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Abstract

End-to-end (E2E) automatic speech recogni-
tion (ASR) models are becoming increasingly
popular in commercial applications, such as vir-
tual assistants, closed captioning, and dictation
systems. The accuracy of the ASR is crucial to
their success. However, E2E models still strug-
gle to recognize out-of-domain words such as
proper nouns and domain-specific terms. In
this paper we introduce AdaBERT-CTC, a do-
main adaptation technique that relies solely
on textual data. Our method allows for text-
only adaptation by fine-tuning a pre-trained
self-supervised text encoder model. Addi-
tionally, we show that our method can be
made parameter-efficient by adding bottleneck
adapters to the pre-trained model. This allows
for adaptation with less than a 5% increase in
parameters and minimal computational over-
head during inference. We demonstrate that
our approach outperforms the base BERT-CTC
model by up to 14% relative word error rate im-
provement on several out-of-domain, publicly
available datasets.

1 Introduction

End-to-end (E2E) automatic speech recognition
(ASR) models such as Connectionist Temporal
Classification (CTC) (Graves et al., 2013; Vaswani
et al., 2017) have become popular due to their abil-
ity to map acoustic features to text sequences us-
ing a single model. These architectures do not
require an acoustic model (AM), language models
(LM), nor explicit alignment information during
training. These characteristics make them an at-
tractive choice for large-scale production settings
(He et al., 2019; Zhang et al., 2020). However, per-
formance deteriorates on out-of-domain datasets
not seen during training (Sainath et al., 2018), and
adapting these models to out-of-domain data is a
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difficult task due to the lack of separate acoustic
(AM) and language models (LM) (Shenoy et al.,
2021), computational costs, catastrophic forgetting
(Kirkpatrick et al., 2017), and an often lack of large
amounts of labeled, domain-specific data.

Due to the aforementioned challenges, text-only
adaptation methods are gaining popularity for ASR.
In (Sato et al., 2022), the authors use a separate
text-encoder network and additional encoder layers
on top of an acoustic encoder to infuse text infor-
mation. In (Stooke et al., 2023), the authors use
random encoder features in place of real audio in a
Transducer encoder and showcase improvements
using text-only data. In (Thomas et al., 2022), the
predictor network of the RNN-T model is adapted
with text-only data using textogram representations.
A different line of work where text-only adaptation
is possible uses self-supervised learning (SSL) to
train models with joint speech/text representations,
such as JOIST (Sainath et al., 2023), MAESTRO
(Chen et al., 2022b), and mSLAM (Bapna et al.,
2022). Even though these models show promising
results in downstream tasks, text-only adaptation
remains challenging.

Bridging the gap between supervised and SSL
models, the authors in (Higuchi et al., 2022b,a)
combined fully supervised architectures with
BERT (Devlin et al., 2019). Specifically in
(Higuchi et al., 2022b), the authors proposed a
BERT-CTC ASR model that expands the CTC
model by combining the acoustic representations
and BERT representations to perform ASR using
self-attention (Vaswani et al., 2017). The BERT-
CTC model conditions CTC outputs on BERT em-
beddings, incorporating explicit linguistic informa-
tion into training/inference, while maintaining an
iterative, non-autoregressive decoding.

In this paper, we present AdaBERT-CTC, a
method to adapt BERT-CTC to out-of-domain data
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using text only. We do so by training BERT
with domain-specific text (Fig. 1) using the BERT-
CTC loss. We further explore adding parameter-
efficient adapters (Houlsby et al., 2019) to BERT
and train only these adapters during the text adapta-
tion phase to make the approach parameter-efficient
and deployment friendly (Dingliwal et al., 2021,
2022). At inference time, we replace the original
BERT used to train the BERT-CTC model with
our adapted BERT. The main contributions of our
work are: (1) we propose a simple yet effective
text-only domain adaptation method for ASR that
leverages the recently proposed BERT-CTC archi-
tecture, (2) we explore the behaviour of the BERT-
CTC architecture when BERT is further fine-tuned
with domain data using masked language model
(MLM) loss, (3) we demonstrate the advantages of
parameter-efficient adapters to fine-tune the BERT
module, and (4) we present that our text-only do-
main adaptation approach complements the use of
a domain-specific language model.

