
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 284–293
December 6-10, 2023 ©2023 Association for Computational Linguistics

Compute-Efficient Churn Reduction for Conversational Agents

Sarthak Jauhari∗ Christopher Hidey∗

Google
{jsarthak, chrishidey}@google.com

Abstract

Model churn occurs when re-training a model
yields different predictions despite using the
same data and hyper-parameters. Churn re-
duction is crucial for industry conversational
systems where users expect consistent results
for the same queries. In this setting, compute
resources are often limited due to latency re-
quirements during serving and overall time con-
straints during re-training. To address this is-
sue, we propose a compute-efficient method
that mitigates churn without requiring extra re-
sources for training or inference. Our approach
involves a lightweight data pre-processing step
that pairs semantic parses based on their "func-
tion call signature" and encourages similarity
through an additional loss based on Jensen-
Shannon Divergence. We validate the effec-
tiveness of our method in three scenarios: aca-
demic (+3.93 percent improvement on average
in a churn reduction metric), simulated noisy
data (+8.09), and industry (+5.28) settings.

1 Introduction

Many industry natural language processing systems
rely on deep learning models. However, these mod-
els can be brittle, leading to different predictions on
the same queries after re-training. This is known
as model churn (D’Amour et al., 2020; Hidey
et al., 2022) and can be caused by non-determinism
in training due to data ordering and initialization.
For conversational agents like Google Assistant or
Amazon Alexa, this problem can erode user trust if
the system behaves unexpectedly over time.

Common approaches to address this issue in-
clude ensembling (Dietterich, 2000), distillation
(Hinton et al., 2015; Anil et al., 2020; Kim and
Rush, 2016), or co-distillation (Anil et al., 2020;
Hidey et al., 2022). All these techniques involve
training or serving one or more models in addition
to the primary model, and may be unfeasible in

*equal contribution

Function
Call
Signature

in:get-info-traffic [sl:destination
[in:get-location [sl:point-on-map
SPAN ] ] ] ]

Query 1 traffic to midway airport
Query 2 is traffic heavy on the way to

iowa state university

Table 1: Examples from TOP (Gupta et al., 2018) with
the same function call signature. Intuitively, the repre-
sentations of the spans for these slots should be close in
vector space and the model should be consistent about
predicting the same non-span tokens for both queries.

practice due to constraints on available compute re-
sources. While training additional models provides
a regularization effect that results in better robust-
ness to model churn (Hidey et al., 2022; D’Amour
et al., 2020), we show that the same effect can
be achieved with regularization using additional
data, which requires no extra compute resources at
training or serving.

Our approach relies on the observation that sim-
ilar training examples should have similar repre-
sentations and predictions. Bahri and Jiang (2021)
demonstrated that using nearest neighbors to ob-
tain soft labels for discriminative tasks can reduce
churn. However, in structured prediction tasks like
conversational semantic parsing, smoothing labels
in this way is challenging.

To address this, we propose pairing examples
based on their function call signature, i.e. the non-
terminal nodes in a parse tree. Table 1 illustrates
two queries with the same function call signature.
Our churn reduction method consists of two key
components: 1) pairing similar examples in a batch
based on their function call signature, and 2) in-
troducing a span similarity loss between the slots
within a pair. In Table 1, both "midway airport"
and "iowa state university" represent locations and
should have similar contextual representations in
a pre-trained model. Our span similarity loss ac-

284



counts for this by using a span encoding to repre-
sent these slots and applying a regularizer using a
similarity score derived from the Jensen-Shannon
Divergence (JSD) of their contextual distributions
in the training data.

Our contributions are as follows:

1. We introduce a novel approach to churn reduc-
tion by training on examples paired by their
function call signature. We regularize slots
across the pair using a span similarity loss
according to the JSD score.

2. We demonstrate state-of-the-art reduction in
model churn on the TOP (Gupta et al., 2018),
TOPv2 (Chen et al., 2020), and MASSIVE
(FitzGerald et al., 2022) datasets in an “aca-
demic” setting with high quality data (+3.93
percent improvement on average in EM@10
as defined in Section 5.1).

3. As industry training sets may be noisy (e.g.
due to labeling by a larger model), we also
show that these results hold on the “simulated
noisy” datasets (+8.09) created by Hidey et al.
(2022) and in an industry setting on an internal
proprietary dataset (+5.28).

2 Related Work

Model Churn occurs when multiple re-training
runs with the same model architecture yield dif-
ferent predictions, even when trained on the same
data (Milani Fard et al., 2016). This problem has
traditionally been studied for classification tasks
(Shamir and Coviello, 2020; Shamir et al., 2020;
Jiang et al., 2022; Datta et al., 2023) although we
recently explored churn reduction for structured
prediction (Hidey et al., 2022).

