strong bias towards a
particular model or training corpus. We here illus-
trate the distribution of the averaged bidirectional
accuracy of the strong baselines and MuSR on the
Flores-200 benchmark in Figure 4. Note that the
language order in the x-axis is selected by the de-
scending similarity search accuracy of MuSR on
the Flores-200 benchmark. We can see that our
approach performs strongly across a wide range

12https://github.com/facebookresearch/flores/
tree/main/flores200
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Figure 4: The distribution of the averaged bidirectional accuracy with English of the multilingual similarity search
on the Flores-200 benchmark.

of languages, with over 150 languages achiev-
ing a similarity search accuracy exceeding 99%.
LASER2 shows high variance across languages,
and it could be resolved to some extent by incorpo-
rating language-specific models in LASER3.

Figure 5: The accuracy distribution of the similarity
search task from the source language to the target lan-
guage on the Flores-200 benchmark. The darker the
entry shows, the higher the accuracy is. Please check
Figures 7, 8, 9, and 10 for better illustration with the
corresponding similarity search accuracy.

The multilingual similarity search performance
across all languages (xx ← yy and xx → yy) of
the strong baselines and MuSR on the Flores-200
benchmark are visualized in Figure 5, where each
entry of the 204 × 204 matrix stands for the cor-
responding accuracy of the similarity search task
from the source language to the target language.
We can see that MuSR consistently outperforms the
strong baselines across a wide range of languages,

with over 80% of language directions achieving a
similarity search accuracy exceeding 90%. Note
that LASER2, LaBSE, and LASER3 only have
around 12%, 49%, and 56% of language direc-
tions achieving similarity search accuracy exceed-
ing 90% on the Flores-200 benchmark.

5.2 Bitext Mining
Given two comparable corpora in different lan-
guages, we identify the sentence pairs that are
translations of each other by leveraging the score
(Artetxe and Schwenk, 2019a) defined as follows:

cos(x,y)
∑

z∈NNk(x)
cos(x,z)

2k +
∑

z∈NNk(y)
cos(y,z)

2k

, (6)

where x and y are the source and target sentence
embeddings respectively, and NNk(x) denotes the
k nearest neighbors of x in the other languages.
We score each sentence pair by calculating (6), and
the parallel sentences are extracted and filtered by
setting a fixed threshold over this score.

We conduct experiments on the BUCC dataset
(Zweigenbaum et al., 2018) containing comparable
corpora between English and four other languages:
German (de), French (fr), Russian (ru), and Chi-
nese (zh), using exact same hyperparameters as
Artetxe and Schwenk (2019a)13. We set k to be
4 in our experiments. Given the monolingual cor-
pora and the gold translation pairs, we extract the
translation pairs from the monolingual data and
evaluate against the ground truth. Following Feng
et al. (2022), we evaluate the performance by F1
score on the training dataset since the ground truth
for the test dataset is not released.

We report the F1 scores of the strong baselines
and our approach in Table 3. We can see that MuSR

13https://github.com/facebookresearch/LASER/
tree/main/tasks/bucc
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Model de fr ru zh avg.
LASER2 95.36 92.15 91.95 91.07 92.63
LaBSE 95.86 92.52 92.46 92.99 93.46

LASER3 95.36 92.15 91.95 91.07 92.63
MuSR 94.91 92.66 92.25 92.94 93.19

Table 3: Our approach achieves the superior or compara-
ble performance over the existing models on the BUCC
benchmark. Note that LASER2 and LASER3 share the
same model for the tested languages. We mark the best
two scores in bold.

achieves strong performance on the bitext mining
task. It is worth noting that all models perform sim-
ilarly on the BUCC benchmark since the tested lan-
guages are all high resource languages. Our model
however covers much more languages within a sin-
gle model than LASER2 and LaBSE.

5.3 Analysis

Method D H Tatoeba Flores-200
↔ en ↔ en ↔ zh

Phase 1 512 8 78.89 95.30 94.38
Phase 2 512 8 82.69 96.25 94.76
Phase 1 768 12 80.76 96.36 95.33
Phase 2 768 12 83.96 97.37 95.95
Phase 1 1024 16 81.16 96.21 95.06
Phase 2 1024 16 84.25 97.29 96.02

Table 4: The averaged bidirectional similarity search ac-
curacy according to different training stages and model
architectures. D and H denote the sentence embedding
dimension and the number of attention heads. Phase 1
denotes the multilingual NMT pretraining, and Phase 2
denotes the CrossConST finetuning.

