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Abstract
Extreme multi-label text classification is a
prevalent task in industry, but it frequently en-
counters challenges in terms of machine learn-
ing perspectives, including model limitations,
data scarcity, and time-consuming evaluation.
This paper aims to mitigate these issues by in-
troducing novel approaches. Firstly, we pro-
pose a label ranking model as an alternative
to the conventional SciBERT-based classifica-
tion model, enabling efficient handling of large-
scale labels and accommodating new labels.
Secondly, we present an active learning-based
pipeline that addresses the data scarcity of new
labels during the update of a classification sys-
tem. Finally, we introduce ChatGPT to as-
sist with model evaluation. Our experiments
demonstrate the effectiveness of these tech-
niques in enhancing the extreme multi-label
text classification task.

1 Introduction

Extreme Multi-label Text Classification (XMTC)
refers to the task of assigning to each document
its most relevant labels from a taxonomy, where
the number of labels could reach hundreds of thou-
sands or millions (Liu et al., 2017). XMTC plays
a crucial role in various industry applications such
as search systems, recommendation systems, and
social media analysis. By enabling accurate cat-
egorization of documents, it facilitates making it
easier to search, filter, and organize the content
effectively (Li et al., 2022).

However, the existing approaches often face in-
herent challenges pertaining to the model, data, and
evaluation aspects. First, classification models typ-
ically serve as the default choice for this task (Liu
et al., 2017; Minaee et al., 2021). Nonetheless,
these models struggle to scale to a large number of
labels as the increasing size of feature space causes
the number of parameters to explode quickly. Sec-
ond, when building a new classification model, la-
beled data is often unavailable, and the available

data can be imbalanced. Moreover, our taxonomy
data, from which the labels originate, undergoes
yearly updates. Consequently, both the training
and test data, as well as the model, require regu-
lar updates. Third, the evaluation process is time-
consuming. Evaluations are typically performed
offline using a test set, which necessitates Subject
Matter Expertss (SMEs) to spend significant time
labeling samples. These existing issues have direct
consequences for businesses, leading to prolonged
release times, limited innovation, increased efforts
for the sales team, and dissatisfied clients.

In this work, we aim to replace our existing
classification pipeline with a new solution that ad-
dresses the aforementioned issues. First, we intro-
duce a label ranking model to replace the SciBERT-
based classification model used in production. This
new model comprises a Bi-Encoder model and
a Cross-Encoder model (Karpukhin et al., 2020;
Craswell et al., 2021). The Bi-Encoder model of-
fers benefits such as high recall and low compu-
tational cost, while the Cross-Encoder model en-
hances precision by re-ranking the top (i.e., 100)
documents. Second, we propose an active learning-
based pipeline for model updates and data collec-
tion. Since active learning needs an initial pool of
positive documents, we use an unsupervised train-
ing strategy to train a Bi-Encoder that can adapt
to our target domain. For new labels without la-
beled data, we use this Bi-Encoder model to iden-
tify potentially positive documents for annotation.
Human annotators are then involved in the anno-
tation loop to label the training data. Finally, we
introduce ChatGPT to assist with model evaluation.
We generate prompts for documents that require
annotation and utilize ChatGPT (OpenAI) to obtain
label answers along with confidence scores and ex-
planations. Subsequently, SMEs manually verify
these answers.

We assess our pipeline’s performance by con-
sidering model effectiveness, training costs, and
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manual annotation costs. The predicted labels of
our pipeline exhibit greater correctness and speci-
ficity compared to the production baseline. For a
newly introduced label, it requires on average 100
human-annotated samples for the updated model
to achieve a Recall@10 of 0.8. Additionally, with
the help ChatGPT, SMEs’ annotation effort is re-
duced from 15 mins to 5 mins for annotating a
single document with 10 labels. As a result, our
proposed pipeline enables multiple releases within
a single year, significantly enhancing efficiency and
productivity.