Techniques such as ensembling and distillation
are known to improve model calibration (Hansen
and Salamon, 1990; Lakshminarayanan et al.,
2017) and reduce model churn (Hidey et al., 2022).
However, these techniques may not always be prac-
tical due to the computational cost – ensembling
requires K trained models for inference. Distil-
lation, the process of training a “student” model
based on the predictions of a “teacher” (Hinton
et al., 2015), traditionally requires only a single
model for inference but an ensemble is often used
as the teacher (Reich et al., 2020), meaning that the
cost of training is the same. Co-distillation (Anil
et al., 2020) was developed as an alternative where

K peer models are trained in parallel and while
training time may be less than Kx this approach
still requires a Kx increase in compute resources.

Conversational Semantic Parsing is the task
of converting a user query into an executable form
that can be understood by a conversational assis-
tant. In our previous work (Hidey et al., 2022),
we studied the problem of model churn for this
structured prediction task and reported that co-
distillation reduces churn on the TOP (Gupta et al.,
2018), TOPv2 (Chen et al., 2020), MTOP (Li et al.,
2021), and SNIPS (Coucke et al., 2018) datasets for
conversational agents. This work is a direct exten-
sion of Hidey et al. (2022) - we show that we can
reduce model churn using a single trained model,
unlike co-distillation which requires training a peer
model in parallel. Our approach is similar to the
work of Bahri and Jiang (2021) to smooth labels
using nearest neighbors. However, their approach
does not directly extend to structured prediction
tasks. Instead, we create neighbors according to
their "function call signature," where the idea is
that a trained model should perform the same on
training examples with the same shallow structure.

3 Methods

To enhance robustness against churn, we propose
two key contributions. First, we balance training
data by pairing examples based on their "function
call signature," specifically the non-terminal nodes
in the semantic parse (e.g. Table 1). We hypoth-
esize that this will improve stability during train-
ing by exposing the model to a greater diversity
of function call signatures in each batch. Second,
we introduce a pairwise similarity loss that aligns
spans within the same slot. We achieve this by
comparing the distribution of spans across slots
using Jensen-Shannon Divergence (JSD), which
provides a continuous score for assessing the posi-
tive or negative nature of paired spans. We employ
these techniques by extending a pointer-generator
network with span encodings.

3.1 Baseline Architecture: Pointer-Generator
with Span Encoding

Our baseline architecture follows the work of Ron-
gali et al. (2020) and we use a pointer-generator
network to make a structured prediction of the se-
mantic parse. This architecture requires an encoded
representation of the user query from which to copy.
For this representation we use the span encoding

285



Figure 1: Pointer-generator with span copying.

of Herzig and Berant (2021) (see Figure 1). We
theorize that span encodings reduce churn by en-
couraging spans to be consistently mapped to the
same semantic space.

First, we use a transformer encoder to obtain
a wordpiece embedding. Then we take the first
sub-word embedding to obtain a word-level rep-
resentation hi. To compute a span encoding, we
concatenate the first and last word embedding in a
span and use a dense multi-layer perceptron (MLP)
to obtain a unique span encoding:

hi,j = MLP ([hi;hj ]) (1)

We do this for all
(n
2

)
spans in the user query.

To obtain the probability of an output token at a
given timestep t, we compute the softmax over all
possible “copy” spans ct in the query (the “pointer”
in pointer-generator) as well as a fixed vocabulary
of intents/slots gt (the “generator”):

p(yt| · · ·) = σ([gt; ct]) (2)

The vector gt is computed by multiplying the out-
put vocabulary matrix with the decoder state dt and
passing the result through an MLP. ct is computed
as follows:

ct = [d⊤t h0,0, d
⊤
t h0,1, . . . d

⊤
t h0,N , . . . d⊤t hN,N ]

(3)
See Rongali et al. (2020); Herzig and Berant
(2021); Held et al. (2023) for further details of
this architecture.

During training, we minimize the negative log
likelihood of the sequence of copy/generate tokens
in the semantic parse:

LNLL = −
T∑

t=1

log p(yt| · · ·) (4)

3.2 Pairwise Data

One key observation is that similar queries should
have similar semantic parses. For each example in
the training set, we compute a “function call signa-
ture” by taking all non-terminal nodes in the seman-
tic parse. We then pair examples according to their
function call signature as in Table 1.1 For example,
Query 1 and Query 2 have the same function call
signature “in:get-info-traffic [sl:destination [in:get-
location [sl:point-on-map SPAN ] ] ] ” even though
in the full semantic parse, SPAN refers to “midway
airport” and “iowa state university,” respectively.

