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Abstract

Relevance ranking system plays a crucial role
in video search on streaming platforms. Most
relevance ranking methods focus on text modal-
ity, incapable of fully exploiting cross-modal
cues present in video. Recent multi-modal
models have demonstrated promise in vari-
ous vision-language tasks but provide lim-
ited help for downstream query-video rele-
vance tasks due to the discrepency between
relevance ranking-agnostic pre-training objec-
tives and the real video search scenarios that
demand comprehensive relevance modeling.
To address these challenges, we propose a
QUery-Aware pre-training model with multi-
modaLITY(QUALITY) that incorporates hard-
mined query information as alignment targets
and utilizes video tag information for guidance.
QUALITY is integrated into our relevance
ranking model, which leverages multi-modal
knowledge and improves ranking optimization
method based on ordinal regression. Extensive
experiments show our proposed model signifi-
cantly enhances video search performance.

1 Introduction

Video search has become a prevalent method for
users to identify relevant content in response to
text queries on video streaming platforms. Rele-
vance ranking is crucial in video search (Pang et al.,
2017), as it determines the relevance degree of a
video concerning a given query. Pointwise loss(e.g.,
binary cross-entropy loss), ranking loss(e.g., hinge
loss) and Combined-Pair loss (a linear combina-
tion of pointwise and pairwise loss) (Zou et al.,
2021) are commonly used to optimize relevance
ranking task. However, these methods fail to bal-
ance calibration ability (globally stable prediction
with good interpretability) and ranking ability (pre-
diction can lead to a correct ranking) (Sheng et al.,
2022). At the same time, the transformer archi-
tecture’s recent success (Vaswani et al., 2017) in

*Equal contribution

computer vision and natural language processing
has led to pre-trained language models achieving
promising results in retrieval and ranking tasks
(Zou et al., 2021; Nogueira et al., 2019; Liu et al.,
2021). However, most existing approaches primar-
ily focus on text modality and alternative methods
which integrate large-scale Vision-and-Language
Pre-training (VLP) models, such as CLIP (Rad-
ford et al., 2021) and ALBEF (Li et al., 2021),
into video search engines face two key challenges:
(1) Images typically align with verbose and de-
tailed video texts, providing limited assistance for
modeling matching relationship between visual sig-
nals and concise queries in downstream relevance
tasks. (2) Most VLP models are trained on single-
frame images and texts, neglecting video informa-
tion such as keyframes and tag data, rendering them
unsuitable and inadequate for video search engines.

To address these challenges, we propose a query-
aware, multi-modal relevance ranking model for
real video search systems within a two-step frame-
work, as depicted in Fig.1.
Query-aware Pre-training Model with Multi-
modality. We present a real-world query-aware
pre-training model that simultaneously aligns im-
age features with video text features and query
features. Additionally, we propose a hard query
mining strategy to effectively exploit query knowl-
edge. Inspired by CLIP4CLIP (Luo et al., 2022)
and TABLE (Chen et al., 2023), we introduce a
local tag-guided attention network to extract fea-
tures from sequential frames, rather than a single
image. To preserve pre-trained knowledge to the
greatest extent and accelerate the training process,
we employ an adapter-tuning strategy
Ranking Relevance. Following the approach in
(Bo et al., 2021), we model relevance ranking under
the pre-training and fine-tuning paradigm, utilizing
various handcrafted features (e.g., BM25 (Robert-
son and Walker, 1994), click similarity (Yin et al.,
2016), term weight) and pre-trained representations
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of query and video within a wide and deep network
architecture. We enhance ranking performance by
incorporating multi-modal knowledge and propos-
ing an ordinal regression based approach for joint
optimization of ranking and calibration in relevance
prediction.

In summary, this paper makes the following con-
tributions:

• We introduce a novel query-aware pre-training
model tailored for real-world applications,
aligning image with both title and query. This
approach effectively utilizes video modality
information and exhibits improved adaptabil-
ity to downstream tasks.

• We propose an innovative relevance ranking
optimization method based on ordinal regres-
sion, balancing calibration and ranking abili-
ties effectively.

• We present a novel approach for applying pre-
trained VLP models to online relevance rank-
ing tasks in real industrial video search scenar-
ios. Comprehensive offline and online eval-
uations demonstrate that the proposed tech-
niques significantly enhance relevance rank-
ing performance.