2 BERT-CTC

2.1 Model details and training steps
BERT-CTC adds to the CTC model by leverag-
ing linguistic information from BERT embeddings.
Similar to RNN-T (with an audio encoder and a
prediction network serving as an internal language
model), in BERT-CTC, the audio representations
from the audio encoder and the text representa-
tions from BERT are fused to estimate the distribu-
tion over alignments. In contrast to RNN-T, in the
BERT-CTC model, attention layers stacked over
the fused representations help learn the masked
(or partially observed) sequence (Higuchi et al.,
2022b).

Let X = (xt ∈ RD | t = 1, ..., T ) be an
input sequence of length T, and Ŵ = {ŵn ∈
V ∪ [MASK] | n = 1, ..., N} be the correspond-
ing output sequence of length N with a special
mask token [MASK]. Here, xt is a D-dimensional
acoustic feature at frame t, ŵn is an output token
at position n, and V is a vocabulary. Defining the
alignment as a = {a1, a2, ..., aT ∈ V ∪ [BLANK]},
BERT-CTC computes the likelihood of the target
sequence, W :

PBCTC(W |X) =
∑

Ŵ∈a(W )
P(W |Ŵ ,X)P(Ŵ |X), (1)

P(W |Ŵ ,X) =
∏T

t=1 P(at|BERT (Ŵ ), X), (2)

where a(W ) covers W with all possible masking
patterns. Here, we interpret p(Ŵ |X) as a prior

distribution of sequences consisting of observed
tokens that are easily recognized only from speech
input. BERT (Ŵ ) is the output of BERT repre-
senting the distribution of target sequences. Further,
the conditional probability P(at|BERT (Ŵ ), X)
can be computed using the softmax function as:

P(at|BERT (Ŵ ), X) = σ(SelfAttt(H
ae, HBERT )), (3)

where HBERT are the embedded masked BERT
tokens, Hae are the representations from the acous-
tic encoder, and σ(·) is the softmax function. We
concatenate these representations before feeding
them to the self-attention layers.

The BERT-CTC objective function LBCTC is
defined by the negative log-likelihood Eq. 1 ex-
panded:

−log
∑

Ŵ

∑
a P(A|W,X)P(W |Ŵ )P(Ŵ |X). (4)

During training we handle the intractability of
Eq. 1 by randomly masking the text transcript be-
fore using Eq. 3 to compute the conditional proba-
bility and train using CTC loss. For more training
details, please refer to (Higuchi et al., 2022b).

2.2 Inference
During inference, we use an iterative masked pre-
dict algorithm assisted by CTC inference for decod-
ing the target tokens. The algorithm first initializes
a target sequence with an estimated length, which
is then followed by k = 1, ...,K iterations of token
masking and prediction steps.
Initialization (k = 1): BERT-CTC decoding re-
quires the length of a target sequence, N̂ , to be
given in advance. The target length is predicted
through CTC-only greedy decoding of audio en-
coder output. Given this estimated sequence length,
a masked sequence Ŵ (k = 1) is initialized by fill-
ing all N̂ positions with the mask token [MASK].
This masked sequence is passed through BERT and
fused with the acoustic representations and then fed
through the self-attention module to get an initial
hypothesis via CTC greedy decoding.
Iterative Decoding: Given a current prediction
W̃ (k), tokens having low probability scores are
masked with [MASK], which results in the next
masked sequence. This masked sequence is again
fed through BERT, fused with the acoustic repre-
sentations and decoded using the self-attention +
CTC module to get the next predicted sequence.
This iterative greedy decoding is done for an addi-
tional K − 1 steps.
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Figure 1: Schematic diagram of our proposed AdaBERT-
CTC method using adapters. The grey blocks are frozen
and the green blocks are trained during text-only adap-
tation. During adaptation, we pass zero-valued speech
features and masked text into AdaBERT-CTC for text-
only adaptation. At inference time, we iteratively pass
the input audio features and masked text into the model.

3 AdaBERT-CTC: Adapted BERT-CTC

The BERT-CTC model conditions the output pre-
diction on both the acoustic information and the
BERT embeddings of the predicted sequence from
the previous iteration. Our adaption approach uses
text to modify the BERT module of a trained BERT-
CTC model without changing the other parameters.

