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Abstract

Contextual query rewriting (CQR) is a crucial
component in Conversational AI agents, lever-
aging the contextual information from previous
user-agent conversations to improve the com-
prehension of current user intent. However,
traditional CQR methods often concentrate on
supervised fine-tuning only, neglecting the op-
portunities to learn from user feedback to align
with user preferences. Inspired by recent ad-
vances in learning from human feedback (LHF),
this paper proposes a novel Preference Aligned
Contextual Query Rewriting (PA-CQR) frame-
work to enhance the CQR model’s capability
in generating user preference-aligned rewrites.
This paper also investigates the efficacy of var-
ious state-of-the-art feedback learning algo-
rithms on the CQR task, and proposes a novel
Dynamic Direct Preference Optimization (Dy-
namic DPO) algorithm to better adapt the DPO
algorithm to large-scale CQR training. Experi-
ments on large-scale real-world CQR data set
demonstrate the superiority of the proposed PA-
CQR framework and the Dynamic DPO.

1 Introduction

Conversational AI agents, such as Alexa, Siri, and
Google Assistant, play a crucial role in the daily
lives of individuals. To comprehend multi-turn
spoken dialogues effectively, it is imperative to
address the challenges of referring expressions res-
olution and entity tracking across the conversation,
known as the "contextual carryover" problem (Naik
et al., 2018; Anantha et al., 2020). Specifically, in
a multi-turn conversation, users may omit or ref-
erence entities discussed earlier, causing ambigu-
ity for the AI agent. Contextual query rewriting
(CQR) (Zhou et al., 2023; Liu et al., 2021; Zuo
et al., 2022; Sun et al., 2022), which rewrites the
incomplete/ambiguous user query based on con-
textual information, have been widely utilized to
address the contextual carryover problem.

Recent research have proposed various advanced

Figure 1: Contextual Query Rewrite (CQR) example,
with both user-preferred and non-preferred rewrites.

CQR approaches (Naik et al., 2018; Chen et al.,
2019; Yu et al., 2020). However, these methods
typically only involve the supervised fine-tuning
(SFT) stage, thereby missing some opportunities to
further enhance the model from user-preference
feedback. Figure 1 illustrates a CQR example.
Recently, LHF (learning from human feedback)
(Ouyang et al., 2022; Ziegler et al., 2019; Rafailov
et al., 2023) has shown promising performance
in leading language models to generate human-
preferred content, which has been demonstrated
as a key factor in the success of LLMs (large-
language models) (Ouyang et al., 2022; Bai et al.,
2022). Inspired by RLHF frameworks in (Ouyang
et al., 2022; Bai et al., 2022), this paper proposes a
user Preference Aligned Contextual Query Rewrite
framework, named as PA-CQR. PA-CQR consists
of three stages: 1) the SFT stage fine-tunes a pre-
trained language model (PLM) on the CQR data
(in which the context with imperfect user query is
the input and the ground truth rewrite is the target
output); 2) the SFT model from stage 1 is applied
to conduct inference on provided contexts and the
generated rewrites are then fed into a reward model
to obtain the feedback that indicates users’ pref-
erence; 3) the obtained user-preference feedback
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Figure 2: Overview of the proposed user preference-aligned CQR (PA-CQR) framework, which consists of the SFT,
feedback collection, and feedback learning stages.

is utilized to fine-tune the SFT model through a
feedback learning algorithm. Figure 2 illustrates
the details of the proposed PA-CQR framework.

In the proposed PA-CQR framework, we also
investigate the effectiveness of state-of-the-art feed-
back learning algorithms used in open-ended lan-
guage generation tasks. To the best of our knowl-
edge, this paper is the first to investigate effective
feedback learning algorithms tailored for the CQR
task. Specifically, we have studied the straight-
forward best-of-n feedback learning Expert Itera-
tion (Anthony et al., 2017), the Preference Guided
Feedback Learning inspired by (Lu et al., 2022)
and Contrastive Feedback Learning inspired by
Chain-of-Hindsight (Liu et al., 2023), the popular
reinforcement learning algorithm PPO (Schulman
et al., 2017), and the direct preference optimization
DPO (Rafailov et al., 2023). To relieve the reward
distribution-shift issue arises in the DPO algorithm,
we also proposes a novel Dynamic DPO algorithm
which gradually weaken the reference model’s im-
pact and switch from DPO objective to Maximum
likelihood estimation objective. Extensive exper-
iments on large-scale real-world user-agent CQR
datasets demonstrate the effectiveness of our pro-
posed PA-CQR and the Dynamic DPO.