2 Methodology

In this section, we describe the details of our
multi-modal-based ranking-relevance approach.
The overall architecture of our methodology is
illustrated in Fig.1, comprising a query-aware
pre-training multi-modal model and a ranking-
relevance model that utilizes both visual and textual
information.

2.1 Query-aware Pre-training Model with
Multi-modality

As illustrated in Fig.1(a), our QUery-Aware Pre-
training Model with Multi-modaLITY(referred to
as QUALITY), is composed of a query tower, a
video visual tower, and a video text tower, which
is an extension of the dual-tower structure of the
image-level ALBEF model.
Model Input. Given an input video v and an in-
put query q, we employ a 12-layer visual trans-
former ViT-B/16 (Dosovitskiy et al., 2020) to en-
code N frames uniformly sampled from the in-
put video, and a shared 12-layer textual encoder,
BERT-base (Devlin et al., 2018), to encode the

title and tags of the input video and the input
query. The above frame-level visual encoder and
the textual encoder are initially pre-trained using
the CLIP approach on industrial video-search log
data. To accelerate the training process of the
QUALITY model and prevent catastrophic forget-
ting (Sharkey and Sharkey, 1995) of the uni-modal
pre-trained encoders, we follow the AdaptFormer
(Chen et al., 2022a) method that a trainable and
lightweight down-up bottleneck module is added
to feed-forward parts of transformer blocks within
our pre-trained encoders and meanwhile, all the
other parameters within the pre-trained encoders
are frozen, significantly reducing trainable parame-
ters and enhancing the training efficiency.
Tag Guidance. Video tags are widely present
on video-sharing platforms, which are usually
keywords and phrases that facilitate video con-
tent understanding. To gain a better understand-
ing of the video content rather than merely re-
lying on low-level visual features, a tag-guided
cross-attention network is designed to align seman-
tic information with visual signal. Specifically,
given the visual representation generated by vi-
sual encoder {fcls, f1, f2, . . . , fN} and tag repre-
sentation generated by textual encoder with M to-
kens {gcls, g1, ..., gM}, a 3-layer transformer with
8 cross-attention heads(as displayed in purple color
in Fig.1) is used to align visual information with
semantic tags, then we retain the tag-guided visual
part as {vcls, v1, ..., vN} for the subsequent query-
awareness computation.
Query-awareness. Previous VLP models such as
ALBEF and CLIP4CLIP, have focused on mod-
eling the relationship between visual signals and
their corresponding text descriptions. However, in
real-world search scenarios, how video content is
described and how users express their input queries
can differ significantly. Moreover, text descrip-
tions of the video content often fail to summarize
the video content adequately. Thus the obtained
representations by these methods may offer lim-
ited assistance for search tasks. To better adapt to
our downstream video-search tasks, we explicitly
model the matching relationship between the query
tower and vision tower(i.e., video frames) through
vision-query contrastive learning (VQC) task, a
shared cross-modal cross-attention encoder (as dis-
played in cadet blue color in Fig.1) and vision-
text matching (VQM) task, while also maintain the
matching modeling between vision and title towers
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Figure 1: Model architecture. (a) QUALITY model. (b) Multi-modal-based ranking relevance model.

through vision-text contrastive learning (VTC) task,
the same shared encoder and vision-text matching
(VTM) task. The shared cross-modal encoder is
composed of a 3-layer transformer with 8 cross-
attention heads. Our query-awareness strategy can
alleviate the issue of mismatching purely based
on text information in the downstream ranking-
relevance task.

2.2 Pretraining Objectives
QUALITY is pre-trained using the following
five objectives: Vision-Query Contrastive Learn-
ing(VQC) and Vision-Text Contrastive Learn-
ing(VTC) applied to uni-modal encoders, as well
as Vision-Query Matching(VQM), Vision-Text
Matching(VTM), and Masked Language Model-
ing(MLM) applied to multi-modal encoders. The
performance of VQM and VTM is enhanced
through online contrastive hard negative mining.
Additionally, VQM is further improved by employ-
ing offline hard query mining.
Vision-Query Contrastive Learning aims to align
the visual signal vcls and query qcls prior to
fusion. We define a function s (vcls, qcls) =
hv (vcls)

⊤ hq (qcls) to calculate the similarity be-
tween the visual signal and the query. Here, hv (·)
and hq (·) are linear layers that project the [CLS]
embeddings into a shared semantic space and nor-
malize them. We express the vision-query con-
trastive loss with a trainable temperature parameter
τ and batch size B as follows:

Lv2q = − 1

B

B∑

i

log
exp (s (vicls , qicls) /τ)∑B
j=1 exp (s (vicls , qjcls) /τ)

,

Lq2v = − 1

B

B∑

i

log
exp (s (vicls , qicls) /τ)∑B
j=1 exp (s (vjcls , qicls) /τ)

,

Lvqc =
1

2
(Lv2q + Lq2v) (1)

Vision-Text Contrastive Learning seeks to align
the visual signal vcls and video title tcls prior to
fusion. Analogous to the vision-query task, the
vision-text contrastive loss with a trainable temper-
ature parameter µ can be defined as follows:

Lv2t = − 1

B

B∑

i

log
exp (s (vicls , ticls) /µ)∑B
j=1 exp (s (vicls , tjcls) /µ)

,

Lt2v = − 1

B

B∑

i

log
exp (s (vicls , ticls) /µ)∑B
j=1 exp (s (vjcls , ticls) /µ)

,

Lvtc =
1

2
(Lv2t + Lt2v) (2)

Vision-Query Matching aims to predict whether
a pair of vision and query is matched or not. We
concatenate the [CLS] embeddings of the visual-
text multi-modal encoder, into which the vision and
query signals are fed. A fully-connected layer is
then employed to generate the two-class probability
of matching, denoted as pvqm. The vision-query
matching loss can be defined as:

Lvqm = − 1

J

J∑

i

yvqmi log2 (p
vqm (vi, qi)) (3)
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Figure 2: Random sampled video example with key frames, title and tags.

Here, yvqm represents the ground-truth label, and
J is the total number of vision-query pairs for this
task. In addition to the online hard negative mining
strategy employed by ALBEF, an embedding-based
offline strategy is also designed to mine both hard
positive and negative queries. Specifically, we first
derive query and video embeddings from a query-
video click graph, utilizing lightweight graph em-
bedding algorithms such as item2vec (Barkan and
Koenigstein, 2016) and DeepWalk (Perozzi et al.,
2014). Then for a given video, a query is chosen as
a hard positive if the cosine-similarity, based on the
graph embedding, between the query and this video
exceeds a predetermined threshold. Conversely, if
the cosine-similarity between them is below the
threshold, the query is considered a hard negative.
The threshold is an empirical hyperparameter.
Vision-Text Matching aims to predict whether a
pair of vision and title originates from the same
video. Analogous to the vision-query matching, we
define the vision-text matching loss as:

Lvtm = − 1

O

O∑

i

yvtmi log2
(
pvtm (vi, ti)

)
(4)

Here, pvtm represents the prediction of matching,
yvtm is the ground-truth label, and O is the total
number of vision-text pairs for this task.
Masked Language Modeling aims to predict
masked video title tokens using both visual and
textual signals. Video title tokens are randomly
masked with a 15% probability and replaced with
the special token [MASK]. Let T̂ denote the
masked token, and pmlm(I, T̂ ) denote the prob-
ability of a masked token. We define the masked
language modeling loss as:

Lmlm = − 1

R

R∑

i

ymlm
i log2

(
pmlm

(
Ii, T̂i

))

(5)
Here, R represents the total number of masked to-
kens, and ymlm is the ground-truth label indicating

whether a token is masked.
The total loss function for our model is:

Lpre = Lvqc +Lvtc +Lvqm +Lvtm +Lmlm (6)

2.3 Multi-Modal Based Ranking Relevance

2.3.1 Ranking Relevance Model
As illustrated in Fig.1(b), the proposed multi-modal
based ranking relevance model comprises four
major components: our pre-trained QUALITY
which produces query embedding E(q), video tex-
tual embedding E(t) and video visual embedding
E(v) based on the multi-modal input; a discretiza-
tion and embedding learning module (Guo et al.,
2021) that extracts representation E(n) from hand-
crafted numerical features (e.g., BM25, click sim-
ilarity, term weight); a pre-trained transformer-
based cross-encoder that takes query and video
text as input, where the video text includes title,
actors, uploader name and tags; a multilayer per-
ceptron (MLP) module which produces a relevance
score between the query and video. Provided with
E(q), E(t) and E(v) generated by QUALITY, we
further compute the cosine-similarity of the query
embedding with the text or visual embedding to
obtain query-text similarity and query-visual sim-
ilarity, respectively. The cross-encoder is pre-
trained following multi-stage training paradigm
(Zou et al., 2021) and the representation of the
[CLS] token, as well as mean and max pooling
of the final layer of the cross-encoder, are concate-
nated to obtain a presentation of semantic relevance
E(q,t). Finally, the concatenation of the outputs of
E(q,t), E(q), E(t), E(v), E(n) and the derived query-
text similarity and query-visual similarity is fed
into MLP module to conduct relevance score be-
tween a query and a video.