During training, we group similar examples in
batches to encourage stability and balance the types
of examples - similar to the well-known approach
for classification tasks (Henning et al., 2023). The
span encoding representation enables alignment-
per-timestep of pairwise examples with the same
function call signature2 (see Table 2), facilitating
the approach described in Section 3.3. This ap-
proach is similar to that of Bahri and Jiang (2021)
but adapted for the task of structured prediction.
Rather than using an unsupervised similarity func-
tion to obtain soft labels, we use partial labels to
obtain similar examples.

However, naively pairing spans based on slots
encourages unrelated spans to appear similar, and
the default pairing only yields positive examples.
For example, in Table 2, “Shinedown” and “Kid
Cudi” should have high similarity as musicians,
but because “Chicago” is a place, artist, and song it
should not be strongly similar to either span due to
its multiple meanings. We hypothesize that these
issues would cause overfitting between spans and
to address them we introduce a “soft” JSD score to
better reflect their true similarity.

1Some examples will be singletons and are paired with
themselves.

2Note that with span encodings, two examples with the
same function call signature have the exact same target se-
quence aside from their spans, even with a varying number of
tokens per span. Without span encodings, the target sequences
would not be aligned.

286



Query Target

can i listen to shinedown ? [in:play-music [sl:music-artist-name shinedown ] ]
i want to hear kid cudi please [in:play-music [sl:music-artist-name kid cudi ] ]

Timestep 0 1 2 3 4

Span Slots

shinedown [sl:music-artist-name, [sl:name-event
kid cudi [sl:music-artist-name, [sl:name-event
chicago [sl:location, [sl:destination, [sl:source, [sl:location-modifier, [sl:music-artist-name, ...

Table 2: An aligned pair from TOPv2 along with the top occurring spans for the same slot in the training set. Very
similar spans will have low entropy in their slot distribution whereas ambiguous spans will have high entropy.

3.3 Span Similarity Loss with JSD

The span distribution is defined as the distribution
of slots to which that span has been associated. It
was our observation that spans with similar distri-
butions tend to share common characteristics and
contextual meaning.

The Kullback–Leibler divergence (KLD) be-
tween two discrete probability distributions P and
Q is defined as follows:

DKL(P∥Q) =
∑

x∈X
p(x) log

p(x)

q(x)
dx (5)

The Jensen-Shannon Divergence DJS(P∥Q) is
a symmetric version of the KLD metric and is
computed by averaging the mixture distributions
of DKL(P∥M) and DKL(Q∥M), where M =
1
2(P +Q).

In our work, we compute JSDsim = 1 −
DJS(P∥Q), where P and Q are the conditional
distributions of a slot given a span. For ex-
ample, let the slot vocabulary be “[sl:location,
[sl:destination, [sl:source, [sl:location-modifier,
[sl:music-artist-name, [sl:name-event” as in Ta-
ble 2. Then, given “kid cudi” and “chicago,” say
that P and Q (computed from counts in the train-
ing data) are [0.01, 0.01, 0.01, 0.01, 0.9, 0.06] and
[0.7, 0.1, 0.05, 0.01, 0.13, 0.01], respectively. In
this case, JSDsim would be 0.58, indicating mod-
erately low similarity.

As spans are potentially many tokens and are
thus sparse with very low counts, we compute
the overall distribution using back-off smooth-
ing (Katz, 1987). We compute the JSDbackoff

score by averaging the slot distributions for each
unigram in a given span. We combine the above
two similarities using a hyperparameter, α, which

controls the amount of backoff smoothing. The
target similarity, ysim is given as follows:

ysim = (1−α)∗JSDsim+α∗JSDbackoff (6)

In the paired setting, we align the decoder em-
beddings of spans using the target JSD similar-
ity (ysim). Given aligned spans s1 and s2 with
span embeddings from Equation 1, we compute a
span similarity loss with the mean-squared error
between ysim from the JSD score and the predicted
ŷsim:

ŷsim = Linear(hs1i,j , h
s2
i,j) (7)

Lspan = LMSE(ysim, ŷsim) (8)

The overall loss term is then:

L = LNLL + λLspan (9)

4 Experiment Setup

4.1 Datasets

We report results in three settings. First, we con-
duct our experiments in an academic setting using
public datasets. To compare directly to our pre-
vious work (Hidey et al., 2022), we report results
on the TOP (Gupta et al., 2018) and TOPv2 (Chen
et al., 2020) datasets. We also run experiments
on the more recently released MASSIVE dataset
(FitzGerald et al., 2022).3 These datasets contain
hierarchical semantic parses reflecting user intents
from domains such as alarms, events, messaging,
music, navigation, reminders, timers, and weather.
As the training sets were verified by human anno-
tators this setting represents the highest possible
data quality. The second setting from our prior

3We use only the English partition.

