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Abstract

With the explosive growth of short-video data
on industrial video-sharing platforms such as
TikTok and YouTube, text-video retrieval tech-
niques have become increasingly important.
Most existing works for text-video retrieval
focus on designing informative representation
learning methods and delicate matching mech-
anisms, which leverage the content information
of queries and videos themselves (i.e., textual
information of queries and multimodal infor-
mation of videos). However, real-world sce-
narios often involve brief, ambiguous queries
and low-quality videos, making content-based
retrieval less effective. In order to accommo-
date various search requirements and enhance
user satisfaction, this study introduces a novel
Text-video Retrieval method via Watch-time-
aware Heterogeneous Graph Contrastive Learn-
ing (termed ORANGE). This approach aims to
learn informative embeddings for queries and
videos by leveraging both content information
and the abundant relational information present
in video-search scenarios. Specifically, we first
construct a heterogeneous information graph
where nodes represent domain objects (e.g.,
query, video, tag) and edges represent rich rela-
tions among these objects. Afterwards, a meta-
path-guided heterogeneous graph attention en-
coder with the awareness of video watch time is
devised to encode various semantic aspects of
query and video nodes. To train our model, we
introduce a meta-path-wise contrastive learning
paradigm that facilitates capturing dependen-
cies across multiple semantic relations, thereby
enhancing the obtained embeddings. Finally,
when deployed online, for new queries non-
existent in the constructed graph, a bert-based
query encoder distilled from our ORANGE is
employed. Offline experiments conducted on
a real-world dataset demonstrate the effective-
ness of our ORANGE. Moreover, it has been
implemented in the matching stage of an in-
dustrial online video-search service, where it
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exhibited statistically significant improvements
over the online baseline in an A/B test.

1 Introduction

With the exponential proliferation of short-video
data on the internet, text-video retrieval (Wang
et al., 2022; Liu et al., 2022; Bain et al., 2021;
Gabeur et al., 2020; Gorti et al., 2022; Luo et al.,
2022) has gained increasing attention from both
industrial and academic communities, and become
a crucial feature of industrial video-sharing plat-
forms (e.g., TikTok, Likee, and YouTube). The
goal of text-video search is to retrieve the most
user-satisfactory videos given a text query. To-
wards this end, great efforts have been devoted
to carefully designing informative representation
learning methods (Zhao et al., 2022; Bain et al.,
2021; Xiao et al., 2022; Arnab et al., 2021; Vaswani
et al., 2017; Wang et al., 2022; Luo et al., 2022)
and delicate text-video matching mechanisms using
single-stream or dual-stream architectures (Gorti
et al., 2022; Min et al., 2022; Zhu and Yang, 2020;
Lei et al., 2021; Liu et al., 2021; Wang et al., 2022;
Zhao et al., 2022; Luo et al., 2022). For exam-
ple, CLIPBERT (Lei et al., 2021) jointly embeds
text-video pairs through a BERT-like (Devlin et al.,
2018) single-stream encoder for early cross-modal
fusion and directly produces similarity between
them. CLIP4Clip (Luo et al., 2022) introduces
a dual-stream encoder consisting of a transformer
encoder (Vaswani et al., 2017) for texts and a space-
time transformer encoder for videos. The obtained
representations of texts and videos are then mapped
to a common space, where the text-video similarity
is measured via the dot product.