2 Related Work

Contextual query rewriting (CQR) Contextual
query rewriting (CQR) (Elgohary et al., 2018; Re-
gan et al., 2019) is a crucial aspect in conversa-

tional AI as it involves reformulating the original
query with additional or substitute terms that cap-
ture the true information need of the user based
on the conversational context. Recently, language
model based methods such as (Regan et al., 2019;
Yu et al., 2020; Zuo et al., 2022) have been widely
leveraged to conduct query rewriting by capturing
necessary information from the context. Such tech-
niques have also been successfully deployed to con-
versational AI systems (Rastogi et al., 2019; Zhou
et al., 2023) to improve user experience. However,
these works typically focus on the supervised-fine
tuning stage while ignores the continually improve-
ment procedure to generate better rewrites that can
be aligned with user preference.

Aligning User Preference through Feedback
Learning It has been a vital and challenging task
to align content generated by the language model
with human-preference through feedback learn-
ing. Given the fact that human preference feed-
back can be in arbitrary format and usually in-
trackable in model training, reinforcement learn-
ing (RL) algorithms such as PPO (Schulman et al.,
2017) has widely adopted in training preference-
aligned language models (Ouyang et al., 2022; Bai
et al., 2022). However, reinforcement learning al-
gorithms are often unstable, difficult to train, and
expensive. Therefore, recently a variety of non-RL
alternative feedback learning algorithms have been
developed: Quark (Lu et al., 2022) first quantile
generated content by reward and then re-train the
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language model to generate corresponding content
conditioned on the its reward; Chain-of-Hindsight
(CoH) (Liu et al., 2023) encourages the model to
generate both preferred and non-preferred content
so that learn the key disparity among them, Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) converts the reward maximization problem
to a single stage of a classification training on the
human preference data. In this paper, we have in-
vestigated both RL and non-RL feedback learning
algorithms in the PA-CQR framework.

3 Preference Aligned CQR

In the context of a conversational AI system, we
first introduce the concept of contextual query
rewriting, which is more evident in the case of
a multi-turn dialogue. For instance, in a multi-
turn dialogue "[USER]: Turn on the guest bedroom
light [Agent]: Sure [USER]: One hundred percent
brightness", the user’s entity slot "guest bedroom
light" require carryover to facilitate the generation
of a contextual query rewrite. Therefore, we can
pose this scenario as a specific rewriting task, aim-
ing to generate a contextually rewritten query, such
as "[USER]: Set the guest bedroom light to one
hundred percent brightness".

Despite recent advancements in LLMs, the im-
portance of CQR is still pronounced, particularly
for enhancing conversational AI agents in industrial
scenarios: 1) Implementing LLMs for every user
entails high costs and latency; 2) LLMs may still
make carryover mistakes 3) it’s more straightfor-
ward to achieve customized CQR to serve diverse
users. Besides, the concept of CQR can be adapted
to fit within future LLM scenarios. For example,
when multiple LLM agents manage user/system
interactions, CQR is essential for ensuring context
continuity across the agents. Consequently, CQR
retains a pivotal role in maintaining coherence and
a seamless user experience, even in the LLM era.

In this section, we present the proposed PA-CQR
framework, which consists of three stages: SFT for
CQR, feedback collection, and feedback learning
for CQR. We discuss each of these stages in the
subsequent parts.

3.1 SFT for CQR

A pre-trained language model (PLM) is adopted for
the SFT for CQR. For every training point, the pre-
vious dialogue turns (including both user requests
and agent responses) and the current user request

are flatten into a single sequence and fed input to
the PLM, and the PLM is fine-tuned to generate the
corresponding contextual rewrite.

Formally, the CQR task is cast as a text gen-
eration problem: given a flatten dialogue con-
text sequence 1 c = {c1, ..., cM}, where ci for
i ∈ {1, ...,M} denotes a token in the sequence,
and the corresponding rewrite r = {r1, ..., rN},
the ultimate goal of the rewrite generation prob-
lem is to learn a probability distribution Pθ(r) over
the variable-length text sequence r, where θ is the
parameter of the transformer model. Maximum
likelihood estimation (MLE) objective is adopted
to train the language model, which is defined as:

LMLE
θ (c, r) = − 1

|r|

|r|∑

j=1

logPθ(rj |r<j , c) . (1)

Typically, given finite training examples, i.e.,
T pairs of contextual query and rewrite S =
{qt, ct}Tt=1, the model is trained by minimizing
the empirical finite sample objective loss function
LMLE
θ (S) = 1

T

∑T
t=1 LMLE

θ (ct, rt).