287



Model TOP TOPv2 MASSIVE
EM ± STD (@10) AGR EM ± STD (@10) AGR EM ± STD (@10) AGR

Baseline (LS) 80.65 ± 0.31 (70.29) 75.48 83.88 ± 0.18 (73.12) 78.15 66.96 ± 0.52 (55.71) 64.49
LS + Pairwise/JSD 81.27 ± 0.19 (72.83) 78.95 84.37 ± 0.10 (78.21) 84.04 67.02 ± 0.28 (56.49) 65.37

CD (Hidey et al., 2022) 81.43 ± 0.41 (73.56) 80.41 84.21 ± 0.10 (76.10) 82.99 67.00 ± 0.26 (56.83) 66.46
CD + Pairwise/JSD 81.46 ± 0.22 (74.59) 81.87 84.63 ± 0.06 (79.77) 86.83 66.75 ± 0.46 (56.56) 66.70

Table 3: Model performance (over N = 10 runs) when trained on academic datasets. EM: exact match (mean over
10 runs) with STD (standard deviation). EM@10: EM if all 10 models are correct. AGR: model agreement. bold:
best setting when controlling for compute resources. Baseline LS and CD results for TOP and TOPv2 are from
Hidey et al. (2022).

Model TOP TOPv2 MASSIVE
EM ± STD(@10) AGR EM ± STD(@10) AGR EM ± STD(@10) AGR

Baseline (LS) 78.15 ± 1.23 (61.36) 65.11 81.80 ± 0.25 (67.20) 70.86 64.25 ± 0.39 (49.26) 56.49
LS + Pairwise/JSD 80.55 ± 0.15 (71.53) 77.53 83.44 ± 0.08 (76.0) 81.6 63.49 ± 0.23 (49.83) 57.43

CD (Hidey et al., 2022) 80.83 ± 0.27 (72.14) 78.45 81.97 ± 0.25 (70.12) 75.91 64.52 ± 0.33 (52.86) 62.1
CD + Pairwise/JSD 80.86 ± 0.28 (73.13) 80.29 83.79 ± 0.07 (77.79) 84.54 64.34 ± 0.43 (53.19) 62.84

Table 4: Model performance (over N = 10 runs) when trained on (10%) systematic noise datasets. EM: exact
match (mean over 10 runs) with STD (standard deviation). EM@10: EM if all 10 models are correct. AGR: model
agreement. bold: best setting when controlling for compute resources. Baseline LS and CD results for TOP and
TOPv2 are from Hidey et al. (2022).

work (Hidey et al., 2022) involves adding system-
atic noise to TOP and TOPv2 with a model trained
on 90% of the training data to label the remaining
10%.4 This setting simulates a “real world” sce-
nario by controlling the amount of noise that enters
the training data (e.g. by distilling from a larger lan-
guage model or another process). Finally the third
setting consists of internal data, collected from real
system output (and therefore noisy) and filtered to
match the intents of the aforementioned datasets.
The selected domains are a subset of the ones in
TOP/MASSIVE - music, alarms, and timers. The
data was deduped and the training data was used
as-is (noise and all) while the development and test
sets were manually re-labeled by human annota-
tors.

4.2 Implementation Details

In order to directly compare to our previous work,
we use the same pre-trained 4-layer BERT en-
coder (Turc et al., 2019; Hidey et al., 2022). For
the internal experiments, we use a bespoke 4-layer
transformer encoder. The vocabulary was derived
from internal data and the model was pre-trained
on a large set of system inputs. We report hyper-
parameters in Appendix B.

4We repeat this process for MASSIVE as well.

5 Results

5.1 Evaluation

We evaluate the various methods by re-training
each experiment N=10 times on all datasets. As
with our previous work, we use the following met-
rics for evaluation (Hidey et al., 2022): Exact
Match Accuracy (EM), the average over N runs
of how often the prediction matches the target,
Sequence-Level Model Agreement (AGR), the
number of times out of N runs that the predictions
agree with each other, and Exact Match Agree-
ment at N (EM@N), the number of times out of
N runs that the predictions agree and match the tar-
get. The reason for these metrics is that we want to
maximize both accuracy on the gold targets (EM)
and consistency across re-training runs (AGR), i.e.
minimize model churn. EM@N reflects these dual
goals by combining both metrics.

5.2 Comparisons

For our baselines we report results with label
smoothing (LS) and co-distillation (CD).5 Label
smoothing is often used for calibration of deep
learning models (Müller et al., 2020). In this set-
ting, a “soft” target is computed by mixing the true

5We used our approach from Hidey et al. (2022) for MAS-
SIVE and the internal dataset but report the numbers verbatim
for TOP and TOPv2.

288



one-hot label with a uniform distribution over all
labels. Co-distillation was introduced by Anil et al.
(2020) and obtained the best results on conversa-
tional semantic parsing according to Hidey et al.
(2022). Both these approaches are complemen-
tary to our methods6 and for our experiments we
combine LS and CD with our approach (LS + Pair-
wise/JSD and CD + Pairwise/JSD, respectively).
As co-distillation requires additional compute re-
sources, we present both approaches to allow prac-
titioners to make informed decisions given resource
constraints.