The above text-video retrieval methods mainly
focus on utilizing the content information of
queries and videos themselves, i.e., textual infor-
mation from queries and multimodal information
from videos, including video titles, video frames,
audio, etc. Despite their effectiveness, these meth-
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ods face two challenges when applied to indus-
trial video-search scenarios. First, unlike academic
datasets (Chen et al., 2015; Miech et al., 2019) used
in previous works, real-world query texts tend to
be shorter and ambiguous, while user-generated(or
uploaded) videos may exhibit low quality. Con-
sequently, text-video relevance matching based
solely on content information is insufficient for ac-
curately capturing search intents. Secondly, for cer-
tain queries, the videos retrieved by these content-
based methods are likely to be highly relevant, mak-
ing it difficult to discern the most user-satisfactory
videos from semantically similar candidates. To ad-
dress the aforementioned challenges, we propose a
novel Text-video Retrieval method via Watch-time-
aware Heterogeneous Graph Contrastive Learn-
ing (referred to as ORANGE) in this paper. OR-
ANGE aims to learn discriminative embeddings
for queries and videos, taking into account not
only content information but also the abundant re-
lational information present in video-search sce-
narios. Concretely, based on the text-video search
log and domain knowledge, we first construct a
heterogeneous information graph(HIG) (as shown
in Fig. 1(a)), where nodes represent video-retrieval
domain objects (e.g., query, video, video tag), and
edges represent rich relations among these objects.
For instance, a query-video edge describes the re-
lationship where a video is viewed given a query,
while a query-query edge describes the rewriting
relation between a pair of queries. In order to
fully utilize the rich heterogeneous information and
thereby learn informative representations, a meta-
path-guided heterogeneous graph attention encoder
(HAN) (Wang et al., 2019) with the awareness of
the video watch time is devised to encode various
semantic aspects of query and video nodes. The
vanilla graph attention mechanisms (Wang et al.,
2019; Veličković et al., 2017a) are sometimes inef-
fective as the attention weights are learned implic-
itly without the guidance of explicit semantics (Jain
and Wallace, 2019). In contrast, our watch-time-
aware encoder enhances the quality of attention
weights by explicitly incorporating the video’s
watch-time information, which is a crucial indi-
cator of user satisfaction. To train ORANGE, we
cast the text-video matching problem as a link pre-
diction task of HIG. Simultaneously, we employ an
auxiliary learning task based on our proposed meta-
path-wise contrastive learning paradigm, which
helps the model capture cross-type semantic de-

pendencies and improve the quality of embeddings.
Lastly, when deploying our model online, we adopt
a BERT-based query encoder distilled (Hinton
et al., 2015) from ORANGE, enabling on-the-fly
inference of query embeddings to support previ-
ously unseen queries, i.e., new queries non-existent
in our HIG. To the best of our knowledge, we are
the first on utilizing both rich relational information
and content information for text-video retrieval in
real-world scenarios.

In a nutshell, this work makes the following con-
tributions:

• We build a heterogeneous information graph
(HIG) to comprehensively integrate content infor-
mation and rich relational information existing
in video-search scenarios, which is then encoded
by our meta-path-guided heterogeneous graph
neural network.

• Our newly-devised watch-time-aware encoder
can improve the vanilla graph attention mecha-
nism by explicitly injecting the video’s watch-
time information which is an important indicator
of user satisfaction.

• To ensure robust learning, we leverage a meta-
path-wise contrastive learning strategy to capture
dependencies of the cross-type semantic relations
of HIG and then enhance the obtained represen-
tations.

• Considering the online deployment, we also fur-
ther propose a graph distillation strategy that al-
lows our distilled query encoder to deal with
unseen queries.

2 Methodology

In this section, we describe the details of our OR-
ANGE approach. The overall workflow of our
model is shown in Fig. 1 and the detailed nota-
tions used in this paper are summarized in Table 4
in Appendix.

2.1 HIG Construction
To obtain informative representation, a heteroge-
neous information graph (HIG) is first built to
comprehensively integrate content information and
rich relational information existing in industrial
scenarios. Formally, we define the HIG for our
video search scenarios as G = (V, E ,X ), where
V , E , and X denote the sets of nodes, edges,
and attributed features, respectively. These are
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Figure 1: Workflow of the proposed ORANGE. It consists of three key components: (a) HIG construction, (b)
Semantic meta-path design, and (c) Encoder and Optimization.

associated with a node type mapping function
ϕ : V → Rv and an edge type mapping function
φ : E → Re, where Rv and Re denote the types of
nodes and edges respectively. An example of the
HIG is illustrated in Fig. 1(a) and Fig. 1(b). There
are four different types of nodes (i.e., query(Q),
video(V), entity(E) and tag(T) and four different
types of edges(i.e., VIEW, LINK, CONTAIN and
REWRITE).