3.2 Feedback Collection
The SFT CQR model is then applied to additional
context to collect feedback. Following recent LHF
work (Ouyang et al., 2022; Lu et al., 2022), con-
trastive feedback are gathered for every specific
context. Specifically, a context is fed into the SFT
CQR model and the N-best outputs are considered
as N rewrite candidates. A reward model, which is
capable of representing user preferences concern-
ing the generated rewrites, is subsequently applied
to every set of <context, query, rewrite candidate>
to obtain user-preference feedback. Thus, this
approach facilitates the collection of contrastive
rewrite candidates (user-preferred rewrite v.s. non-
preferred rewrite) for a specific context.

3.3 Feedback Learning Algorithms for CQR
Reinforcement learning (RL) algorithms (e.g.,
PPO) have been widely used to fine tune the SFT
model with feedback (i.e., RLHF). However, such
reinforcement learning algorithms on large-scale in-
dustrial data usually faces issues such as high com-
plexity, high instability, high sensitivity to hyper-
parameters, and extremely expensive training costs.

1In the given example, we have the flatten dialogue context
as "[USER] Turn on the guest bedroom light [AGENT] Sure
[USER] One hundred percent brightness", where the last turn
"USER] One hundred percent brightness" is the query that
neesds rewrite.
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Recently, alternative feedback learning methods
(Lu et al., 2022; Rafailov et al., 2023; Liu et al.,
2023) for language generation has been proposed
to achieve a similar impact as RLHF with simpler
implementation, better stability and lower cost. In
this paper, we extensively explore four state-of-the-
arts feedback learning algorithms for the proposed
PA-CQR framework.
Learning from Positive Feedback. The most effi-
cient approach for utilizing feedback data is direct
fine-tuning the SFT model on positive feedback.
This paper employs a common method known as
Expert-Iteration (Anthony et al., 2017), specifically
designed to learn from positive feedback. Initially,
the model generates N rewrites given the context,
then the model is subsequently fine-tuned on the
<context, best positive generated rewrite> pair that
holds the highest positive feedback reward score
among the total N pairs.
Preference Guided Feedback Learning. Exclu-
sively learning from positive feedback limits the
model’s awareness of undesirable content, poten-
tially restricting its ability to utilize negative feed-
back in avoiding non-preferred content. A recent
reward conditioning algorithm Quark (Lu et al.,
2022) enforces the model to unlearn the misaligned
generation by fine-tuning the SFT model condi-
tioned on reward quantile. Inspired by Quark, we
apply the similar preference guided feedback learn-
ing method that leverages both preferred and non-
preferred feedback rewrites to fine-tune the model.
Specifically, we first collect pairs of (c, r̂), where c
is the context, and r̂ is the generated rewrite of the
SFT CQR model, assigned with a user preferred
or non preferred feedback using the reward model
(denoted as + and −). Next, an indicator prompt
is added to the context c based on the feedback
of r̂ to create new fine-tuning data for the SFT
CQR model. The learning instance is of the for-
mat ([p, c], r̂), where p is "generate good rewrite:"
when r̂ is + and "generate bad rewrite" when r̂
is −. Formally, the Preference Guided Feedback
Learning (PGFL) objective is

LPGFL
θ (c, r̂) = − 1

|̂r|

|̂r|∑

j=1

logPθ(r̂j |̂r<j , [p, c]).

The model is trained by minimizing the empir-
ical finite sample loss function LPGFL

θ (S) =
1
T

∑T
t=1 LPGFL

θ (ct, r̂t).
Contrastive Generation Feedback Learning. In
PGFL, the preference information is introduced in

Algorithm 1 Dynamic DPO
Input: Initial policy model parameters θr, feed-

back dataset Ŝ = {(ci, r̂+i , r̂−i )}Ti=1

Set: Total iteration Nt, DPO iteration Nd, batch
size b

1: for step n in 1, 2, .., Nt do
2: Sample batch B = {(ci, r̂+i , r̂−i )}bi=1 from

Ŝ
3: LMLE

θ = 1
b

∑b
i=1 LMLE

θ (ci, r̂
+
i )