Model EM(@10) AGR
Baseline (LS) – (–) –

LS + Pairwise/JSD +0.17 (+2.39) +5.28

CD (Hidey et al., 2022) +0.39 (+0.95) +2.84

CD + Pairwise/JSD +0.48 (+1.89) +4.3

Table 5: Relative results on internal dataset with base-
line numbers redacted.

5.3 Discussion
Applying the CD/LS + Pairwise/JSD approach
shows consistent gains on TOP, TOPv2, and the in-
ternal dataset (Tables 3, 4, and 5). There are two no-
ticeable trends. First, the benefits of our approach
become more evident with more data. TOPv2
has roughly 10 times as many queries as MASSIVE.
We obtain the best results relative to the baseline
on TOPv2 (+5.09 EM@10) and the internal dataset
(+2.39). Intuitively, we are relying on sparse slot
distributions which become more reliable in larger
datasets at helping the model learn similarity be-
tween spans. With enough data LS + Pairwise/JSD
can even out-perform the more resource-needy CD
setting. Second, the relative gains over the LS and
CD baselines are larger when training on the sys-
tematic noisy and internal datasets. This suggests
that regularization of spans with a “soft” simi-
larity score encourages robustness to noise.

We conduct an ablation study on the internal
dataset (Table 6) to show the effect of our mod-
eling decisions relative to our LS + Pairwise/JSD
model with label smoothing in Table 5 (the low-
compute setting with label smoothing only). Re-
moving backoff (setting α = 0 in Equation 6) or
removing the JSD span loss (λ = 0 in Equation
9) dramatically degrades the churn metrics. Fur-
thermore, the pairwise setting alone (i.e. simply

6We use 10% label smoothing for all experiments.

including similar examples in the same batch) re-
sults in a difference of -2.41 and -4.51 EM@10 and
AGR, respectively. Finally, we show that the use
of span encodings alone is ineffective and is in fact
worse than the Baseline (LS) in Table 5.

Model EM(@10) AGR
LS + Pairwise/JSD

-Backoff -0.3 (-0.01) -1.14

-JSD -0.05 (-2.63) -4.99

-JSD/-Span -0.14 (-2.41) -4.51

Span Encoding only -0.39 (-4.74) -8.81

Table 6: Ablation Experiments on internal dataset rela-
tive to the best low-compute setting.

6 Qualitative Analysis

We conducted an analysis on MASSIVE compar-
ing LS + Pairwise/JSD to LS and noticed better
results for calendar/event/date/time intents. 7 Table
7 displays successful examples illustrating these
observations. For example, given the query “set
a reminder about todays faculty meeting at four”
on all 10 runs our model (LS + Pairwise/JSD) cor-
rectly predicts the target “[in:calendar-set [sl:date
todays ] [sl:event-name faculty meeting ] [sl:time
four ]].” However, the LS baseline sometimes pre-
dicts “[in:calendar-set [sl:date todays ] [sl:event-
name faculty meeting ]]” and misses the date slot.
Additionally, it showed improved ability to learn
entity identification. Given the query “let me know
the recipe for preparing pasta,” the baseline may
predict “[in:cooking-recipe [sl:ingredient pasta ]]”
whereas the target is [in:cooking-recipe [sl:food-
type pasta ]].

We also observed “overtriggering” (i.e. predict-
ing extra slots for argument-less intents), likely due
to encouraging span alignment. For instance, the
query "is there a chance the hurricane will make
landfall" indicates interest in weather conditions
rather than a weather event. The correct semantic
parse for such queries is [in:unsupported-weather.
However, due to the term "hurricane," the model
mistakenly predicts [in:get-weather [sl:weather-
attribute hurricane ]].8 Furthermore, the slot
“[sl:date-time” was often associated with the in-
tent “[in:update-reminder-date-time” rather than

7Additional results showing the most improved/regressed
function call signatures can be found in Appendix D.

8See Appendix C for a negative result where we attempted
to address this issue.