In a heterogeneous graph, two objects can be
connected via different semantic paths, which are
referred to as meta-paths (Wang et al., 2019)(de-
noted as Φ ∈ M, where M represents the prede-
fined set of meta-paths. To extract the semantic re-
lations among diverse types of nodes, in this work,
we design three distinct types of meta-paths(i.e.,
QVQ, QEQ, and QQQ) for query nodes and an-
other three distinct meta-paths (i.e., VQV, VTV,
and VEV) for video nodes. These different meta-
paths can reveal different semantics and comple-
ment each other. For instance, QEQ denotes two
queries linked by the same entities (e.g., actors,
movies, songs, etc., included in the queries or
videos, as illustrated in Appendix B), which may
indicate two queries share the same search intent.
QVQ implies that a single video is viewed under
two different queries, hinting at a semantic rele-
vance between the two queries. QQQ represents
consecutive queries within a search session, po-
tentially indicating rewriting behaviors when the
retrieved results are unsatisfactory. Note that we
emphasize the generality of our graph construction
approach, which is applicable to most real-world
search scenarios.

2.2 HIG Encoder

To encode the rich heterogeneous information of
HIG, we devise a meta-path-guided heterogeneous
graph attention network with the awareness of the
video watch time (abbreviated as HIG encoder).
Similar to the work in HAN (Wang et al., 2019), we
employ a two-stage attention mechanism to encode
node representations, namely node-level attention
and semantic-level attention, as shown in Fig. 1(c).
For each node i of the HIG and a specified meta-
path Φ, the node-level attention aims to learn the
importance of meta-path-based neighbors j ∈ NΦ

i ,
where NΦ

i denotes the meta-path-based neighbors
of node i. The attention coefficients eΦij , indicating
the importance of node i to node j, are computed
as follows:

eΦij = σ
(
aTΦ · [W l

Φh
l,Φ
i ∥W l

Φh
l,Φ
j ]

)
+ψij ,

ψij =

{
λ · tv if φij = VIEW,

0 otherwise.

(1)

Here hl,Φ
i ∈ Rd denotes the node representation in

the l-th layer of our HIG encoder, where l=0,1,2.
h0,Φ
i is the projected representation of the attributed

feature xi ∈ X for node i. aΦ denotes the node-
level attention vector for meta-path Φ, and W l

Φ is
the meta-path-specific transformation matrix. ∥ de-
notes the concatenation operator and σ(·) denotes
the non-linear activation function. It is noteworthy
that, in contrast to traditional graph attention mech-
anisms (Wang et al., 2019) where attention weights
are determined implicitly without explicit seman-
tics, we explicitly incorporate prior watch-time in-
formation into the original attention calculation in
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order to make our encoder aware of the watch-time
information, which is a key factor in user satisfac-
tion. Since videos with longer duration tend to have
longer watch time, to alleviate the video duration
bias, we follow the method from (Zheng et al.,
2022) to transform the original video watch-time
into an unbiased watch-time score tv ∈ R. λ ∈ R
is a learnable parameter. Note that the watch-time
aware attention only applies to the VIEW edge
type. After obtaining the coefficients between node
pairs based on the meta-path Φ, we normalize them
via the softmax function:

αΦ
ij =

exp(eΦij)∑
k∈NΦ

i
exp(eΦik)

, (2)

and then compute the output representation of node
i corresponding to the meta-path Φ as follows:

hl+1,Φ
i = σ(

∑

j∈NΦ
i

αΦ
ijW

l
Φh

l,Φ
j ). (3)

After we obtain node-level representations cor-
responding to different semantic meta-paths, our
semantic-level attention is used to get the final
informative representation zi of node i as follows:

ωΦ
i = MLP(hΦ

i ),Φ ∈ M,

βΦ
i = exp(ωΦ

i )/
∑

Φ′∈M
exp(ωΦ′

i ),

zi =
∑

Φ∈M
βΦ
i h

l=2,Φ
i

(4)

Here, we can obtain query representation zQ and
video representation zV when MQ={QVQ, QEQ,
QQQ} and MV ={VQV, VEV, VTV} respec-
tively.

2.3 Model Optimization
As for optimization, our model loss(as shown in
Fig. 1(c)), is comprised of three parts, namely main
loss, contrastive loss and graph distillation loss,
respectively.