4: if n <= Nd then
5: LDDPO

θ = 1
b

∑b
i=1 LDDPO

θ (ci, r̂+i , r̂
−
i )

6: Ltotal = LMLE
θ + LDDPO

θ

7: else
8: Ltotal = LMLE

θ

9: end if
10: Update θ using gradient descent on loss

Ltotal

11: end for

the input end. Alternatively, inspired by the work
of Chain of Hindsight (CoH) (Liu et al., 2023) , the
preference can also be introduced in the output end
via a contrastive generation, which learns to gener-
ate both preferred and non-preferred rewrite simul-
taneously. Specifically, the model can be fine-tuned
by taking the specific context as input and gen-
erating both the user-preferred and non-preferred
rewrite pair r̂ = (r̂+, r̂−). This motivation is
to allow the model to recognize the key dispari-
ties between positive and negative patterns through
the generation of comparative forms, therefore to
enhance the model’s capacity of identifying and
differentiating desirable and undesirable patterns.
Formally, the loss of this Contrastive Generation
Feedback Learning (CGFL) algorithm is:

LCGFL
θ (c, r̂) = − 1

|̂r|

|̂r|∑

j=1

logPθ(r̂j |̂r<j , c).

Similarly, the model is trained by minimizing the
empirical finite sample loss function LCGFL

θ (S) =
1
T

∑T
t=1 LCGFL

θ (ct, rt).
DPO and Dynamic DPO. Recently (Rafailov et al.,
2023) proposed a Direct Preference Optimization
(DPO) algorithm that implicitly optimizes the same
objective as existing RLHF. DPO directly opti-
mizes the model by a straightforward contrastive
loss to boosting the reward of preferred generation
and penalizing that of the non-preferred generation.
The DPO loss is
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LDPO
θ (c, r̂+, r̂−) =

− log σ

(
β log

Pθ(r̂
+|c)

Pθr(r̂
+|c) − β log

Pθ(r̂
−|c)

Pθr(r̂
−|c)

)

where σ represents logistic function and β is a
weight hyper-parameter, θr is the reference model
(SFT CQR model in our case). Intuitively, the DPO
loss function implicitly increases the reward of
the positive rewrite r̂+ and decreases the reward
of negative rewrite r̂−, where the reward is ap-
proximated by the likelihood re-weighted by the
reference model θr, i.e., β log Pθ(r̂

+|c)
Pθr (r̂

+|c) .
However, as training progresses, the policy

model gradually diverges from the initial reference
model, and aligning more closely with a distribu-
tion that is consistent with the feedback data. Con-
sequently, the reward approximated from the ref-
erence model may substantially deviate from the
distribution of the current policy model, causing an
impact on the training of the policy model. This is
identified as the reward distribution-shift issue. To
mitigate this problem, we propose a Dynamic DPO
algorithm which adds a decaying factor in the refer-
ence model and interpolates between normal MLE
training and DPO training. The intuition is to grad-
ually weaken the weight of the reference model in
DPO and smoothly transit from the DPO objective
to MLE eventually. The proposed dynamic DPO
(DDPO) loss is define as

LDDPO
θ (c, r̂+, r̂−) =

− log σ

(
β log

Pθ(r̂
+|c)

Pθr(r̂
+|c)ϵn − β log

Pθ(r̂
−|c)

Pθr(r̂
−|c)ϵn

)

where ϵn = min(1, Cn ) is the decaying factor
which decays as iteration steps n increases when
step n is larger than a threshold C. Given a batch of
data B = {(ci, r̂+i , r̂−i )}bi=1, the loss on the batch
is LDDPO

θ (B) =
∑b

i=1 LDDPO
θ (ci, r̂

+
i , r̂

−
i )). Af-

ter a certain iteration steps (i.e., Nd in Algorithm
1 line 4), we switch the training objective of com-
bined DDPO loss and MLE loss ((line 6 in Algo-
rithm 1)) to only MLE loss (line 8 in Algorithm 1).
The detailed algorithm is described in Algorithm 1.

4 Experiments
We conduct experiment on a large-scale real-word
industry CQR to validate the PA-CQR framework
and evaluate the feedback learning methods dis-
cussed in section 3. Note that all data used in this
paper has been de-identified therefore no user in-
formation is remained.

Name # trigger # non-trigger
Real-world Train 1M 1M
Real-world Test 4k 16k

Table 1: CQR training and test set statistics.