2 Related work

In the field of multi-label text classification, numer-
ous studies have contributed to the development of
effective models and techniques (Jiang et al., 2021;
Yu et al., 2022). Previous research has explored
a variety of methodologies, including traditional
machine learning algorithms, deep learning archi-
tectures, and hybrid models, to address the com-
plex nature of multi-label classification tasks (Chen
et al., 2022). Notable work has been conducted on
feature engineering (Scott and Matwin, 1999; Yao
et al., 2018), neural network architectures (Onan,
2022; Soni et al., 2022), and loss functions tai-
lored for multi-label scenarios (Hullermeier et al.,
2020), aiming to enhance the predictive accuracy
and interpretability of models. Furthermore, re-
cent advancements in pre-trained language models,
such as BERT (Devlin et al., 2019) and its vari-
ants (Zhuang et al., 2021), have demonstrated sub-
stantial results in multi-label classification, open-
ing up new possibilities for transfer learning in
this domain. Additionally, research efforts have
delved into handling imbalanced label distributions
(Huang et al., 2021; Xiao et al., 2021), leverag-
ing auxiliary information, and adapting models for
specific domains. The existing work provides a
comprehensive foundation upon which our current
research builds, with a focus on the capabilities of
introducing new labels in a multi-label text classifi-
cation setting.

3 Method

3.1 Label Ranking Model
We introduce a label ranking model to replace the
SciBERT-based model in our cooperative produc-
tion. It comprises a Bi-Encoder model and a Cross-
Encoder model. The Bi-Encoder model offers ben-
efits such as high recall and low computational cost,

while the Cross-Encoder model enhances precision
by re-ranking the top documents. See Figure 1 the
architecture of our label ranking model.

A Bi-Encoder model (Karpukhin et al., 2020)
employs a Siamese-Encoder architecture, where
two sequences are encoded by the Trans-
former (Vaswani et al., 2017) in the same vector
space separately, and their similarity is calculated
upon their sequence embeddings. Similarly, our Bi-
Encoder model consists of a document encoder and
a label encoder, which are used to encode the doc-
ument text and the label text separately. The two
encoders share the same parameters. Each training
batch contains only positive text pairs. To allow
better negative sampling, we use the MultipleNeg-
ativesRanking loss (Oord et al., 2018; Henderson
et al., 2017).
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Figure 1: The architect of the Bi-Encoder and Cross-
Encoder model.

Cross-Encoder (Craswell et al., 2021), a variant
of the BERT classification model (Vaswani et al.,
2017), has demonstrated state-of-the-art effective-
ness in various IR tasks. However, it does not scale
well for a large number of documents and is often
applied after a Bi-Encoder. The Cross-Encoder
takes as input the concatenated text “[CLS] la-
bel text [SEP] document text”, which is processed
by the encoder to model the semantic interaction
among all pairs of tokens within the input sequence.
Subsequently, the representation of “[CLS]” is then
fed into a linear classifier and outputs a single score
between 0 and 1 indicating how relevant the label
is for the given document. For training examples,
we create positive ones by using the ground truth la-
bels of a document, and we create negative ones by
randomly sampling 3 labels from the top 100 labels

314



of the ranked list produced by Bi-Encoder. Dur-
ing inference we select the top 30 predictions from
the Bi-Encoder for the Cross-Encoder to rerank to
give our final prediction. The top 30 predictions
from the Bi-Encoder are chosen using the near-
est neigbour search algorithm using Hierarchical
Navigable Small World (HNSW) graphs (Malkov
and Yashunin, 2018) giving us a time complexity
of O(log(|C|)) during this selection process, with
|C| being the total number of labels1.

An important detail during the training of the
Bi-Encoder is to keep the same labels out of
the same batch since the MultipleNegativesRank-
ingLoss uses the other samples in the batch as neg-
ative examples. Therefore, if a label appears more
than once it will create confusion due to samples
from the same label acting as negative samples for
each other.