We here investigate the impact of the cross-
lingual consistency regularization and the model
architectures on learning MuSR. We keep the train-
ing configurations the same except for the sentence
embedding dimension and the number of attention
heads. The experimental results on multilingual
similarity search are summarized in Table 4. By
checking model performance under different com-
binations of training stage and architecture, we
have the following observations: 1) The sentence
representation model with multilingual NMT pre-
training could achieve decent performance for non-
English alignment, and CrossConST finetuning fur-
ther boosts the model performance especially for
English alignment. 2) The model performance con-
sistently improves with the increasing of the sen-
tence embedding dimension and the number of at-
tention heads, while the models with 768 and 1024
embedding dimensions perform similarly, which

is in line with Feng et al. (2022). Considering
the computationally-heavy inference introduced
by 655M parameters of the 1024-dim model, we
choose 768 as the sentence embedding dimension.

6 Conclusion

In this paper, we propose MuSR: a one-for-all mul-
tilingual sentence representation model support-
ing 223 languages. Experimental results show that
MuSR could yield strong performance on various
bitext retrieval and mining tasks compare with the
SOTA models LaBSE and LASER3, while also
providing increased language coverage in a single
model. Extensive analysis shows that CrossConST
and the sentence embedding dimension play the
key roles in learning multilingual sentence repre-
sentations. As for future work, we could explore
the development of lightweight models by distilling
knowledge from MuSR for multilingual sentence
alignment, which would potentially lower the com-
putational requirements and make the model more
accessible for a variety of applications.
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Language Language Language Language
Acehnese (Arabic script) Georgian Mossi Tsonga
Acehnese (Latin script) German Najdi Arabic Tswana

Afrikaans Greek Nepali Tumbuka
Akan Guarani Nigerian Fulfulde Tunisian Arabic

Algerian Arabic Gujarati North Azerbaijani Turkish
Amharic Haitian Creole North Levantine Arabic Turkmen
Armenian Halh Mongolian Northern Kurdish Twi
Assamese Hausa Northern Sotho Ukrainian
Asturian Hebrew Northern Uzbek Umbundu
Awadhi Hindi Norwegian Bokmål Upper Sorbian

Ayacucho Quechua Hungarian Norwegian Nynorsk Urdu
Balinese Icelandic Nuer Uyghur
Bambara Ido Nyanja Venetian

Banjar (Arabic script) Igbo Occitan Vietnamese
Banjar (Latin script) Ilocano / Iloko Odia Walloon

Bashkir Indonesian Pangasinan Waray
Basque Interlingua Papiamento Welsh

Belarusian Interlingue Plateau Malagasy West Central Oromo
Bemba Irish Polish Western Frisian
Bengali Italian Portuguese Western Persian

Berber languages Japanese Romanian Wolof
Bhojpuri Javanese Rundi Xhosa
Bosnian Jingpho Russian Yoruba
Breton Kabiyè Samoan Yue Chinese

Buginese Kabuverdianu Sango Zulu
Bulgarian Kabyle Sanskrit
Burmese Kamba Santali
Catalan Kannada Sardinian
Cebuano Kashmiri (Arabic script) Scottish Gaelic

Central Atlas Tamazight Kashmiri (Devanagari script) Serbian
Central Aymara Kashubian Serbo-Croatian

Central Kanuri (Arabic script) Kazakh Shan
Central Kanuri (Latin script) Khmer Shanghainese

Central Kurdish Kikongo Shona
Chamorro Kikuyu Sicilian

Chhattisgarhi Kimbundu Silesian
Chinese (Simplified) Kinyarwanda Sindhi
Chinese (Traditional) Korean Sinhala

Chokwe Kyrgyz Slovak
Chuvash Lao Slovenian
Cornish Latgalian Somali

Crimean Tatar Latin South Azerbaijani
Croatian Ligurian South Levantine Arabic
Czech Limburgish Southern Pashto
Danish Lingala Southern Sotho

Dari Lingua Franca Nova Southwestern Dinka
Divehi Lithuanian Spanish
Dutch Lojban Standard Latvian
Dyula Lombard Standard Malay

Dzongkha Low German Standard Tibetan
Eastern Panjabi Luba-Kasai Sundanese
Eastern Yiddish Luo Swahili
Egyptian Arabic Luxembourgish Swati

English Macedonian Swedish
Esperanto Magahi Tagalog
Estonian Maithili Tajik

Ewe Malayalam Tamasheq (Latin script)
Faroese Maltese Tamasheq (Tifinagh script)
Fijian Maori Tamil

Filipino Marathi Tatar
Finnish Meitei (Bengali script) Ta’izzi-Adeni Arabic

Fon Mesopotamian Arabic Telugu
French Minangkabau (Latin script) Thai
Friulian Mizo Tigrinya
Galician Modern Standard Arabic Tok Pisin
Ganda Moroccan Arabic Tosk Albanian