Our AdaBERT-CTC method is comprised of
three steps: (1) training a base BERT-CTC model
with minimal changes to the original training
method; (2) adapting only the BERT model with
our text-only adaptation methods while keeping
the rest of the trained BERT-CTC network frozen
(which we call Adapt-BERT); and (3) at inference
time, we replace the original BERT model with our
adapted BERT model, making no other changes
to the original BERT-CTC inference framework.
We call this method AdaBERT-CTC. In the next
subsections, these three steps are further described.

3.1 Training the base BERT-CTC model

The training of the base BERT-CTC model is nearly
identical to the original implementation (Higuchi
et al., 2022b), but with a minor but important mod-
ification: in 10% of the batches during training, we
mask entire audio embeddings and only provide
text embeddings to the attention layer. Masking
these ensures that the self-attention layer can han-
dle text-only inputs in the absence of audio embed-
dings, which is necessary for text-only adaptation.

3.2 Adapting BERT-CTC
Zeroed speech features: Fig. 1 shows a schematic
of AdaBERT-CTC. The model uses a self-attention
layer to attend to both the acoustic embeddings
and the textual embeddings. Since there is not
an explicit fusion between the two embeddings,
during the text-adaptation step we disregard the
acoustic embeddings (Eq. 3) and have the self-
attention layer attend to only the text embeddings
from Adapt-BERT:

P(at|BERT ∗(Ŵ ∗), X) = σ(SelfAttt(⃗0, H
BERT ∗

)), (5)

where σ(·) is the softmax function, and Ŵ ∗,
HBERT ∗

, and 0⃗ represent the masked text from
the new domain, masked text embeddings from the
Adapt-BERT model, and 0⃗ vectors for the acoustic
representations, respectively.
Text-only adaptation: For text-only adaptation,
we only adapt the BERT model and freeze the
rest of the BERT-CTC model parameters. We first
obtain text from the new domain and then mask
the text before using it as input to the BERT-CTC
model without the audio information. Essentially,
the model is trying to predict the full text from the
partially masked text. The adapted BERT model is
then trained with the same BERT-CTC loss used to
train the base BERT-CTC model. In this scenario,
the adaption step is similar to masked-language
modeling since the self-attention layer is trying to
predict the full text from the partially masked text.
The simplicity of our approach lies in not requiring
any additional optimization procedures from the
one used during training, which mitigates any mis-
match between adaptation and training objectives.
For inference, we use the adapted BERT instead of
the original pre-trained BERT, while keeping the
rest of the base BERT-CTC the same.

3.3 Efficiently adapting BERT-CTC
To efficiently adapt BERT-CTC, we add parameter-
efficient bottleneck adapters (Houlsby et al., 2019)
to BERT and train the adapters (instead of full fine-
tuning) using BERT-CTC loss. Adding adapters
have shown to be effective for multiple downstream
tasks (He et al., 2022). Specifically, bottleneck
adapters are added after the multi-head attention
and feed-forward layers in the transformer modules
inside the BERT.

4 Experimental Setup

In this section, we describe the data and experi-
ments performed to showcase the use of our pro-
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posed model and method.

4.1 Datasets

Training: We use two different training datasets
to train separate base BERT-CTC models: (1) Lib-
rispeech 960hrs (LS) (Panayotov et al., 2015) sam-
pled at 16 kHz, and (2) an internal dataset com-
prising 10000hrs of multi-accented English speech
(10k hrs). The internal dataset has a mix of 8kHz
(upsampled to 16KHz) and 16kHz audio. We use
this dataset to obtain results with a model trained
on more acoustic diversity than Librispeech (which
contains clean read speech from audiobooks).
Adaptation and evaluation: We test our adap-
tation method on three datasets: (1) SLURP
(Bastianelli et al., 2020), which contains 50628
training, 8690 development and 13078 test utter-
ances. SLURP is a publicly available multi-domain
dataset with single turn user interactions with a
home assistant; (2) DSTC-2 (Henderson et al.,
2014), which contains 11236 training, 3816 de-
velopment and 9551 test utterances. The utterances
are related to the restaurant domain; (3) WSJ (Paul
and Baker, 1992), which contains 37416 training,
503 development (dev93) and 213 test (eval92) ut-
terances drawn from WSJ news (train_si284). All
datasets are sampled at 16kHz.