2.3.1 Main Loss
We cast our problem of learning zQ and zV as a
link prediction task of HIG. Formally, let S =

{mp, np}|S|p=1 be a training batch of query and
viewed videos pairs sampled from the search logs.
Given the node representation zQmp for the query
mp and the node representation zVnp

for the engaged
video np, we optimize them by minimizing the fol-
lowing in-batch loss:

Lmain = − 1

|S|

|S|∑

p=1

log
exp (⟨zQmp , z

V
np
⟩/τ1)

|S|∑
p′=1

exp (⟨zQmp , z
V
np′

⟩/τ1)
,

(5)
where ⟨·, ·⟩ denotes the cosine similarity and τ1 is
a learnable temperature parameter.

2.3.2 Contrastive Loss
Different meta-paths can reveal different semantics.
We propose a meta-path-wise contrastive learning
loss to capture the complex dependencies across
different types of meta-paths. Specifically, taking
the query representation for example, given a pair
of node embedding (hΦ

mp
,hΦ′

mp′
) corresponding to

meta-paths Φ and Φ′ respectively(Φ ̸= Φ′), it can
be regarded as a positive pair when p = p′ and neg-
ative when p ̸= p′. Our meta-path-wise contrastive
loss is formulated as follows:

ℓQcl,p(Φ,Φ
′) = − log

exp(⟨hΦ
mp

,hΦ′
mp

⟩/τ2)
|S|∑
p′=1

exp(⟨hΦ
mp

,hΦ′
m′

p
⟩/τ2)

,

LQ
cl =

1

|S|

|S|∑

p=1

∑

Φ,Φ′∈MQ

ℓQcl,p(Φ,Φ
′)

(6)
where τ2 is the learnable temperature parameter.
Similarly, we can obtain the meta-path-wise con-
trastive loss for video nodes, i.e., LV

cl .

2.3.3 Graph Distillation Loss
For online deployment, we devise a graph distilla-
tion strategy that allows our distilled query encoder
to handle unseen queries. Specifically, our distilled
query encoder is a 4-layer BERT and the distilled
query representation, denoted as zQdst ∈ Rd, can
be optimized by the following loss:

P (zVnp
|zQmp

) =
exp (⟨zQmp , z

V
np
⟩)

∑|S|
p′=1 exp (⟨z

Q
mp , z

V
np′

⟩)
,

P (zVnp
|zQdst

mp
) =

exp (⟨zQdst
mp , zVnp

⟩)
∑|S|

p′=1 exp (⟨z
Qdst
mp , zVnp′

⟩)
,

Lkl =

|S|∑

p=1

KLD
(
P (zVnp

|zQmp
), P (zVnp

|zQdst
mp

)
)

(7)
where KLD denotes the KL-divergence.
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2.3.4 Complexity
The overall time complexity is O(|V|d2 + |E|d),
where d denotes the dimension of node embed-
dings. The parallelization of the proposed model
is easily achievable, since both the node-level and
semantic-level attention can be concurrently pro-
cessed across node pairs and meta-paths, respec-
tively.

3 Experiments

3.1 Datasets
Training Dataset. Since the existing public
dataset (Luo et al., 2022) for the text-video retrieval
tasks lack the watch-time and relational informa-
tion that are widely present in the real-world video-
search scenario, we utilize an industrial dataset
derived from the search logs of Tencent Video, a
prominent Chinese video streaming platform. This
data (as illustrated in Appendix B), collected from
July 1st to August 30th, 2022, is used to construct
our HIG, comprising approximately 26 million
nodes and 215 million edges. The detailed statis-
tics of our constructed HIG are shown in Table 1.

Node Edge Meta-paths

# query(Q): 321K
# video(V): 25M
# entity(E): 109K
# tag(T): 80K

# Q-V: 34M
# Q-E: 239K
# Q-Q: 1M
# V-E: 26M
# V-T: 47M

QVQ
QEQ
QQQ
VQV
VEV
VTV

Table 1: Statistics of the constructed HIG.
Evaluation Dataset. Our evaluation dataset, col-
lected from logs on August 31st, is divided into
two subsets. Subset-1 includes queries in the con-
structed HIG, while Subset-2 comprises unseen,
typically long-tail, queries. Subset-1 holds around
60,000 positive pairs (Query-Video) from nearly
7,000 queries and 55,000 videos. Subset-2 has
about 3,000 positive pairs, with roughly 1,900
queries and 2,900 videos. For each positive pair, we
randomly select 10 negative videos for evaluation.