Table 5: The supported languages of MuSR.
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Figure 6: The distribution of the open-source and in-house cleaned datasets for each language in our training dataset.
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Language LASER2 LASER3 LaBSE MuSR Language LASER2 LASER3 LaBSE MuSR
afr 93.2 - 97.4 95.85 kaz 55.83 80.61 90.52 87.48

amh 80.06 86.31 94.05 88.39 khm 77.49 53.32 83.17 77.35
ang 37.31 - 64.55 57.84 kor 91.35 - 93.5 89.9
ara 92.25 - 90.85 90.45 kur 23.41 - 87.2 78.54
arq 33.04 - 46.16 65.59 kzj 8.65 - 14.25 13.95
arz 70.02 - 78.41 82.39 lat 68.9 - 81.9 70.5
ast 80.71 - 90.55 90.16 lfn 67.85 - 71.25 84.9
awa 39.39 80.74 73.16 85.93 lit 96.95 - 97.3 95.8
aze 81.65 91.5 96.1 92.95 lvs 96.6 - 96.8 94.7
bel 83.4 94.05 96.15 95.05 mal 98.4 97.82 98.91 97.67
ben 91.3 90.1 91.35 89.4 mar 94.75 91.1 94.7 94.5
ber 81.75 - 10.5 74.7 max 45.42 - 71.13 66.02
bos 96.89 - 96.33 96.75 mhr 10 - 19.5 12.3
bre 36.6 - 17.35 21.65 mkd 95.1 - 94.85 94.65
bul 95.15 - 95.7 95.05 mon 7.27 87.73 96.48 88.52
cat 96.55 - 96.6 96.25 nds 80.2 - 81.35 88.75
cbk 79.75 - 82.4 77.2 nld 96.35 - 97.25 96.45
ceb 15.92 80 71 62.17 nno 77.25 - 95.85 96
ces 96.85 - 97.5 96.25 nob 95.6 - 98.9 98.5
cha 26.64 - 39.05 44.53 nov 67.51 - 78.21 85.02
cmn 84.3 - 96.2 94.85 oci 63.35 - 69.75 76.85
cor 7.2 - 12.75 24.95 orv 30.24 - 47.07 44.01
csb 38.34 - 56.13 66.21 pam 5.5 - 13.55 13.2
cym 9.74 89.04 93.65 87.22 pes 92.9 93.4 96.05 94.45
dan 95.9 - 96.45 96.25 pms 45.14 - 66.95 86.67
deu 99.3 - 99.35 98.95 pol 98 - 97.85 97.85
dsb 51.25 - 69.31 69 por 95.75 - 95.55 95.4
dtp 11.5 - 13.35 21.8 ron 97.25 - 97.85 97.45
ell 96.85 - 96.6 96.55 rus 94.35 - 95.3 95
epo 97.45 - 98.35 97.65 slk 96.6 - 97.3 96.55
est 97 - 97.7 96.45 slv 96.78 - 96.72 95.63
eus 93.85 - 95.75 94 spa 97.9 - 98.45 97.75
fao 64.12 73.66 90.46 93.32 sqi 97.85 97.85 97.65 97.05
fin 97.3 - 97.05 95.85 srp 95.05 - 96.2 95.9
fra 95.5 - 96.05 95.6 swe 95.85 - 96.55 96.45
fry 51.45 - 90.17 71.97 swg 45.09 - 65.18 65.18
gla 3.32 70.27 88.9 82.51 swh 57.69 81.41 88.46 80.13
gle 9.15 78.55 95 88.75 tam 85.99 58.79 90.72 85.18
glg 96.75 - 97.25 95.5 tat 30.7 64.7 87.9 86.5
gsw 36.32 - 52.56 66.67 tel 97.01 80.56 98.29 92.31
heb 91.75 - 92.95 91.85 tgl 68.85 95 97.45 91.6
hin 96.1 95.55 97.75 97.05 tha 96.99 96.53 97.08 95.71
hrv 97.45 - 97.8 97.5 tuk 22.17 58.37 80.05 86.45
hsb 54.04 - 71.12 80.43 tur 98.15 97.2 98.35 97.85
hun 96.1 - 97.2 96.15 tzl 41.35 - 62.98 57.69
hye 90.03 90.63 95.01 92.18 uig 51.45 76.3 93.7 89.3
ido 84.1 - 90.8 94.5 ukr 95.05 - 95.25 95.1
ile 88.85 - 87.05 95.85 urd 82.6 89.85 95.35 92.55
ina 95.5 - 95.85 96.75 uzb 26.4 78.39 86.8 74.65
ind 94.8 94.75 95.3 94.75 vie 97.15 - 97.85 96.55
isl 95.8 - 96.15 96.25 war 13.35 75.35 65.4 70.1
ita 95.55 - 94.65 95.25 wuu 79.4 - 90.3 89.45
jav 18.78 86.34 84.39 81.22 xho 5.63 93.66 91.9 91.2
jpn 96 - 96.45 94.35 yid 5.19 94.16 90.98 89.86
kab 71.45 89.65 6 72.55 yue 87.65 - 92.1 86.35
kat 81.97 75 95.91 93.43 zsm 96.25 96.1 96.9 95.85