3.2 Adapting BiCross-Encoder to New Labels

Industry taxonomies are dynamic, with new classes
added and existing ones removed over time. Con-
sequently, reclassifying existing and future docu-
ments using the updated taxonomy becomes neces-
sary. The current standard practice involves fully
retraining classification models from scratch after
a taxonomy change, which is computationally inef-
ficient and costly.

In this section, we illustrate a significant advan-
tage of our label ranking model, as it allows for
the introduction of new classes into the taxonomy
without requiring full model retraining.

3.2.1 Cold-start Pool-based Active Learning
In the context of introducing a new label into a tax-
onomy, Active Learning (AL) provides an efficient
approach to obtain labeled samples by iteratively
learning from existing labeled samples and select-
ing unlabeled samples for annotation based on an
acquisition strategy.

We perform the cold-start pool-based AL (Yuan
et al., 2020) approach, which means we start with
unlabeled samples denoted as U . We use an ac-
quisition strategy S to select a subset Us from U
for annotation by an oracle O (SME annotators).
Here we ask the oracle a binary question, i.e. given
an unlabeled sample u, does it belong to class c.
A modelM iteratively learns a set of new labels
Cnew via the AL cycle as described in Algorithm 1.

1We use the following python library: https://github.
com/nmslib/hnswlib

Algorithm 1 Cold-start pool-based active learning
cycle

Input: O,M,S, U
1: for i← 1 to I do
2: Us ← S(M, U)
3: L← O(Us)
4: M← train(M, L)
5: U ← U \ Us

6: end for

3.2.2 Document Pool
In our corpus, a document can have multiple labels
and therefore every document in the corpus is a po-
tential candidate for newly introduced labels. The
challenge here is that the corpus Ucorpus has more
than 14M documents and this requires practically
infeasible computational resources to do model
inference at each iteration of AL (line 3 in Algo-
rithm 1). To address this challenge, we propose
an alternative approach that utilizes a separate Bi-
Encoder model to retrieve a relatively small number
of potentially relevant documents, which serve as
the unlabeled samples U , such that |U | ≪ |Ucorpus|.

To train the separate Bi-Encoder model, we se-
lect a random sample of 80K documents from the
domain of the new labels, and then use the unsuper-
vised domain adaptation method GPL (Wang et al.,
2022) to finetune a pretrained Bi-Encoder model
(distilbert-base-uncased). Using this GPL-trained
model we select from Ucorpus for each newly in-
troduced label c, a subset Uc, by selecting the top
1000 documents that are semantically the closest to
the label. Finally, U is defined as U = ∪c∈CnewUc.

3.2.3 Acquisition Strategy
The acquisition strategy is the key area of research
within AL, however, these strategies are mostly
based on classification-based models (Ren et al.,
2021) and they are not directly suited for our label
ranking model. For our task, we introduce a simple
greedy acquisition strategy, where for each label
c ∈ Cnew we rank the documents from Uc by their
semantic similarity to the label of c according to
the Bi-Encoder component of modelM. After the
ranking, we uniformly sample a label c ∈ Cnew

and take the top from the ranked Uc to be put in
Us. We perform this N times to create the batch
Us to be annotated by the oracle (SME annotators),
as shown in Algorithm 2.

This strategy is greedy because we are forcing
positive examples to be chosen for a given label
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c. In this scenario it is a valid heuristic, because
the Bi-Encoder component inM learns using the
MultipleNegativesRanking loss and this loss uses
positive pairs as its input. So, it is necessary for
our training process to find positive pairs between
label and documents2.