2.3.2 Ranking Loss Function
The relevance ranker can be considered as a scor-
ing function fθ(q, v) for a query q and a candidate
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video v, and θ denotes the trainable model parame-
ters. In order to ensure both calibration and ranking
abilities of the predicted scores, we model the rank-
ing problem as a K-grade ordinal regression prob-
lem that accommodates both labeled order y ∈
1, 2, . . . ,K and a set of thresholds ρ1, ..., ρK−1

with the property that ρ1 < ρ2 < ... < ρK−1.
Specifically, the final output of the model fθ(q, v)
is considered as an observed ordinal variable, with
its cumulative probability given by the sigmoid
function, denoted as σ (Bürkner and Vuorre, 2019).
The set of thresholds, which can be optimized dur-
ing the model training process, divides fθ(q, v) into
K disjoint segments. In our setting, the probability
Pr of relevance k can be formulated as follows:

gk = σ(ρk − fθ(q, v))

Pr(fθ(q, v) = k) =





gk, if k = 1

gk − gk−1, if 1 < k < K

1− gk, if k = K
(7)

The corresponding ordinal regression loss function
is defined in Equation 8. Besides, A binary cross-
entropy loss with binary label yb ∈ {0, 1}, denoted
as Lbinary in Equation 9, is also employed with the
purpose of enhancing the differentiation between
relevant and irrelevant candidates more accurately.
A rating k <= K/2 is considered irrelevant, while
a rating k > K/2 is deemed relevant. The final
ranking loss can be written as Equation 10:

Lordinal = −log(Pr (fθ(q, v) = y)) (8)

Lbinary = −yblog(

K/2∑

k=1

Pr(fθ(q, v) = k))+

(1− yb)log(1−
K/2∑

k=1

Pr(fθ(q, v) = k))

(9)

Lfinal = αLordinal + (1− α)Lbinary (10)

where α is a hyper-parameter that balances the
importance of two different loss functions. In order
to anchor the predicted probability to a meaningful
range, the ranking score is computed as:

score =
K∑

k=1

(
k − 1

K − 1
Pr(fθ(q, v) = k)) (11)

3 Experiments

3.1 Datasets
As for training our QUALITY, we construct a
dataset consisting of high-quality and diverse

videos sourced from Tencent Video, a prominent
Chinese video streaming platform. This dataset
contains 10 million videos, including keyframes,
video titles, and over 15,000 labeled tags. An exam-
ple of a video accompanied by hard-mined queries
is shown in Fig 2, we explicitly model the matching
relationship between vision and concise queries.
As for ranking relevance, we manually annotate
query-video pairs sampled from video search logs
to construct train and test datasets, resulting in a
training dataset of 270,000 query-video pairs and a
test dataset of over 90,000 items. Annotators judge
each query-video pair and assign a label with a
relevance grade from 1 to 4, corresponding to the
relevance levels of Bad, Less, Good, Excellent,
respectively. Apparently, Excellent / Bad means
most relevant / irrelevant video for the given query.

3.2 Evaluation Metrics
We use AUC (Area Under the Curve) and PNR
(Positive Negative Ratio) as offline evaluation met-
rics. For the AUC metric, labels 1 and 2 are consid-
ered negative, while labels 3 and 4 are considered
positive. The PNR metric considers the partial or-
der between labels and measures the consistency
of prediction results and ground truth. As for on-
line evaluation, we employ Average Watch Time
(AWT) to quantify user preference on video search
results. The Good vs. Same vs. Bad (GSB) metric
compares two systems in a side-by-side manner,
and we utilize △GSB (Zou et al., 2021) to assess
the satisfaction gain achieved by a new system.