Table 6: The averaged bidirectional similarity search accuracy (xx↔ en) on the Tatoeba benchmark.
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Language LASER2 LASER3 LaBSE MuSR Language LASER2 LASER3 LaBSE MuSR
ace_Arab 7.11 - 35.82 83.84 gaz_Latn 9.93 96.94 46.99 99.01
ace_Latn 38.24 96.89 88.74 99.6 gla_Latn 7.02 91.65 99.9 99.65

acm_Arab 99.51 - 100 99.9 gle_Latn 7.02 97.38 100 99.7
acq_Arab 99.85 - 100 100 glg_Latn 99.95 - 100 99.95
aeb_Arab 98.67 - 99.41 99.65 grn_Latn 33.65 98.91 77.77 99.31
afr_Latn 99.75 - 100 99.95 guj_Gujr 3.11 99.65 100 99.95
ajp_Arab 99.7 - 99.95 99.95 hat_Latn 32.71 98.57 99.31 99.21
aka_Latn 21.49 98.47 68.77 99.06 hau_Latn 22.78 98.96 99.7 99.56
als_Latn 99.7 - 100 100 heb_Hebr 99.95 - 100 100
amh_Ethi 54.5 99.75 100 99.9 hin_Deva 98.96 99.9 100 99.85
apc_Arab 99.7 - 100 99.95 hne_Deva 92.49 97.63 99.51 99.51
arb_Arab 99.95 - 100 100 hrv_Latn 99.9 - 100 99.95
arb_Latn 7.46 - 41.16 35.52 hun_Latn 99.95 - 100 100
ars_Arab 99.95 - 100 100 hye_Armn 89.23 99.65 100 99.85
ary_Arab 91.75 - 97.63 98.81 ibo_Latn 17.64 99.41 100 99.65
arz_Arab 99.46 - 99.95 99.85 ilo_Latn 41.25 99.85 89.87 100

asm_Beng 53.85 95.65 99.9 99.75 ind_Latn 98.96 99.9 100 100
ast_Latn 99.21 - 99.95 100 isl_Latn 99.41 - 99.9 99.75

awa_Deva 96.89 96.2 99.06 99.01 ita_Latn 99.95 - 100 99.9
ayr_Latn 13.88 82.91 51.63 94.47 jav_Latn 57.31 99.9 100 99.95
azb_Arab 43.28 64.23 85.62 93.82 jpn_Jpan 100 - 100 99.7
azj_Latn 50.99 99.06 99.85 98.67 kab_Latn 85.52 97.28 45.26 99.26
bak_Cyrl 13.98 98.32 90.12 99.7 kac_Latn 11.76 92.93 55.04 98.22
bam_Latn 17.34 92.89 54.99 96.49 kam_Latn 28.51 83.7 67.84 86.91
ban_Latn 53.46 99.21 98.27 99.41 kan_Knda 2.87 99.31 100 99.7
bel_Cyrl 74.31 99.16 100 99.11 kas_Arab 34.29 98.81 90.86 99.01