289



Query what time will the soccer match be
tonight

Model
Run

[in:recommendation_events
[sl:event_name soccer match ]
[sl:timeofday tonight ] ]

Model
Run

[in:calendar_query [sl:event_name soc-
cer match ] [sl:timeofday tonight ] ]

Query set a reminder about todays faculty meet-
ing at four

Model
Run

[in:calendar-set [sl:date todays ]
[sl:event-name faculty meeting ]
[sl:time four ] ]

Model
Run

[in:calendar-set [sl:date todays ]
[sl:event-name faculty meeting ] ]

Query show me tomorrows weather in this area

Model
Run

[in:weather-query [sl:date tomorrows ] ]

Model
Run

[in:weather-query [sl:date tomorrows ]
[sl:place-name this area ] ]

Query add a reminder of a conference for to-
morrow in new york

Model
Run

[in:calendar-set [sl:date tomorrow to-
morrow ] [sl:event-name conference
conference ] [sl:place-name new york
] ]

Model
Run

[in:calendar-set [sl:date tomorrow to-
morrow ] [sl:event-name conference
conference ] ]

Model
Run

[in:calendar-set [sl:date tomorrow to-
morrow ] [sl:event-name conference
conference ] [sl:time ]

Table 7: Examples from MASSIVE (FitzGerald et al.,
2022) showing model churn in the Baseline (LS) setting
but corrected in our model (LS + Pairwise/JSD). The
full, correct parse is highlighted in blue. In other cases,
model re-training runs result in differences between the
prediction and target (inserted/replaced slots highlighted
in red. Out of 10 runs, our model always correctly
predicts the target.

“[in:update-reminder” (e.g. for “please update my
watching the game reminder from 5 pm to 3 pm.”)

7 Limitations

As discussed in Section 6, encouraging span align-
ment may result in the model predicting extraneous
slots. On the datasets we used for our experiments,
the reduction in churn did not result in a decrease
in exact match accuracy. In TOP/TOPv2 and the in-
ternal dataset, there are relatively complex function
call signatures with many slots and nested intents.
However, given a dataset with shallow trees where
many examples consist of only a single intent and
no slot, there would be no benefit to span alignment
and our approach could therefore be detrimental to
both churn reduction and accuracy. One possible

cause for the limited gains on MASSIVE, other
than the dataset size, is that there are no nested in-
tents and relatively simple function call signatures.
Thus, practitioners should consider the structure of
the semantic parse trees in the training data when
considering whether to use this approach.

8 Conclusion: Practical Considerations
and Recommendation

When deciding on the best approach for churn
reduction, there are three factors to consider: 1)
training data size 2) training data quality and 3)
compute resource constraints. Given a sufficiently
large training dataset, we recommend the LS +
Pairwise/JSD approach regardless of the amount
of noise in the data. LS + Pairwise/JSD outper-
formed co-distillation alone on all TOPv2 settings
and on the internal dataset. When accounting for re-
source usage, co-distillation requires 2x resources
for training an extra model. Pairwise/JSD requires
only an additional preprocessing step over LS/CD
and paired data can be cached and updated easily.
If there are no resource constraints, CD + Pair-
wise/JSD can achieve better or comparable results
over LS + Pairwise/JSD.

Overall, our approach is especially effective on
our internal data due to the large available quantity
of un-annotated system output. In a noisy pro-
duction setting such as ours, we recommend com-
bining our approach with label smoothing or co-
distillation, depending on how much data is avail-
able and what constraints exist on training time.

9 Acknowledgments

The authors thank the anonymous reviewers for
their careful reviews and thoughtful suggestions.

References
Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert

Ormandi, George E. Dahl, and Geoffrey E. Hinton.
2020. Large scale distributed neural network training
through online distillation.

Dara Bahri and Heinrich Jiang. 2021. Locally adap-
tive label smoothing improves predictive churn. In
Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 532–542. PMLR.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented

290

http://arxiv.org/abs/1804.03235
http://arxiv.org/abs/1804.03235
https://proceedings.mlr.press/v139/bahri21a.html
https://proceedings.mlr.press/v139/bahri21a.html


semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational
Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces.

Alexander D’Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel, Christina
Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D.
Hoffman, Farhad Hormozdiari, Neil Houlsby,
Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam,
Mario Lucic, Yian Ma, Cory McLean, Diana Mincu,
Akinori Mitani, Andrea Montanari, Zachary Nado,
Vivek Natarajan, Christopher Nielson, Thomas F. Os-
borne, Rajiv Raman, Kim Ramasamy, Rory Sayres,
Jessica Schrouff, Martin Seneviratne, Shannon Se-
queira, Harini Suresh, Victor Veitch, Max Vladymy-
rov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky,
Taedong Yun, Xiaohua Zhai, and D. Sculley. 2020.
Underspecification presents challenges for credibility
in modern machine learning.

Arghya Datta, Subhrangshu Nandi, Jingcheng Xu, Greg
Ver Steeg, He Xie, Anoop Kumar, and Aram Gal-
styan. 2023. Measuring and mitigating local instabil-
ity in deep neural networks. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 2810–2823, Toronto, Canada. Association for
Computational Linguistics.

Thomas G. Dietterich. 2000. Ensemble methods in ma-
chine learning. In International Workshop on Multi-
ple Classifier Systems.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
Swetha Ranganath, Laurie Crist, Misha Britan,
Wouter Leeuwis, Gokhan Tur, and Prem Natara-
jan. 2022. Massive: A 1m-example multilin-
gual natural language understanding dataset with 51
typologically-diverse languages.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

L.K. Hansen and P. Salamon. 1990. Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993–1001.