4.2 Input features

We initially experiment with standard 80-
dimensional log-mel filterbank features obtained
using a 25-millisecond Hamming window, 10-
millisecond hop size and 512-point discrete Fourier
transform as input features. We also experiment
using WavLM Large (Chen et al., 2022a) represen-
tations as input features to improve generalization
to different acoustic conditions. WavLM is pre-
trained with the objective of masked speech pre-
diction and denoising and has shown to be robust
under noisy conditions.

4.3 Model configuration

The model configuration and training setup for the
base BERT-CTC model closely follows (Higuchi
et al., 2022b). For the audio encoder, we use a 12-
layer Conformer (Gulati et al., 2020) architecture
encoder. We use the BERTBASE model provided
by HuggingFace (Wolf et al., 2020) for the text
encoder. Finally, the self-attention module to com-
bine the audio and text embeddings is a 6-layer
Transformer encoder. All the experiments are done

using the ESPnet (Watanabe et al., 2018a, 2021)
recipe (Higuchi et al., 2022b).

4.4 Baselines
BERT-CTC: We use the BERT-CTC model as our
initial baseline. This model is trained on paired
data without any text adaptation. We evaluate the
BERT-CTC model on Librispeech’s test clean and
other datasets to showcase the performance on a
well-known dataset.
BERT-CTC + offline MLM adaptation: In this
approach, we explore the performance when us-
ing a BERT model that has been fine-tuned offline
using the masked language model (MLM) loss (De-
vlin et al., 2019) with text from the adaptation train-
ing sets. During inference, we replace the BERT
model in BERT-CTC with this MLM fine-tuned
BERT model. This allows us to compare (offline)
MLM fine-tuning with the proposed approaches.

4.5 BERT-CTC Adaptation setup
During text-only adaptation, we adapt the BERT
model and the rest of the BERT-CTC model pa-
rameters are frozen. We explore fully fine-tuning
BERT and only training the added adapters. For
adaptation, we randomly mask the text before pass-
ing it through BERT and adapt BERT using the
BERT-CTC loss in Eq. 1. We describe three adap-
tation setups using our proposed approach below.
AdaBERT-CTC: After training BERT-CTC, we
fine-tune the entire BERT module with the BERT-
CTC loss using the method in Section 3.2
AdaBERT-CTC + adapters: We are also inter-
ested in studying a parameter-efficient approach
for text adaptation. For this, instead of fine-tuning
the entire BERT model, we add bottleneck adapters
into BERT and train only the adapters using BERT-
CTC loss while freezing everything else. We select
the adapter sizes based on the validation set perfor-
mance. In most cases, the selected adapters have
less than 5% of the total number of parameters.
AdaBERT-CTC + adapters + offline MLM adap-
tation: Lastly, we modify the approach mentioned
above by replacing the original BERT model with
MLM fine-tuned using BERT model. Then we
train the adapters using our BERT-CTC loss.

4.6 Inference setup
During inference, we set the total number of BERT-
CTC decoding iterations to K = 5, as we observe
that the performance does not improve beyond that.
We first evaluate with greedy decoding to assess
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the influence of using text-only data for adapting
our CTC model. Next, we combine beam search
decoding to decode the CTC outputs with an ex-
ternal language model (LM) through Shallow Fu-
sion (SF) with a LM weight of 0.6. This allows
us to investigate whether our text-only adaptation
approach can offer additional advantages. We per-
form SF with a transformer LM that is trained on
the out-of-domain text of each of the individual
datasets. The out-of-domain text used to train each
of the domain-specific LMs is the same text used in
our AdaBERT-CTC text-only adaptation approach.
Each LM is a 4 layer transformer model and is
trained using the standard setup in ESPNet (Watan-
abe et al., 2018b).