bem_Latn 31.03 99.46 83.15 99.6 kas_Deva 29.84 95.8 81.23 95.06
ben_Beng 99.9 99.01 100 99.85 kat_Geor 79.79 97.68 99.95 99.36
bho_Deva 87.06 98.07 99.85 99.7 kaz_Cyrl 51.63 98.86 99.8 99.56
bjn_Arab 7.31 - 32.91 83.55 kbp_Latn 12.99 88.09 52.22 93.82
bjn_Latn 78.51 99.8 98.37 99.8 kea_Latn 81.67 98.27 97.83 100
bod_Tibt 2.12 81.03 98.96 97.48 khk_Cyrl 12.15 98.62 100 99.51
bos_Latn 100 - 100 99.9 khm_Khmr 79.99 96.39 97.92 99.95
bug_Latn 34.44 97.58 81.82 97.97 kik_Latn 9.73 98.62 68.53 98.62
bul_Cyrl 99.95 - 100 99.75 kin_Latn 19.61 99.31 99.75 99.75
cat_Latn 100 - 100 100 kir_Cyrl 27.92 96.99 99.95 99.11
ceb_Latn 61.41 99.8 100 100 kmb_Latn 28.11 90.61 60.87 93.58
ces_Latn 99.9 - 100 99.9 kmr_Latn 18.68 97.58 99.9 99.51
cjk_Latn 28.16 74.26 61.61 82.31 knc_Arab 9.29 36.22 22.68 21.99
ckb_Arab 4.64 99.75 44.86 99.95 knc_Latn 16.95 92.59 58.1 93.13
crh_Latn 76.88 99.7 99.85 99.7 kon_Latn 39.38 97.63 71.34 99.26
cym_Latn 18.03 99.16 100 100 kor_Hang 99.56 - 99.95 99.8
dan_Latn 100 - 100 99.85 lao_Laoo 9.39 94.81 96.94 100
deu_Latn 100 - 100 99.95 lij_Latn 88.88 99.85 98.86 99.85
dik_Latn 21.44 74.11 57.71 82.21 lim_Latn 83.1 85.23 98.72 99.75
dyu_Latn 13.39 75.89 47.73 70.06 lin_Latn 34.19 99.56 72.58 99.7
dzo_Tibt 0.25 92.54 92.54 98.37 lit_Latn 99.56 - 99.6 99.46
ell_Grek 99.9 - 100 100 lmo_Latn 78.9 98.22 97.48 99.7
eng_Latn - - - - ltg_Latn 78.26 99.65 95.5 99.85
epo_Latn 100 - 100 100 ltz_Latn 66.65 99.01 100 99.95
est_Latn 99.85 - 100 99.85 lua_Latn 34.73 96.89 70.95 97.63
eus_Latn 99.8 - 99.95 100 lug_Latn 22.28 97.08 80.88 98.67
ewe_Latn 10.67 96.15 56.47 96.54 luo_Latn 16.21 98.76 59.19 99.6
fao_Latn 88.09 96.29 99.95 99.95 lus_Latn 16.7 95.06 71.29 97.97
fij_Latn 22.08 98.57 59.58 99.41 lvs_Latn 99.9 - 100 99.75
fin_Latn 99.85 - 99.9 99.6 mag_Deva 96.1 99.46 100 99.75
fon_Latn 10.38 81.08 47.88 84.63 mai_Deva 88.19 95.6 100 100
fra_Latn 99.95 - 100 100 mal_Mlym 99.06 99.51 99.9 99.46
fur_Latn 86.17 99.9 98.96 100 mar_Deva 98.91 98.52 100 99.9
fuv_Latn 17.14 66.06 63.14 79.35 min_Arab 4.99 - 30.63 82.46

Table 7: The averaged bidirectional similarity search accuracy (xx↔ en) on the Flores-200 benchmark (Part I).
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Language LASER2 LASER3 LaBSE MuSR Language LASER2 LASER3 LaBSE MuSR
min_Latn 61.46 99.56 97.13 99.9 spa_Latn 99.6 - 99.9 99.51
mkd_Cyrl 100 - 100 99.95 srd_Latn 89.08 99.9 99.16 100
mlt_Latn 25.4 99.9 100 100 srp_Cyrl 99.9 - 100 99.9
mni_Beng 8.4 98.27 36.81 99.26 ssw_Latn 17 99.36 96.34 99.6
mos_Latn 17.39 81.97 54.35 86.31 sun_Latn 61.02 99.41 99.8 99.9
mri_Latn 18.97 97.88 99.51 99.36 swe_Latn 100 - 100 100

mya_Mymr 83.65 98.22 99.7 99.36 swh_Latn 98.72 99.21 100 100
nld_Latn 99.7 - 100 99.51 szl_Latn 94.86 99.21 98.86 99.21
nno_Latn 98.86 - 99.9 99.9 tam_Taml 82.07 99.56 100 99.41
nob_Latn 99.6 - 99.9 99.75 taq_Latn 38.09 72.68 55.58 76.19
npi_Deva 68.63 97.63 99.7 99.41 taq_Tfng 2.08 - 16.45 61.17
nso_Latn 22.73 99.7 99.06 99.9 tat_Cyrl 21 95.7 100 99.8
nus_Latn 8.6 90.27 43.03 96.79 tel_Telu 96.54 99.01 100 99.7
nya_Latn 31.52 99.41 99.6 99.8 tgk_Cyrl 6.92 98.86 99.75 99.7
oci_Latn 99.6 - 99.95 100 tgl_Latn 90.22 99.95 100 100
ory_Orya 3.41 99.51 100 99.46 tha_Thai 99.56 99.75 94.02 99.75
pag_Latn 46.84 98.52 87.85 99.16 tir_Ethi 5.53 98.72 75.94 98.52
pan_Guru 3.06 99.65 100 99.9 tpi_Latn 30.39 99.75 83.05 100
pap_Latn 78.36 99.8 98.47 100 tsn_Latn 17.19 98.47 97.97 98.76
pbt_Arab 29.99 99.41 100 99.7 tso_Latn 22.04 98.91 71.29 99.36
pes_Arab 98.81 98.47 100 99.75 tuk_Latn 29.94 92.54 99.95 99.75
plt_Latn 99.9 99.85 99.95 99.95 tum_Latn 27.12 97.78 90.46 99.06
pol_Latn 99.85 - 100 99.6 tur_Latn 99.06 99.16 100 99.9
por_Latn 99.95 - 100 100 twi_Latn 25.44 98.96 71.79 99.06
prs_Arab 98.12 97.48 100 99.75 tzm_Tfng 1.73 95.45 16.3 97.38
quy_Latn 19.76 71.79 57.71 93.63 uig_Arab 17.14 91.75 99.8 99.51
ron_Latn 99.95 - 100 100 ukr_Cyrl 99.95 - 100 99.95
run_Latn 19.12 99.26 99.51 99.46 umb_Latn 19.96 83.79 58.2 87.15
rus_Cyrl 99.85 - 100 99.95 urd_Arab 89.28 99.46 99.9 99.56
sag_Latn 25.2 89.33 62.7 94.86 uzn_Latn 19.12 99.6 99.9 99.51
san_Deva 49.65 83.4 96.44 98.57 vec_Latn 94.32 97.18 99.8 99.95
sat_Olck 0.3 - 4.15 95.41 vie_Latn 99.9 - 100 99.9
scn_Latn 76.63 99.26 98.42 99.85 war_Latn 55.43 99.9 99.95 100