3.2 Comparison Methods and Metric
To verify the effectiveness of our proposed method,
we choose the following comparison methods for
evaluation.
SBERT (Reimers and Gurevych, 2019): it is a
text-based model that uses a BERT-like dual tower
network to derive semantically meaningful embed-
dings. In this setting, we only consider the textual

information. Both the query and the textual infor-
mation of videos are encoded using a shared BERT
encoder. The video representation is a concatena-
tion of video title, video tags and entities.
CLIP4Clip (Luo et al., 2022): it is a multimodal-
based model including a text encoder and a space-
time encoder that extract representations of texts
and videos respectively.
GAT (Veličković et al., 2017b): it is a widely-used
graph neural network which performs attention op-
eration on graphs. In this setting, we only consider
the query-video interaction to construct a graph
where a 2-layer GAT is used.

All baselines are evaluated on the metric
Recall@K (R@K, K=10, 50, 100) which mea-
sures how many correct videos are recalled within
the top K results, and AWT@100 which evaluates
the Average Watch Time (seconds) of the top 100
candidates. We exclude CLIPBERT from our com-
parison as its single-stream encoder is not applica-
ble to the matching stage of online video-search
services.

3.3 Implementation Details

We implement all models using Tensorflow and
Adam (Nothaft et al., 2015) optimizer with a fixed
learning rate of 7e−4. We train our model for
20, 000 steps with a batch size of 4, 096. Addi-
tionally, we employ dropout with a drop rate of
0.1 to alleviate the overfitting issue. The temper-
atures τ1 and τ2 are both initially set to 0.05 and
the output embedding dimension is 64 for all mod-
els. The maximum number of each-hop neighbors
for GAT and ORANGE is set to 10. As for the
attributed features of GAT and ORANGE, we em-
ploy a pre-trained BERT encoder from CLIP4Clip
to encode textural information of queries, titles, en-
tities and tags and a pre-trained video encoder from
CLIP4Clip to encode visual information. To get
the full multi-modal features of videos, we concate-
nate the textural and visual features. As for SBERT
and CLIP4Clip, we employ the default setting as
described in their original papers.

3.4 Evaluations

3.4.1 Offline Evaluation
As shown in Table 2, our proposed ORANGE sig-
nificantly outperforms baseline models on both
the R@K and AWT@100 metrics. As expected,
CLIP4Clip performs better than the text-based
model SBERT in terms of R@K, which indicates
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Models R@10 R@50 R@100 AWT@100
SBERT 0.429 0.640 0.712 19.9
CLIP4Clip 0.450 0.673 0.744 19.7
GAT 0.576 0.809 0.870 21.3
w/o QEQ 0.621 0.859 0.909 25.0
w/o VEV 0.622 0.862 0.913 25.1
w/o VTV 0.616 0.862 0.904 23.9
w/o QQQ 0.614 0.854 0.899 24.1
w/o CL 0.615 0.853 0.891 23.4
w/o time-aware 0.614 0.865 0.889 22.5
ORANGEdst 0.567 0.791 0.850 21.7
ORANGE 0.627 0.868 0.919 25.2

Table 2: Offline comparison on Subset-1.

that using additional visual information can bene-
fit text-video matching. GAT, by leveraging sim-
ple structural information and attributed informa-
tion, considerably outperforms both SBERT and
CLIP4Clip, indicating the importance of behavior
information in text-video matching. However, GAT
still fails to take enough heterogeneity and video
watch time into consideration. Our model that fully
utilizes both content information and rich relational
information beats GAT by 8.9%, 7.3% and 5.6%
on the R@K metric (K=10,50,100) and by 18.3%
on the AWT@100 metric.

We assess the performance of the distilled OR-
ANGE model. As shown in Table 2, despite the
model capacity loss between the distilled and the
full version, the distilled ORANGE still shows com-
parative performance to GAT and significantly out-
performs the two content-based baselines, SBERT
and CLIP4Clip. Meanwhile, we also evaluate
the distilled version on Subset-2 (unseen queries)
where it still beats SBERT and CLIP4Clip slightly.