5 Results and Analysis

5.1 AdaBERT-CTC: full fine-tuning versus
adapters

Table 1 shows the text-only adaptation results
that highlight the relative WER improvement
(WERR) from adapting the BERT model using our
AdaBERT-CTC method. We show results for the
base BERT-CTC model trained on the Librispeech
960hrs and our internal 10k hrs dataset and the re-
sults on Librispeech test for reference. This model
performs poorly on SLURP and DTSC-2, which
we attribute to the acoustic and linguistic mismatch.
We observe that adapting the BERT-CTC model
trained on Librispeech using log-mel filterbank
features with our fully fine-tuned adapted BERT
shows 12%, 14%, and 5% WERR on SLURP,
DSTC-2, and WSJ, respectively, compared to the
original BERT-CTC model. When we replace log-
mel filterbank features with WavLM features as
input, WER reduces across all approaches. With
WavLM features, using the fully fine-tuned BERT
adapted by our AdaBERT-CTC method improves
by a WERR of 8%, 11% and 5% on SLURP, DSTC-
2 and WSJ respectively, compared to the base
BERT-CTC model. However, we notice that the
base BERT-CTC model trained on the 10k hrs in-
ternal data did not benefit from text adaptation on
WSJ. We hypothesize that the BERT-CTC models
trained using Librispeech has a greater benefit from
the text in WSJ since the text from Librispeech and
WSJ differ more. Nevertheless, the BERT-CTC
models trained on the 10k hrs internal data benefit
from the SLURP and DSTC-2 adaptation text and
both show 11% WERR.

With respect to parameter-efficient adaptation,
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Figure 2: WER on the test sets using different number
of total iterations during decoding. For each value of K,
we restart the decoding.

in most cases, we observe similar or better perfor-
mance to fine-tuned BERT. These results indicate
that training the adapters achieves comparable per-
formance to fine-tuning the BERT model. Similar
to previous studies (Houlsby et al., 2019; He et al.,
2022), our results suggest that using adapters is a
computationally efficient method to adapt BERT-
CTC as compared to fine-tuned BERT.

5.2 The effect of offline MLM adaptation

The results for BERT-CTC with offline MLM adap-
tation shown in Table 1 indicate that using the train-
ing adaptation text to fine-tune the BERT model
with the MLM loss degrades the performance
across most scenarios. We believe this degrada-
tion is due to the objective mismatch between the
MLM loss and the BERT-CTC loss used in train-
ing. Specifically, the new embeddings from the
MLM fine-tuned BERT differ from the original
BERT embeddings and may no longer be suitable
for the attention layers that are kept frozen. How-
ever, when we added adapters to the offline adapted
BERT and used in conjunction with our AdaBERT-
CTC to train the adapters, we observe compara-
ble or sometimes better results than the AdaBERT-
CTC + adapters method. Since we originally ob-
serve poor performance for BERT-CTC with an
offline MLM adaptation, these results suggest that
the adapters are beneficial for aligning the MLM
fine-tuned representations to be suitable for the
self-attention layers. The above experiments high-
light our AdaBERT-CTC method, which adapts the
BERT model using the BERT-CTC objective, pre-
venting the new embeddings from being unsuitable
for the attention layers.
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Table 1: WER for models trained on Librispeech 960hrs and 10k hrs of internal data. All results are reported using
K = 5 and greedy decoding. We include results on the Librispeech test partition using the BERT-CTC model for
reference.

Dataset

Input Train Model BERTBASE Offline MLM Librispeech (test) SLURP DSTC-2 WSJ
Params Adaptation Clean Other Test Test eval92

Log-mel

Librispeech

BERT-CTC Frozen ✗ 4.8 9.3 52.9 50.6 13.2
Frozen ✓ 56.7 49.9 14.9

AdaBERT-CTC Fine-tuned ✗ 46.8 43.5 12.5
Adapters ✗ 47.1 44.6 12.3
Adapters ✓ 46.8 43.1 12.8

10k hours

BERT-CTC Frozen ✗ 8.7 15.1 33.5 21.5 7.7
Frozen ✓ 37.1 22.2 8.4

AdaBERT-CTC Fine-tuned ✗ 29.8 19.1 8.0
Adapters ✗ 29.5 18.5 7.6
Adapters ✓ 28.8 19.0 7.9

WavLM Librispeech

BERT-CTC Frozen ✗ 2.6 4.7 30.4 26.4 9.6
Frozen ✓ 30.3 24.9 9.6

AdaBERT-CTC Fine-tuned ✗ 28.0 23.6 9.1
Adapters ✗ 28.4 23.7 8.7
Adapters ✓ 28.1 23.7 8.7

Table 2: WER for models trained on Librispeech using
WavLM features. All results are reported using K = 5
with greedy decoding and shallow fusion.