shn_Mymr 16.25 98.52 48.37 99.51 wol_Latn 25 89.77 68.48 95.7
sin_Sinh 99.65 99.16 100 99.26 xho_Latn 18.33 99.8 99.7 99.8
slk_Latn 99.85 - 100 99.75 ydd_Hebr 11.91 95.41 99.95 100
slv_Latn 99.85 - 100 99.8 yor_Latn 21.25 95.06 97.43 97.18

smo_Latn 18.82 99.7 99.56 99.85 yue_Hant 93.53 - 100 99.85
sna_Latn 19.52 99.46 99.26 99.65 zho_Hans 99.56 - 100 99.6
snd_Arab 24.51 97.58 100 99.7 zho_Hant 94.02 - 99.95 99.46
som_Latn 8.55 98.07 99.65 99.7 zsm_Latn 99.11 99.9 100 100
sot_Latn 20.85 99.8 99.9 100 zul_Latn 13.19 99.85 99.85 99.9

Table 8: The averaged bidirectional similarity search accuracy (xx↔ en) on the Flores-200 benchmark (Part II).
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Language LASER2 LASER3 LaBSE MuSR Language LASER2 LASER3 LaBSE MuSR
ace_Arab 6.27 - 29.2 73.57 gaz_Latn 7.51 92.59 40.96 97.88
ace_Latn 29.69 91.4 81.92 97.68 gla_Latn 4.84 81.27 99.85 98.76

acm_Arab 98.52 - 99.9 99.56 gle_Latn 5.09 92.64 99.95 98.86
acq_Arab 98.76 - 99.95 99.7 glg_Latn 99.56 - 100 99.65
aeb_Arab 96.99 - 98.86 98.86 grn_Latn 26.53 96.25 71.49 97.38
afr_Latn 97.83 - 100 99.46 guj_Gujr 2.57 98.81 100 99.65
ajp_Arab 98.52 - 99.75 99.56 hat_Latn 24.31 96.25 99.21 98.42
aka_Latn 16.55 94.52 58.89 96.59 hau_Latn 16.11 97.13 99.11 99.01
als_Latn 98.91 - 100 99.21 heb_Hebr 99.21 - 100 99.51
amh_Ethi 47.48 99.01 99.9 99.65 hin_Deva 97.83 99.51 99.95 99.6
apc_Arab 98.47 - 99.7 99.7 hne_Deva 87.15 96.64 98.91 99.11
arb_Arab 99.56 - 100 99.7 hrv_Latn 99.31 - 99.95 99.56
arb_Latn 5.78 - 36.51 31.72 hun_Latn 99.51 - 100 99.8
ars_Arab 99.51 - 100 99.6 hye_Armn 77.72 98.52 100 99.6
ary_Arab 87.5 - 96.1 97.48 ibo_Latn 13.29 96.94 99.01 98.42
arz_Arab 98.17 - 99.7 99.31 ilo_Latn 30.93 99.16 81.82 99.41

asm_Beng 49.31 91.5 99.51 99.11 ind_Latn 98.22 99.31 100 99.65
ast_Latn 95.06 - 99.75 98.91 isl_Latn 97.48 - 99.85 99.11

awa_Deva 93.97 91.9 99.06 98.86 ita_Latn 99.65 - 100 99.8
ayr_Latn 11.26 75.59 46.25 92.54 jav_Latn 45.36 98.02 100 99.46
azb_Arab 41.01 55.34 81.57 92.59 jpn_Jpan 99.21 - 100 99.41
azj_Latn 49.06 97.78 99.6 98.57 kab_Latn 70.75 89.97 37.2 95.8
bak_Cyrl 12.35 96.15 84.73 99.56 kac_Latn 10.03 86.51 48.62 95.9
bam_Latn 13.24 87.25 48.27 92 kam_Latn 21.74 72.92 58.79 79.79
ban_Latn 46.25 97.48 95.9 98.42 kan_Knda 1.88 97.53 100 99.46
bel_Cyrl 67.98 97.53 100 98.62 kas_Arab 31.42 97.08 86.46 98.17