William Held, Christopher Hidey, Fei Liu, Eric Zhu,
Rahul Goel, Diyi Yang, and Rushin Shah. 2023.
Damp: Doubly aligned multilingual parser for task-
oriented dialogue.

Sophie Henning, William Beluch, Alexander Fraser,
and Annemarie Friedrich. 2023. A survey of meth-
ods for addressing class imbalance in deep-learning
based natural language processing. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
523–540, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Christopher Hidey, Fei Liu, and Rahul Goel. 2022. Re-
ducing model churn: Stable re-training of conver-
sational agents. In Proceedings of the 23rd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 14–25, Edinburgh, UK. Associ-
ation for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Heinrich Jiang, Harikrishna Narasimhan, Dara Bahri,
Andrew Cotter, and Afshin Rostamizadeh. 2022.
Churn reduction via distillation.

S. Katz. 1987. Estimation of probabilities from sparse
data for the language model component of a speech
recognizer. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 35(3):400–401.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962, Online. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Mahdi Milani Fard, Quentin Cormier, Kevin Canini, and
Maya Gupta. 2016. Launch and iterate: Reducing
prediction churn. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates,
Inc.

291

http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/2011.03395
http://arxiv.org/abs/2011.03395
https://aclanthology.org/2023.findings-acl.176
https://aclanthology.org/2023.findings-acl.176
http://arxiv.org/abs/2204.08582
http://arxiv.org/abs/2204.08582
http://arxiv.org/abs/2204.08582
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
http://arxiv.org/abs/2212.08054
http://arxiv.org/abs/2212.08054
https://aclanthology.org/2023.eacl-main.38
https://aclanthology.org/2023.eacl-main.38
https://aclanthology.org/2023.eacl-main.38
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://aclanthology.org/2022.sigdial-1.2
https://aclanthology.org/2022.sigdial-1.2
https://aclanthology.org/2022.sigdial-1.2
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2106.02654
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1612.01474
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf


Rafael Müller, Simon Kornblith, and Geoffrey Hinton.
2020. When does label smoothing help?

Steven Reich, David Mueller, and Nicholas Andrews.
2020. Ensemble Distillation for Structured Predic-
tion: Calibrated, Accurate, Fast—Choose Three. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5583–5595, Online. Association for Computa-
tional Linguistics.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t Parse, Generate! A Se-
quence to Sequence Architecture for Task-Oriented
Semantic Parsing, page 2962–2968. Association for
Computing Machinery, New York, NY, USA.

Gil I. Shamir and Lorenzo Coviello. 2020. Anti-
distillation: Improving reproducibility of deep net-
works.

Gil I. Shamir, Dong Lin, and Lorenzo Coviello. 2020.
Smooth activations and reproducibility in deep net-
works.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

A Ethics

All datasets used in this experiments are intended
for research purposes only. We verified that the
datasets do not contain personally identifiable in-
formation.

B Hyper-parameter Search and Settings

For our experiments, we used the TPU v2 via
Google Cloud9. Table 8 displays the hyperparam-
eter values used for our experiments. We use the
relu activation function for our non-linearity and
for our optimizer we use Adam with weight decay
(Loshchilov and Hutter, 2019). The output vocabu-
lary and bert embedding vocabulary is embedded
into 128 dimensions as done in the pointer decoder
setting Rongali et al. (2020). For all embedding lay-
ers (wordpiece, BERT, and output before softmax)
we apply dropout.

C Additional Results

Negative Pairs To counter overtriggers, we ex-
plored adding negative example pairs. Negative
examples have different function call signatures but
do have overlapping spans. The spans occurs only

9https://cloud.google.com/tpu

in the one of the sequences in the pair. This set-
ting was designed to force the model to generate
dissimilar embeddings for the same span appearing
in different contexts. However, we did not obtain
additional improvement with this approach. The
results can be seen in Table 9.

Hyperparameter/ Dataset / Setting Value
Learning rate / - / Without CD 5e-6

Learning rate / - / CD 1e-5

Batch size / - / Without CD 32

Batch size / - / CD 128

Train Steps / TOP (Gupta et al., 2018) /
Without CD

500k

Train Steps / TOPv2 (Chen et al.,
2020) / Without CD

800k

Train Steps / MASSIVE (FitzGerald
et al., 2022) / Without CD

800k

Train Steps / - / CD 272k

num decoder heads / - / - 8

num decoder layers / - / - 4

max decode length / - / - 51

Span loss weight(λ) / - / - 1

CD loss weight / - / CD 1

backoff smoothing(α) / TOP (Gupta
et al., 2018) / -

0.25

backoff smoothing(α) / TOPv2 (Chen
et al., 2020) / -

0.25

backoff smoothing(α) / MASSIVE
(FitzGerald et al., 2022) / -

0.5

Table 8: Hyperparameter values across datasets. ‘-’
Dataset represents that the value was same across all
datasets. ‘-’ setting represents that the value was same
across all settings.