Algorithm 2 Greedy Acquisition Strategy S
Input: U,M
Output: Us

1: Us ← {}
2: for c ∈ Cnew do
3: U ranked

c ← rank(M, Uc)
4: end for
5: for i← 1 to N do
6: c← randomly sample from Cnew
7: u← top(U ranked

c )
8: Us ← Us ∪ {u}
9: U ranked

c ← U ranked
c \ {u}

10: end for

3.2.4 Model Training
Our first issue in training the model M is catas-
trophic forgetting, a phenomenon that occurs when
learning new labels (Masana et al., 2020; Xia et al.,
2021). This happens due to the given model adapt-
ing towards discriminating between the newly intro-
duced labels without consideration for the decision
boundaries towards the previously learned labels.
An effective and straightforward solution is data
replay (Masana et al., 2020), where data from the
previous labels are included. We achieve this by
random sampling batch instances Ureplay and their
labels from the whole corpus, where we have it
with the samples annotated by the oracle O, i.e.
Unew
s = Us ∪ Ureplay. We then use Unew

s as in-
put to train the Bi-Encoder in modelM with the
MultipleNegativesRankingLoss in the AL cycle.

For the Cross-Encoder component of M, we
train it continuously together with the Bi-Encoder
at each iteration. We first get the top k ranked doc-
uments from the updated Bi-Encoder, and then use
the true label given by the oracle as a positive exam-
ple and randomly sample 3 labels as the negatives,
as mentioned in Section 3.1.

3.3 ChatGPT-assisted Evaluation
The absence of a test set presents a common chal-
lenge for offline evaluation. However, creating

2If a negative sample is found for a particular label, we
simply skip this sample.

a test set can be a time-consuming task. For in-
stance, providing SMEs with a single document
and 10 labels can take approximately 15 minutes
for annotation. The major reason is that SMEs are
typically proficient in only one or two domains,
and there is no expert who possesses knowledge
across all domains. Even domain experts may lack
comprehensive knowledge of highly specialized
topics, making it difficult to precisely determine
the relevance of a label to a given document. While
ChatGPT has shown great potential to help data an-
notation in NLP (Gilardi et al., 2023; Thapa et al.,
2023; Kuzman et al., 2023).

To address these challenges, we leverage Chat-
GPT as an assisting evaluation tool. We begin by
generating prompts for the documents that require
annotation and employ ChatGPT to provide label
relevance scores (0=irrelevant, 1=somewhat rele-
vant, or 2=highly relevant) along with explanations
for these scores. Table 1 shows the prompt we used
and the response from ChatGPT.

4 Web Interface

To facilitate efficient model updates and data anno-
tation, we have developed a web application (Fig-
ure 3). This application enables multiple users to
seamlessly interact with the model simultaneously,
with all interactions logged and stored. It employs
a microservices architecture for scalability, con-
sisting of a front-end React client application and
two FastAPI server applications. One server man-
ages user and project management, while the other
focuses on the AL component. Communication
between the API and AL is facilitated through Rab-
bitMQ message queues, and all data is stored in a
MongoDB instance. The application can be hosted
on a p3.2xlarge or a g4dn.xlarge Amazon EC2 in-
stance.

At the beginning of the AL process, the BiCross-
Encoder model provides a list of ranked documents
by relevancy. These documents are shown one by
one to all users without repetition. The users will
be able to decide if the label matches the content
of the abstract. Once a batch of positive results
(label matches abstract) is obtained, it is sent to
the model for training, and a new list of ranked ab-
stracts is provided. The application’s asynchronous
nature ensures that users are unaffected by any time
delays caused by these model processes. Addition-
ally, user responses and time spent on annotations
are stored and linked to project and abstract data.

316



Prompt Which of the following 0. Fuzzy neural networks ... are relevant topics for this abstract. For each just
provide a relevance score between 0 and 2, and an explanation. 0 means not relevant and 2 means highly
relevant. -> TITLE: ... ABSTRACT: ... the determination of the rail voltage for a 1500 V DC-fed rail
system by means of the adaptive neuro-fuzzy inference system ...

Response 0. Fuzzy neural networks: 2 - The study uses an adaptive neuro-fuzzy inference system (ANFIS), which
combines fuzzy logic and neural networks ...

Table 1: An example for ChatGPT prompt and its response.

Corpus Unlabeled  
Docs

New labels

Candidate   
documents

GPL 
Bi-Encoder

Training  
docs

BiCross-
Encoder

Candidate 
docs

ChatGPT evaluationModel update & data collection via active learning

Finetune 

Finetune Retrieve 

Is the doc relevant to  
the new label?