3.3 Offline Performance
We first evaluate the effectiveness of the QUALITY
model. Since the original ALBEF is specifically
designed for images rather than videos, we have
extended it to a video version for a fair comparison,
which we refer to as Video-ALBEF. The baseline
Video-ALBEF model utilizes a transformer-like
pooling strategy inspired by CLIP4CLIP to aggre-
gate keyframe embeddings and then generates a
video-level visual embedding. The remaining com-
ponents remain identical to those in the original
ALBEF setup. As shown in Table.1, our method
achieves an AUC of 0.683 and a PNR of 2.180,
beating the baseline Video-ALBEF model with an
absolute 10.5% AUC improvement and a relative
42.2% PNR improvement. Meanwhile, as shown
in Table.2, compared to the baseline text-based
relevance model, we find that the performance of
this baseline can be enhanced by introducing mul-
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timodal embeddings via either the method QUAL-
ITY or Video-ALBEF, demonstrating the effective-
ness of the multi-modal information that can al-
leviate the issue of mismatching purely based on
text information. Furthermore, our method outper-
forms Video-ALBEF by 0.3% in AUC and 3.2% in
PNR respectively, suggesting that explicitly mod-
eling the matching relationship between the query
tower and vision tower can help the downstream
relevance model.
Table 1: Offline comparison results of multi-modal
pre-training models and ablation study of QUALITY.
QUALITY outperforms Video-ALBEF and each techni-
cal components brings it’s separate gain independently.

Models AUC PNR
Video-ALBEF baseline 0.578 1.533
QUALITY 0.683 2.180
(w/o) query tower 0.623 1.752
(w/o) title tower 0.678 2.127
(w/o) hard pos/neg query mining 0.670 2.081
(w/o) tag guidance 0.665 2.046
(w/o) AdaptFormer 0.653 1.881

Table 3 provides the performance of our ordinal
regression-based ranking loss. We observe that the
proposed ranking loss outperforms the pointwise
loss and the Combined-Pair ranking loss, by rela-
tive improvements of 28.9% and 4.1% on PNR, re-
spectively. We also notice that the pointwise-based
model achieves the highest AUC of 0.925, but the
lowest PNR of 6.911. This outcome indicates that
pointwise loss only focuses on the calibration abil-
ity and neglects the ranking ability.

Table 2: Offline comparison results of ranking relevance
models and ablation study on technical components of
QUALITY.

Models AUC PNR
Text-based baseline 0.917 8.425
Text-based + Video-ALBEF 0.918 8.637
Text-based + QUALITY 0.921 8.914
(w/o) query tower 0.920 8.840
(w/o) title tower 0.920 8.853
(w/o) hard pos/neg query mining 0.920 8.819
(w/o) tag guidance 0.920 8.866
(w/o) AdaptFormer 0.919 8.785

3.4 Ablation Study

Effects of Query-awareness. As depicted in Ta-
ble.1, our QUALITY model achieves an absolute

Table 3: Offline comparison of ranking relevance model
performances for different ranking loss functions.

Rank loss AUC PNR
Pointwise 0.925 6.911
Combined-Pair 0.918 8.565
Ours 0.921 8.914

6.0% AUC improvement and a relative 24.4% PNR
improvement compared to the model without the
query tower. Consequently, as shown in Table.2,
our model gains improvements of 0.1% on AUC
and 0.8% on PNR. We attribute this significant
performance boost to two primary factors. First,
aligning query and visual signals makes the pre-
training task more adaptable to downstream rele-
vance tasks. Second, query information is more
concise compared to video titles, increasing the
efficacy of contrastive learning due to harder align-
ment, as evidenced by model without title tower
outperforms model without query tower by 5.5%
on AUC and 21.4% on PNR in Table.1. We intro-
duce an embedding-based strategy for hard pos/neg
query mining in the VQM task, suggesting that it is
more effective than the online hard negative mining
approach employed by ALBEF. As shown in Table
1, in comparison to the model without hard pos/neg
query mining, our strategy yields improvements of
1.3% on AUC and 4.8% on PNR. Consequently, as
illustrated in Table 2, our model achieves a PNR
improvement of 1.1%.
Effects of Tag Guidance. In our work, we em-
ploy tag information modality as explicit guidance.
As illustrated in Table.1, our QUALITY model
achieves an absolute 1.8% AUC improvement and
a relative 6.5% PNR improvement compared to the
model without tag guidance. Consequently, as pre-
sented in Table.2, our model attains improvements
of 0.1% on AUC and 0.5% on PNR. Tag infor-
mation encapsulates the core entity knowledge of
a video, enabling the visual signal to develop a
semantic-level understanding of the video, rather
than being confined to the low-level visual signal.
In summary, incorporating tag information proves
beneficial for query-vision relevance tasks.
Effects of AdaptFormer. We employ 12-layer pre-
trained uni-modal encoders for efficient training
in real-world industry applications and the preser-
vation of pre-trained knowledge. To this end, we
utilize an adapter-tuning strategy. As shown in Ta-
ble.1, our QUALITY model outperforms the fully
fine-tuned model by achieving an absolute 3.0% im-
provement on AUC and a relative 15.9% improve-
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Figure 3: Cases of video search. "score (w/o QUALITY)" / "score (w/ QUALITY)" represents the prediction score
of relevance ranking model with / without QUALITY.