4.1 Experiment Setup

Dataset Training data for the CQR task contains
2M de-identified real world user-agent contextual
conversations. Among the 2M data, 1M is the
should-trigger CQR data, i.e., the last user query
in each context has a corresponding ground truth
rewrite. Thus the model needs to take the context
(includes the last user query) as input and predict
the corresponding ground truth rewrite; The re-
maining 1M data are selected from non-triggered
CQR traffic, in which the last user query is either
accurate enough or not be able to rewritten. The
model then needs to take the context as input and
predicts "NULL" as the rewrite output. The CQR
model is trained on both of the should-trigger and
not-triggered CQR data, so that to learn to deter-
mine when should it provide the query rewrite and
generate correct rewrite simultaneously.

For test, a 20k human-annotated dataset on sam-
pled real-world traffic, include both should-trigger
and non-trigger data, is used. Table 1 demonstrates
the statistics of train and test sets.
Evaluation Metrics Three evaluation metrics are
utilized: 1) Rewrite Accuracy: Given the fact that
only high confidence rewrites will be triggered in
practical, the utterance-level precision at a set 20%
trigger rate is used as the rewrite accuracy; 2) En-
tity Omission Rate: The utterance-level precision
can be limited as it requires a strict match. Thus,
the percentage of cases where predicted rewrite
misses a key entity in the ground truth rewrite label
is also examined. The key entities are identified
as the non stop-words entities in the ground truth
rewrite. 3) Trigger F1: The F1 score of the trig-
ger prediction is calculated, which is used to mea-
sure the model’s performance in determining when
should trigger the rewrite given the context.
Model Set-up The FLAN-T5-Large (Chung et al.,
2022) serves as the base PLM for all experiments.
All experiments are executed on eight A100 GPUs.
The epoch number is set as 10 for all experiments.
The learning rates for all methods are set as 3e− 5.
The batch size is set as 32 for DPO/DDPO, 8 for
PPO, and 128 for all other methods.
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Set-up Annotated Test
Method Data-size Rew Acc @ 20% ↑ Entity Omission @ 20% ↓ Trigger F1 ↑

SFT 2M 0.0% 0.0 % 0.0%
PPO (2M) + 400k + 0.9% - 1.06% - 0.24%

Exp-Iteration (2M) + 400k + 2.56% - 8.48% + 1.43%
Preference Guided (2M) + 400k - 22.0% + 55.1% - 4.76%

Contrastive Generation (2M) + 400k - 17.3% - 37.1% -2.97%
DPO (2M) + 400k + 4.51% - 14.1% + 1.18%

Dynamic DPO (2M) + 400k + 6.62% -18.4 % + 0.36%

Table 2: Overall result table of different methods. Relative improvements compared to the SFT model are reported
for each feedback learning algorithm. The SFT model represents fine-tuning Flan-t5-large on the 2M data. The
feedback is collected by applying the SFT model to the 2M data again. For a fair comparison, 400k feedback data
are collected for every setting.

4.2 Experiment Results

To evaluate the performance of different feedback
types and LHF algorithms, following the pipeline
illustrated in Figure 2, the raw FLAN-T5-large
model is first fine-tuned using the 2M training
data to obtain the SFT model. The SFT model
is then utilized to perform inference on the same
2M data points, and the resulting rewrites are pro-
cessed by the reward model, which is trained using
data from human annotation and heuristic rules.
We selected 400k feedback data from the reward re-
sults, in which each context has one user-preferred
rewrite and one non-preferred rewrite. (note: the re-
ward model is only deployed to cases where rewrite
triggers). Then, the SFT model is fine-tuned with
additional feedback data using different methods
described in section 3.3. PPO (Schulman et al.,
2017) is also applied as a RL baseline.

The primary results of the experiment are shown
in Table 2. An initial observation reveals that feed-
back learning techniques such as Expert-Iteration,
DPO, Dynamic DPO outperform both the SFT
model and the PPO method in terms of CQR-
related metrics, thereby verifies the efficacy of the
PA-CQR framework we propose. Moreover, the
Expert-Iteration feedback learning exhibits a sig-
nificant enhancement in rewrite accuracy and entity
omission rate. Expert-Iteration can be perceived as
an approach of seeking the optimal rewrite from an
expansive array of self-generated candidates, thus
facilitating the SFT model’s feedback learning to-
wards improved performance. This result further
demonstrates the necessity of feedback-learning
and the great potential of improving the model by
examining and learning from its own generated
content. However, it is notable that the Preference
Guided and Contrastive Generation methods show