Model LM SLURP DSTC-2 WSJ
Test Test eval92

BERT-CTC None 30.4 26.4 9.6
Domain 27.5 22.8 8.4

AdaBERT-CTC None 28.0 23.6 9.1
Domain 26.1 21.3 8.0

5.3 Comparison with Shallow Fusion (SF)

Table 2 presents the results of SF using different
LMs for BERT-CTC and AdaBERT-CTC. This
analysis is performed using WavLM features, and
only the adapters inside the BERT are trained dur-
ing the adaptation process. The LM column in-
dicates whether SF is applied. The following are
the two possible values for the LM column: 1)
None: greedy decoding is performed without the
use of any language model, and 2) Domain: the
LM is trained on the "training text" of the respec-
tive domain set. SF with a domain LM with BERT-
CTC also provides domain adaptation. Applying
SF to the BERT-CTC model output with the do-
main LM resulted in a WERR of 9.5% to 14%,
whereas AdaBERT-CTC without any LM exhib-
ited a WERR of 5% to 11%. These results suggest
that AdaBERT-CTC is contributing 42% to 82% of
what SF adds on top of BERT-CTC. Conversely,
when SF is applied on top of AdaBERT-CTC, a
WERR of 7% to 12% is observed. This outper-
formed the BERT-CTC with SF by a WERR of
5% to 6.6%. This suggests that AdaBERT-CTC
not only contributes to most of the improvements
observed with SF but also provides additional and
complementary benefits when combined with SF.

5.4 The effect on number of decoding
iterations in WER

In Fig. 2, we show the WER as a function of the
number of decoding iterations. Both BERT-CTC
and AdaBERT-CTC + adapters improve over multi-
ple iterations. This is expected as the inputs to the
BERT model are initialized with masks for K = 1,
and the model gets a better context with each new
decoding iteration. In this figure, we also observe
that our method works better right from the first
iteration, showing that bottleneck adapters are al-
ready biased to domain specific utterances. For
both methods, approximately K = 5 iterations are
enough to achieve the best performance.

6 Conclusions

In this work, we propose AdaBERT-CTC, a method
for adapting BERT-CTC using text-only data. The
adaptation approach modifies a trained BERT-CTC
model by fine-tuning BERT (while keeping every-
thing else frozen) using BERT-CTC loss with text-
only input. Our results show that we achieve up
to 14% WERR without the use of an external lan-
guage model on publicly available datasets. Fur-
thermore, we show that adapting BERT-CTC using
our approach in a parameter-efficient manner with
bottleneck adapters achieves comparable perfor-
mance to fully fine-tuning BERT. To understand
if our method complements the use of an external
language model, we show that combing AdaBERT-
CTC with SF improves gives a WERR of 6.6%
compared to BERT-CTC with SF. For future work,
we plan to evaluate our adaptation performance on
real-world datasets.
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Limitations

Our approach has the following limitations: 1) In
this research, we used the entire training set to
adapt our model without exploring how much text
data is actually needed to achieve comparable per-
formance. A future study that investigates the im-
pact of varying amounts of text data would be use-
ful to show the potential use case of our method in
low-resource scenarios where text data is limited.
2) Our implementation of the text-only adaptation
method makes use of the length of the audio seg-
ment. The length is used in order to create the zero
vector of audio features shown in Eq. 5. Although
there have been existing studies that predict the
duration of the audio based on the text, we decided
to just make use of the real audio length.

Ethics Statement

In this work, we focus on adapting BERT-CTC
to well studied datasets using text only data from
those datasets. Most of the datasets used for text
only adaptation are public domain datasets. One
concern is our 10K hour dataset used for pre-
training of the base model is randomly sampled,
and this data may not fully represent the all end-
user use cases. We note that this makes our models
susceptible to generating better outputs for certain
use cases/users. While we do not explicitly address
concerns around bias/sensitive content within our
framework to date, we aim to incorporate these
considerations, especially in the pre-training data
and the text domains used for adaptation, as we
move towards real-world scenarios covering a wide
range of end-user use cases.
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