ment on PNR. We suggest that freezing the primary
parameters of uni-modal encoders mitigates the is-
sue of catastrophic interference. Moreover, the
adapter training method is 3.4 times faster than the
fully fine-tuned approach. Consequently, as shown
in Table.2, our model attains improvements of 0.2%
on AUC and 1.5% on PNR. Overall, AdaptFormer
proves advantageous for both training effectiveness
and efficiency.

3.5 Case Study

Apart from the above quantitative analysis, we con-
duct qualitative analysis based on some cases in
real world video search scenario, as shown in Fig 3.
For instance, given the query "Cinderella2 Dreams
Come True", we observe a video whose title in-
cludes the keywords of query, but the content of
the video is a Thai romantic comedy, not Disneys’
Cinderella. This video was initially predicted as
rate "Good" with a score 0.52. After incorporating
QUALITY, the prediction score decreases to 0.25.
Through the analysis of these cases, we empiri-
cally conclude that incorporating multi-modal fea-
tures extracted from QUALITY can significantly
enhance the discriminative power of the relevance
ranking model.

3.6 Deployment & Online A/B Testing

To evaluate the effectiveness of our proposed
method in our real-world video search engine, we
deploy the proposed model to our online system
and compare it with online baseline models which
are mainly text-based baselines like BERT and
BM25. Following a week-long observation, A/B

test results demonstrate that query-aware multi-
modal-based ranking relevance model outperforms
the online baseline models, achieving a 2.1% im-
provement on AWT. Furthermore, we conduct man-
ual GSB evaluation on the final search results, and
our proposed model contributes to a 5.7% improve-
ment in △GSB.

4 Conclusion & Limitations

In this study, we introduce QUALITY, a query-
aware pre-training model that leverages multi-
modal information, including queries, video
frames, tags, and titles. QUALITY is integrated
into our ordinal regression-based ranking relevance
model. Through extensive experiments conducted
on real-world data, we demonstrate the effective-
ness of our proposed method.

Our method relies on a graph mining strat-
egy that utilizes search log data to identify previ-
ously unobserved query-video pairs, thus alleviat-
ing the Matthew Effect problem in search engines.
Nonetheless, the accuracy of our approach may
be influenced by noise during graph construction.
Consequently, we recommend investigating alter-
native hard mining strategies or visual debiasing
strategy (Chen et al., 2022b) to enhance perfor-
mance.
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A Implementation Details

Our QUALITY model comprises a BERT-base with
124M parameters, a ViT-B/16 with 86M parame-
ters, a vision-tag multi-modal encoder with 2M
parameters, and a vision-text multi-modal encoder
with 2M parameters. BERT-base and ViT-B/16
are pre-trained as a CLIP model on 20M video
cover-title pairs from our search log. We uniformly
sample 5 keyframes for each video and resize them
to a resolution of 224 × 224. For online usage
convenience, the embedding size of image, query,
tag, and title modalities is reduced from 768 to 64
using projection layers. We train the models for
1 million steps on 4 NVIDIA A100 GPUs, with
an initial learning rate of 1e−4 for the first 10,000
steps, which is then gradually decayed to 5e−5.

We use a hierarchical learning rate for the rele-
vance ranking model, setting 1e−5 for pre-trained
cross-encoder layers and 5e−4 for other layers. No-
tably, the pre-trained cross-encoder is based on
a single-layer transformer network distilled from
BERT-base, featuring an embedding size of 64 and
a hidden layer size of 64. Regarding the thresh-
olds of ordinal regression, we initialize them with
−5, 0, 5. Besides, we set hyper-parameter α in
final ranking loss as 0.5.
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