worse performance on the CQR task. These two
methods integrate feedback learning information
via text-format by either modifying the input text
or target text. However, different from general gen-
eration tasks used in (Lu et al., 2022; Liu et al.,
2023), the key disparity between preferred and non-
preferred rewrites in CQR tasks could be subtle
(e.g., "Set light to green" versus "Set bedroom light
to green"). Hence, training the SFT on text-level
feedback could potentially overlook key factors,
leading to model confusion. Lastly, both the DPO
and the proposed Dynamic PPO show promising
results, and the Dynamic DPO showing superior
results in terms of rewrite accuracy and entity omis-
sion metrics. This verifies the effectiveness of our
proposed Dynamic DPO algorithm.

5 Conclusion

This paper introduces the PA-CQR framework,
which is inspired by the recent achievements of hu-
man feedback learning, to continually improve the
industry CQR model to generate better rewrites that
are aligned with user preference. Besides, to miti-
gate the limitations of the DPO algorithm in large-
scale CQR training, the paper also proposes a novel
Dynamic DPO algorithm which gradually weaken
the impact of the reference model in training. Ex-
tensive experiments conducted on real-world user-
agent CQR dataset experiments have demonstrated
the effectiveness of the proposed PA-CQR frame-
work, certain feedback learning algorithms such
as Expert-Iteration, DPO, Dynamic DPO. The re-
search also reveals that feedback learning methods
such as Preference Guided, Contrastive Generatio
exhibit limited performance when applied to the
CQR task , highlighting the potential for further
research and development in this area.
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A Appendix

A.1 Additional Analysis on un-generating
Negative Patterns

To further verify if the feedback learning algo-
rithm is effective in fine-tune the SFT CQR model
in un-learning non-preferred patterns, additional
<context, non-preferred rewrite> pairs are col-
lected. Specifically, the non-preferred rewrites
are obtained from the inference result of the SFT
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model that are labeled as non-preferred by the re-
ward model. Next, each model’s likelihood (repre-
sented as the loss of model(context, non-preferred
rewrite)) of generating the given non-preferred
rewrite for the given context can be calculated to
represent the model’s capability in un-generating
non-preferred patterns.

Table 3 demonstrates the result. It is observed
that the effective feedback learning algorithms such
as Expert-Iteration, PPO, DPO, Dynamic DPO all
have lower likelihood (higher loss) in generating
non-preferred patterns. Besides, methods like PPO,
DPO, Dynamic DPO have a higher performance
than Expert Iteration because they are directly op-
timized using both preferred and non-preferred pat-
terns.

Method Non-preferred Loss
SFT 0.65
PPO 0.87

Expert-Iteration 0.71
Preference Guided 0.72

Contrastive Generation 0.66
DPO 1.13

Dynamic DPO 1.09

Table 3: Comparisons of different methods’ capabilities
in un-generating non-preferred patterns, represented us-
ing each model’s loss value of <context, non-preferred
rewrite>.

A.2 Training Speed

Table 4 illustrates the training speed for every feed-
back learning algorithms. The training speed is rep-
resented as the average number of tokens processed
every second, on 8 A100 GPUs. The numbers show
that the Expert Iteration is the fastest option while
the PPO requires a large training cost.

Method Training Seed (# tokens / s)
SFT 6340
PPO 310

Expert-Iteration 6200
Preference Guided 6170

Contrastive Generation 6250
DPO 2140

Dynamic DPO 1190

Table 4: Training speed for every feedback learning
algorithm.

B Ethical Discussion

This work aims at enhancing the performance of
Contextual Query Rewriting (CQR) for conversa-
tional AI agents through feedback learning. How-
ever, implementing such feedback and correspond-
ing feedback learning algorithms may involve ethi-
cal considerations in privacy and data protection.

For example, the training of the reward model
and CQR model requires real-world user-agent di-
alogues. Therefore, it’s critical to guarantee that
the acquisition and processing of this data are con-
ducted in a manner that user privacy information
is well protected. In this work, all data for training
and testing are from sources where user identifica-
tion and privacy information have been removed.
This procedure ensures that users’ private details
have been omitted and are not input into the models.
Moreover, in the realistic production pipeline, sev-
eral additional safety examinations are employed
to assure that both the training data collection and
output rewriting comply with appropriate content
standards.
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