bem_Latn 24.85 96.99 72.92 97.78 kas_Deva 25.84 89.67 72.38 92.93
ben_Beng 99.21 97.38 99.95 99.6 kat_Geor 70.01 94.91 100 99.06
bho_Deva 82.02 96.25 98.72 99.36 kaz_Cyrl 47.08 97.33 99.8 99.31
bjn_Arab 6.08 - 24.26 74.7 kbp_Latn 9.88 83.35 45.31 90.91
bjn_Latn 69.12 98.22 96.64 98.81 kea_Latn 64.62 92.69 93.53 99.21
bod_Tibt 2.42 76.33 98.07 96.84 khk_Cyrl 11.46 95.95 100 99.46
bos_Latn 99.7 - 100 99.51 khm_Khmr 69.07 88.24 97.83 99.31
bug_Latn 26.38 92.34 76.53 94.96 kik_Latn 8.05 95.36 57.56 96.54
bul_Cyrl 99.36 - 100 99.6 kin_Latn 15.02 98.32 99.56 99.21
cat_Latn 99.51 - 100 99.51 kir_Cyrl 26.73 93.82 99.8 98.96
ceb_Latn 46.74 98.52 99.95 99.56 kmb_Latn 20.8 80.29 51.43 84.78
ces_Latn 99.6 - 100 99.8 kmr_Latn 14.87 92.98 99.65 98.96
cjk_Latn 21.15 62.06 53.26 73.22 knc_Arab 7.41 29.74 20.11 17.59
ckb_Arab 3.51 98.86 37.35 99.16 knc_Latn 12.75 83.3 50.49 88.29
crh_Latn 71.25 98.57 99.21 99.56 kon_Latn 31.82 94.86 61.71 98.07
cym_Latn 12.99 96.15 100 99.65 kor_Hang 98.67 - 99.9 99.65
dan_Latn 99.56 - 100 99.46 lao_Laoo 7.81 88.59 96.59 99.6
deu_Latn 99.6 - 100 99.7 lij_Latn 73.96 98.62 95.45 99.41
dik_Latn 15.22 61.91 50.15 73.07 lim_Latn 70.06 71.1 96.59 98.52
dyu_Latn 9.83 65.51 41.21 62.3 lin_Latn 28.61 97.68 61.81 98.47
dzo_Tibt 0.3 88.54 89.03 97.08 lit_Latn 99.21 - 99.51 99.26
ell_Grek 99.36 - 100 99.7 lmo_Latn 60.67 93.28 92.59 97.92
eng_Latn 99.56 - 100 99.6 ltg_Latn 66.35 98.67 91.35 99.11
epo_Latn 99.26 - 100 99.56 ltz_Latn 51.14 94.37 99.85 99.7
est_Latn 99.41 - 99.95 99.8 lua_Latn 26.88 90.46 62.06 93.58
eus_Latn 98.12 - 99.95 99.7 lug_Latn 15.51 92.05 69.52 96.1
ewe_Latn 8.2 93.28 50.59 94.71 luo_Latn 11.76 94.47 51.04 97.68
fao_Latn 76.53 87.9 99.75 99.41 lus_Latn 12.8 88.44 63.64 95.85
fij_Latn 15.56 96.15 51.09 97.78 lvs_Latn 99.51 - 99.95 99.6
fin_Latn 99.36 - 99.85 99.51 mag_Deva 91.9 98.62 99.65 99.75
fon_Latn 8 73.12 43.38 79.2 mai_Deva 81.92 90.46 99.65 99.8
fra_Latn 99.6 - 100 99.65 mal_Mlym 97.04 98.76 99.85 99.21
fur_Latn 72.83 98.37 96.39 99.51 mar_Deva 96.29 96.39 99.9 99.6
fuv_Latn 11.91 55.58 55.88 71.15 min_Arab 3.75 - 23.67 72.78