Models R@10 R@50 R@100 AWT@100
SBERT 0.588 0.767 0.810 3.597
CLIP4Clip 0.638 0.787 0.829 3.760
GAT - - - -
ORANGEdst 0.655 0.787 0.826 3.937

Table 3: Offline results on Subset-2(unseen queries).

3.4.2 Ablation Studies
In the ablation experiment, we evaluate the contri-
bution of each component to the improvement of
model performance.
Effect of semantic meta-paths. Different meta-
paths can represent different semantics. We eval-
uate the effect of various meta-paths by removing
the corresponding nodes and edges in turn. There
are three sub-groups, namely, entity-related, tag-
related and rewriting, respectively. As shown in
Table 2, the performances consistently decline com-

pared to the full model, illustrating that rich rela-
tional information can assist in obtaining informa-
tive representations.
Effect of meta-path-wise contrastive learning.
To investigate whether the meta-path-wise con-
trastive learning strategy benefits the model train-
ing, we train another ablation model without using
contrastive loss (w/o CL). According to the table 2,
the R@10 drops from 0.627 to 0.615 when ablating
the contrastive loss. It suggests that our contrastive
loss can help enhance the quality of representations
by maximizing mutual information between differ-
ent semantic meta-path views of the same nodes.
Effect of watch-time-aware attention. Without
utilizing the watch-time-aware attention encoder,
the performance of AWT@100 drastically drops
from 25.2 to 22.5, which demonstrates that our
method of explicitly injecting semantic informa-
tion (e.g., video watch time) into the vanilla atten-
tion calculation enhances the informativeness of
the obtained embeddings.

3.4.3 Deployment & Online A/B Test
We conducted our online experiment on the match-
ing stage of our online video-search service. The
current online video-search engine is a highly op-
timized system with multiple retrieval routes to
provide candidates, which are subsequently pro-
cessed by ranking modules. Specifically, we utilize
the distilled ORANGE for unseen nodes and the
full version for nodes within the pre-constructed
graph. The online control group contains the match-
ing methods mainly based-on textual and visual
information such as used in SBERT (Reimers and
Gurevych, 2019) and CLIP4Clip (Luo et al., 2022).
Both the constructed HIG and our trained OR-
ANGE model are incrementally updated on a daily
basis. We have observed a statistically significant
cumulative improvement by 2.08% in terms of
AWT in an A/B test.

4 Conclusion

In this study, we address the text-video retrieval
challenge by incorporating content and intricate re-
lations among video-retrieval domain objects into
a heterogeneous information graph. Based on this,
we introduce a novel watch-time-aware encoder
and a meta-path-wise contrastive learning strategy
to obtain informative representations. Furthermore,
to ensure our model’s applicability for online de-
ployment, we employ a BERT-based query encoder,
distilled from our full model, to process previously
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unseen nodes. In our future work, we plan to ex-
plore efficient graph distillation strategies. Con-
currently, the development of informative graph
encoders that consider abundant search behavior
information should also be investigated.

Limitations

The proposed method heavily relies on pre-defined
meta-paths, and due to computational complexity,
their lengths are all set to 3, which may limit the ex-
pressive capability of our model. To alleviate this
issue, an automatic method need to be designed
to identify useful meta-paths. Simultaneously, al-
though we employ a distilled version to manage
unseen queries, it still exhibits a substantial per-
formance decline compared to the full version. To
alleviate this issue, we may consider incrementally
constructing the HIG on an hourly basis, rather than
the current daily updates, based on newly acquired
user search behavior data.
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Appendix

A Notations

Notation Explanation
ϕ Node type mapping function
φ Edge type mapping function
Φ Meta-path
M Meta-path set
MQ Meta-path set for query node
MV Meta-path set for video node
Q Query node
V Video node
T Video tag node
E Entity node
NΦ Neighbors per meta-path Φ
WΦ Projection matrix per meta-path Φ
hΦ Node representation per meta-path Φ
z Final aggregated node representation

Table 4: Notations and explanations.

B Data example

In this section, we show an example of our col-
lected query-video data in Fig. 2.

Figure 2: Illustration of our collected query-video data.
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