Test_docs

Predict 

Prompt 

Label 1 
Label 2 

…

Label 1 
Label 2 

…

Doc pool

Figure 2: The architect of the pipeline: data collection, model update, and evaluation.

Figure 3: The web interface of the pipeline.

The application also allows users to track model
performance during their annotation, once they are
satisfied with the performance they can terminate
model training.

5 Experimental Setup

5.1 Data

Labels. The labels assigned to documents are de-
rived from Elsevier’s Compendex taxonomy, which
encompasses approximately 11,486 labels from the
generic engineering domain. This taxonomy ex-
hibits a poly-hierarchy structure, wherein certain
leaf nodes can have multiple parent nodes. The
taxonomy undergoes regular updates, typically on

an annual basis. These updates involve the addition
of new labels and the potential removal of existing
ones to ensure their accuracy over time.

Corpus. The corpus we work with contains
about 14M documents of interdisciplinary engi-
neering content. Each document has a title, an
abstract, keywords, and some meta information;
it is associated with several labels generated by a
rule-based fuzzy string matching system. We use
the concatenation of title, abstract, and keywords
to encode the documents.

Document pool (DP) dataset. It consists of rel-
evant and irrelevant documents for 7 taxonomy
labels. For each label, the dataset contains be-
tween 250 and 450 documents (mean=363), which
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were manually annotated as relevant or irrelevant
(mean=150 relevant documents). The irrelevant
documents are mainly hard negatives.

Active learning (AL) dataset. Out of the 11,486
labels in the taxonomy, we randomly chose 30 la-
bels to represent the newly introduced labels. Next,
we utilized the GPL Bi-Encoder to select 1,000
samples for each concept from the corpus, result-
ing in an unlabeled pool of data comprising 30,000
samples. Additionally, we randomly selected a to-
tal of 5,000 documents from the dataset to form the
test set for the 30 selected labels.

5.2 Baselines

Production model. The production model is
a SciBert-based multi-label classification model,
with a classification layer on top of the [CLS]
output of the pre-trained SciBert model (al-
lenai/scibert_scivocab_uncased). The classifica-
tion model was finetuned using the MultiLabel-
SoftMarginLoss on a 2M documents subset of our
14M corpus, with taxonomy labels generated by a
rule-based system.

6 Results

6.1 BiCross-Encoder Effectiveness

In this experiment, we aim to answer whether our
label ranking model outperforms the classification
model for extremely large label scenarios. The
BiCross-Encoder model was trained on the 14M
documents with weak labels generated by a rule-
based system. The evaluation was done automati-
cally using ChatGPT. We first select 22 documents
from each of the 4 domains, i.e. communication,
natural science, material science, and computer sci-
ence; then we do inference using both models to
produce a rank list from the 11,486 labels. We
keep the top 10 labels and ask ChatGPT to answer
whether the label is relevant to the corresponding
document or not.

In Table 2, we find that BiCross-Encoder per-
forms better than the SciBERT classifier in the
domains of communication and computer science,
and has comparable performance in natural science
and material science.

A natural question about ChatGPT that readers
might come up with is whether it is reliable for
automatic evaluation. We manually ask SME to
examine the answers (0, 1, or 2) from ChatGPT
and give their own answer if the ChatGPT answer
is not correct. The percentage of agreement is

# Correct labels / # All labels

Domain BiCross-Encoder SciBERT

Communication 181/220 151/220
Natural Science 170/220 173/220
Material Science 164/220 185/220

Computer Science 180/220 105/220

Table 2: Performance of Bert classifier and BiCross-
Encoder. The ground truth of the predicted labels was
annotated automatically using ChatGPT.

60% on the original 3-point scale and 82% on a
2-point scale (mapping 1 and 2 as 1). The relatively
low agreement from the 3-point scale is because
of confusion between 1 (somewhat relevant) and
2 (highly relevant). Given that a 2-point scale is
enough for most relevant tasks, we conclude that
using ChatGPT for evaluation is acceptable if we
are faced with limited time and monetary budget
for annotation.