Table 9: The averaged bidirectional similarity search accuracy (xx↔ zh) on the Flores-200 benchmark (Part I).
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Language LASER2 LASER3 LaBSE MuSR Language LASER2 LASER3 LaBSE MuSR
min_Latn 50.89 97.88 93.97 99.31 spa_Latn 99.36 - 99.9 99.11
mkd_Cyrl 99.6 - 100 99.85 srd_Latn 72.48 96.34 96.54 99.21
mlt_Latn 18.92 98.72 100 99.56 srp_Cyrl 98.62 - 100 99.7
mni_Beng 7.36 93.82 30.63 98.52 ssw_Latn 11.86 98.22 90.56 98.57
mos_Latn 13.39 72.73 47.68 79.79 sun_Latn 51.28 97.48 99.7 99.11
mri_Latn 14.72 94.27 98.42 97.58 swe_Latn 99.65 - 100 99.6

mya_Mymr 79 96.64 99.65 99.26 swh_Latn 95.95 96.05 99.95 99.21
nld_Latn 98.96 - 100 99.46 szl_Latn 85.08 98.27 97.83 98.62
nno_Latn 95.06 - 99.85 99.41 tam_Taml 76.28 98.02 99.95 98.76
nob_Latn 98.27 - 99.8 99.41 taq_Latn 27.72 59.88 49.16 69.17
npi_Deva 61.56 94.27 99.7 99.06 taq_Tfng 1.68 - 13.69 53.85
nso_Latn 17.34 98.52 96.1 99.01 tat_Cyrl 16.85 91.6 100 99.6
nus_Latn 7.36 79.5 36.26 92.34 tel_Telu 90.81 97.58 100 99.31
nya_Latn 24.56 97.78 98.81 98.72 tgk_Cyrl 4.79 96.89 99.75 99.16
oci_Latn 95.6 - 99.7 99.56 tgl_Latn 77.37 99.31 99.9 99.51
ory_Orya 2.77 99.01 100 99.31 tha_Thai 99.36 99.21 93.73 99.31
pag_Latn 35.67 96.1 82.91 97.88 tir_Ethi 5.93 95.75 68.73 97.63
pan_Guru 2.57 98.57 100 99.51 tpi_Latn 22.83 94.52 73.57 99.06
pap_Latn 63.34 98.96 95.36 99.65 tsn_Latn 12.9 96.94 94.81 97.53
pbt_Arab 26.73 97.33 99.36 99.31 tso_Latn 16.7 97.68 59.14 98.57
pes_Arab 97.92 95.85 100 99.6 tuk_Latn 26.58 85.72 99.75 99.41
plt_Latn 99.41 98.86 99.56 99.06 tum_Latn 21.49 95.5 85.47 97.53
pol_Latn 99.26 - 99.95 99.6 tur_Latn 98.12 97.73 100 99.75
por_Latn 99.56 - 100 99.51 twi_Latn 17.64 95.55 62.01 97.08
prs_Arab 97.28 93.92 100 99.7 tzm_Tfng 1.63 87.65 14.33 92.49
quy_Latn 14.48 61.76 51.78 88.64 uig_Arab 14.08 86.71 99.85 99.21
ron_Latn 99.06 - 100 99.56 ukr_Cyrl 99.26 - 100 99.65
run_Latn 14.97 97.68 98.12 98.86 umb_Latn 15.66 75.59 51.73 79.35
rus_Cyrl 98.96 - 100 99.75 urd_Arab 86.12 98.37 99.8 99.46
sag_Latn 19.61 80.78 54.5 89.58 uzn_Latn 15.61 98.27 99.85 99.21
san_Deva 43.63 78.26 93.08 97.48 vec_Latn 85.42 89.87 98.47 99.51
sat_Olck 0.25 - 2.62 91.25 vie_Latn 99.41 - 100 99.51
scn_Latn 61.61 97.04 95.16 98.86 war_Latn 39.72 99.16 99.56 99.41

shn_Mymr 12.5 95.11 42.29 98.67 wol_Latn 18.48 76.93 60.77 90.46
sin_Sinh 98.47 97.92 99.9 99.06 xho_Latn 12.3 98.76 98.91 99.11
slk_Latn 99.41 - 100 99.56 ydd_Hebr 9.63 77.77 99.36 99.01
slv_Latn 99.26 - 100 99.41 yor_Latn 15.07 90.76 93.73 94.32
smo_Latn 13.44 98.52 99.06 98.62 yue_Hant 93.68 - 100 99.85
sna_Latn 13.93 97.58 97.68 98.72 zho_Hans - - - -
snd_Arab 21.34 94.07 99.7 99.06 zho_Hant 94.32 - 99.9 99.56
som_Latn 6.97 93.68 98.67 98.76 zsm_Latn 98.42 99.46 100 99.51
sot_Latn 14.48 99.11 98.76 99.16 zul_Latn 9.29 99.26 99.51 99.31

Table 10: The averaged bidirectional similarity search accuracy (xx↔ zh) on the Flores-200 benchmark (Part II).
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Figure 7: The multilingual similarity search performance of LASER2 on the Flores-200 benchmark.
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Figure 8: The multilingual similarity search performance of LaBSE on the Flores-200 benchmark.
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Figure 9: The multilingual similarity search performance of LASER3 on the Flores-200 benchmark.
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Figure 10: The multilingual similarity search performance of MuSR on the Flores-200 benchmark.
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