D Results by Function Call Signature

We present results grouped by function call signa-
ture in Tables 10 and 11. We compare the perfor-
mance on “LS + Pairwise/JSD” to the LS baseline.
We only include function call signatures that oc-
cur at least 5 times in the test set. Table 10 shows
the most improved function call signatures. Many
of these function call signatures include generic
slots such as place names and date/times where the
span similarity approach is likely to better cluster
these spans in vector space when training the en-
coder. Conversely, we oberve degradation on some
function call signatures (Table 11). Many of these
function call signatures are argument-less intents
as discussed in Section C.

292

http://arxiv.org/abs/1906.02629
https://doi.org/10.18653/v1/2020.emnlp-main.450
https://doi.org/10.18653/v1/2020.emnlp-main.450
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
http://arxiv.org/abs/2010.09923
http://arxiv.org/abs/2010.09923
http://arxiv.org/abs/2010.09923
http://arxiv.org/abs/2010.09931
http://arxiv.org/abs/2010.09931
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962


Model TOP TOPv2 MASSIVE
EM(@10) AGR EM(@10) AGR EM(@10) AGR

Pairwise 81.27 (72.83) 78.95 84.23 (77.95) 83.81 66.79 (56.12) 65.57
Pairwise JSD 80.93 (72.77) 79.04 84.37 (78.21) 84.04 67 (56.36) 65.3

Pairwise JSD + Neg Pair 80.8 (71.90) 77.5 84.22 (77.6) 83.27 66.80 (55.65) 63.99

Pairwise JSD (α = 0.1) 80.81 (72.13) 78.14 84.36 (78.12) 84.13 67.06 (56.05) 64.53
Pairwise JSD (α = 0.25) 81.01 (72.48) 78.56 84.39 (78.13) 84.01 67.10 (56.25) 64.96
Pairwise JSD (α = 0.5) 80.91 (72.27) 78.49 84.34 (78.04) 83.95 67.02 (56.49) 65.37

Table 9: Model performance (over N = 10 runs) when trained on academic datasets. EM: exact match (mean over
10 runs). EM@10: EM if all 10 models are correct. AGR: model agreement.

Function Call Signature EM(@10) AGR EM@10 Delta
in:iot-hue-lightdim 100 (100 ) 100 31.25

in:social-post 42.5 (25 ) 25 25
in:audio-volume-down 93.334 (88.89 ) 88.89 22.22

in:calendar-set(sl:general-frequency=) 66 (40 ) 40 20
in:email-querycontact 46 (20 ) 40 20

in:transport-query 54 (40 ) 40 20
in:weather-query(sl:time=) 40 (20 ) 20 20

in:play-audiobook(sl:audiobook-name=) 30.002 (14.29 ) 42.86 14.29
in:iot-wemo-on(sl:device-type=) 76.25 (62.5 ) 62.5 12.5

in:recommendation-events(sl:place-name=) 71.114 (55.56 ) 66.67 11.12
in:calendar-query(sl:date=) 64.165 (41.67 ) 45.83 8.34

in:calendar-set(sl:event-name=,sl:time=) 25.386 (7.69 ) 15.38 7.69

Table 10: Most improved examples on MASSIVE relative to the LS baseline, grouped by function call signature
and sorted by EM@10. Only function call signatures with at least 5 examples in the test set are presented.

Function Call Signature EM(@10) AGR EM@10 Delta
in:alarmset 62 (40 ) 40 -40

in:recommendationevents 63.336 (33.33 ) 50 -33.34
in:transporttaxi(sl:transportagency=) 65.002 (50 ) 66.67 -33.33

in:listscreateoradd(sl:listname=) 62.353 (35.29 ) 41.18 -29.42
in:newsquery(sl:placename=) 54.284 (42.86 ) 57.14 -28.57

in:qacurrency(sl:currencyname=) 85 (37.5 ) 37.5 -25
in:playgame 66.669 (44.44 ) 55.56 -22.23

in:alarmset(sl:date=,sl:time=) 81.113 (55.56 ) 55.56 -22.22
in:alarmquery 91.737 (73.91 ) 73.91 -21.74

in:weatherquery 60 (55 ) 70 -20
in:socialquery(sl:mediatype=) 73 (40 ) 50 -20

Table 11: Most regressed examples on MASSIVE relative to the LS baseline, grouped by function call signature
and sorted by EM@10. Only function call signatures with at least 5 examples in the test set are presented.

293