6.2 GPL Bi-Encoder Effectiveness

In this experiment, we use the DP dataset to evalu-
ate the ranking performance of the GPL-finetuned
Bi-Encoder, which we use for selecting the initial
document pool of potentially relevant documents.
Figure 4 shows the effectiveness of ranking the
relevant documents in the top-k, before and after
finetuning with GPL. We are able to effectively fine-
tune a pre-trained bi-encoder to the domain without
any manual annotation effort. Since the goal is to
retrieve as many potentially relevant documents as
possible, we care about the recall score. We can
see that with only 400 documents, the recall score
reaches almost 100%.

To sum up, the finetuned model is well capable
of selecting a set of relevant documents for a given
label, consequently benefiting the efficiency of the
AL loop.

Figure 4: Effectiveness of the GPL finetuned Bi-
Encoder in selecting potentially relevant documents for
the initial pool.
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6.3 Active Learning for New Labels

In this experiment, we show the results of AL the
30 newly introduced labels. Here we used a Bi-
Encoder trained on the “old” labels and the distil-
roberta-base Cross-Encoder off the-shelf. The re-
sults are shown in Figure 5.

First, by training the Cross-Encoder to re-rank
the Bi-Encoder label rankings, we observed a per-
formance boost of approximately 15 points, result-
ing in a Recall@10 of 0.85. Second, the perfor-
mance improvement was achieved with just 100
iterations. It is noteworthy that each iteration in-
volved, on average, only 1 or 2 newly labeled sam-
ples, summing up to 100 samples per new label.
This indicates that combining the selection of the
initial pool via GPL and the greedy acquisition
strategy together is a successful heuristic for newly
introduced labels, especially in low-budget scenar-
ios.

Figure 5: The performance in Recall@10 at each AL
iteration.

Before AL After AL

Recall@10 0.4241 0.4852

Table 3: Performance of the Bi-Encoder before and
after Active Learning on the “old" 11456 labels and on
randomly sampled 50K documents from the corpus.

6.4 Active Learning Impact on Old Labels

Table 3 shows the performance of the Bi-Encoder
before and after AL on the “old" taxonomy, i.e.
excluding the newly introduced labels.

The result indicates that the model’s perfor-
mance remained consistent with the old labels even
after applying AL. Surprisingly, the model’s per-
formance even exhibited a significant improvement.
This finding confirms the efficacy of incorporating
data replay as an effective countermeasure against

catastrophic forgetting. Additionally, the integra-
tion of data replay in the Bi-Encoder model allowed
it to learn the relation between the new and old
labels in its semantic space. As a result, the embed-
dings between the old labels were better defined,
leading to the observed enhanced performance fol-
lowing AL on the new classes.

7 Conclusion

In this work, we propose an approach to enhance
our pipeline for the extreme multi-label text classi-
fication task. We replace the traditional SciBERT-
based classification model with a label ranking
model based on a Bi-Encoder and a Cross-Encoder,
enabling efficient handling of large-scale labels.
Moreover, we present an active learning-based
pipeline that addresses the data scarcity of new
labels during the update of a classification model.
Finally, we demonstrate the effectiveness of using
ChatGPT for model evaluation when faced with
limited time and monetary budget for annotation.

Limitations

One of the limiting factors during the AL cycle is
that our acquisition strategy is a greedy method.
The acquisition strategies in existing works usually
depend on the classification head and embedding
space of a given model, which may not be directly
compatible with our ranking-based model. A di-
rection for future research would be looking at
acquisition strategy for ranking-based models.

Another limitation is that in the AL cycle, only
the positively annotated samples by the oracle are
used for training the model. This is not entirely
efficient because the negatively annotated samples
are not used, while they also cost resources. A
possible solution is to have a different loss that
incorporates these negatively annotated samples
during training. Another solution is to change the
task of the oracle to give all the categories a sample
belongs to.
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