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Abstract

Key Point Analysis (KPA) is an emerging sum-
marization framework, which extracts the main
points from a collection of opinions, and quan-
tifies their prevalence. It has been successfully
applied to diverse types of data, including ar-
guments, user reviews and survey responses.
Despite the growing academic interest in KPA,
little attention has been given to the practi-
cal challenges of implementing a KPA sys-
tem in production. This work presents a de-
ployed KPA system, which regularly serves
multiple teams in our organization. We discuss
the main challenges we faced while building a
real-world KPA system, as well as the architec-
ture and algorithmic improvements we devel-
oped to address these challenges. Specifically,
we focus on efficient matching of sentences to
key points, incremental processing, scalability
and resiliency. The value of our contributions
is demonstrated in an extensive set of exper-
iments, over five existing and novel datasets.
Finally, we describe several use cases of the
deployed system, which illustrate its practical
value.

1 Introduction

Getting the gist of a large collection of opinions,
such as user reviews and open-ended survey re-
sponses, typically requires significant manual work.
While word clouds (Heimerl et al., 2014) and key
phrases (Hasan and Ng, 2014; Merrouni et al.,
2019) are somewhat helpful in providing a high-
level view of the data, they are often too crude
to fully replace manual analysis. Plain-text sum-
maries, on the other hand (Chu and Liu, 2019;
Bražinskas et al., 2020a,b; Angelidis et al., 2021;
Louis and Maynez, 2022), lack a quantitative di-
mension, as they do not measure the prevalence of
each point in the summary. Applying generative AI
to summarize large datasets may raise additional

∗First two authors equally contributed to this work.

Figure 1: KPA results for the Austin Community Sur-
vey. For each KP, the percentage of responses that are
matched to it is indicated. Examples for matched sen-
tences are shown for the KP Austin needs better public
transportation.

issues, such as faithfulness (Maynez et al., 2020)
and scalability.

Key Point Analysis (KPA) has been recently pro-
posed as a compelling alternative to the above ap-
proaches (Bar-Haim et al., 2020a,b). KPA maps the
input texts to a set of automatically-extracted short
sentences and phrases, termed Key Points (KPs),
which provide a concise plain-text summary of the
data. The prevalence of each KP may be quantified
as the number of its matching sentences. Figure 1
shows an example of KPA results summarizing a
few thousands of responses to a community survey
conducted in the City of Austin.

KPA has gained significant academic interest,
with 17 teams participating in the 2021 KPA shared
task (Friedman et al., 2021). However, little atten-
tion has been given in previous work to practical
aspects of building a real-world KPA system. In
this work, we make a step towards closing this gap,
by describing a deployed KPA system that is being
regularly used by multiple teams in our organiza-
tion (IBM). Specifically, we focus on the following
issues, which we found to be the most critical when
deploying KPA in production:

Efficient Matching. Most of the run time in KPA
is spent on matching sentences to KPs or KP can-
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didates. We propose a method that combines slow,
accurate matching with fast, less accurate matching.
This allows run time reduction by a factor of five,
while achieving comparable accuracy (§4).

Incremental KPA. In many practical scenarios,
KPA needs to be performed periodically, over data
that is being accumulated over time. We introduce
the notion of Incremental Key Point Analysis, and
propose a modification to the KPA algorithm that
enables efficient incremental processing (§5).

Scalability and resiliency. While academic KPA
datasets (Bar-Haim et al., 2020a; Friedman et al.,
2021) include a few hundreds of input texts per
topic, real-world KPA systems should accommo-
date much larger datasets – up to hundreds of thou-
sands of comments. Scaling up the system should
be straightforward by adding more resources. In ad-
dition, the system should serve multiple users in a
responsive fashion, and should be able to overcome
failures, especially when processing large jobs. Fi-
nally, as GPUs are expensive, it is important to
utilize them efficiently. We develop an architecture
that addresses all of these requirements (§6).

The above contributions are assessed in an ex-
tensive set of experiments that measure run time,
accuracy, and the trade-off between the two. We
perform the most comprehensive evaluation of a
KPA system to date, based on a diverse set of five
benchmarks, including both internal and publicly-
available datasets.

Finally, we discuss several use cases of KPA
at IBM, which illustrate its practical value for a
variety of tasks and datasets (§7).

2 KPA Algorithm Overview

Our system is based on the KPA algorithm of Bar-
Haim et al. (2020b), which was the best end-to-end
performer on the 2021 shared task (Friedman et al.,
2021). The input for the algorithm is a collection
of comments, split into sentences. The algorithm
comprises the following steps:

1. Select KP candidates, which are short, high-
quality input sentences.

2. Match the rest of the sentences to the KP candi-
dates, while merging semantically similar can-
didates.

3. Rank the candidates by the number of their
matches, and select the top k candidates as the
final KPs.

4. Return the selected KPs along with the matching
sentences for each KP.

The algorithm employs two supervised Trans-
former models: an argument quality model (Gretz
et al., 2020) for the first step, and a matching
model (Bar-Haim et al., 2020a,b) for the second
step (for both matching the sentences and identify-
ing semantically-similar candidates1).

Following Bar-Haim et al. (2021), we incorpo-
rated two additional models into the KPA system:
First, a stance (sentiment) classification model,
which labels the input sentences as positive, neg-
ative or neutral.2 When this optional step is per-
formed, we subsequently exclude the neutral sen-
tences and run KPA separately on the positive and
negative sentences. This improves both the run
time and the matching accuracy. Second, we devel-
oped an additional KP quality supervised model,
specifically designed to select candidates with de-
sirable properties (have a clear stance, discuss a
single topic, not too general/specific). This classi-
fier is used in conjunction with the argument quality
classifier.

The bottleneck of the KPA algorithm is the
matching step, in which a Transformer-based
matching model is applied to compute the match
score for each (sentence, KP candidate) pair, result-
ing in quadratic complexity. Other models (stance,
quality) are only applied once per sentence, and
therefore have marginal effect on the overall run-
time. Bar-Haim et al. (2021) proposed the follow-
ing modifications to reduce the matching run time
for large datasets: (a) limit the number of KP can-
didates, and (b) select the KPs based on a subset
of sentences; then match the rest of the sentences
only to the selected KPs. Even with these improve-
ments, matching run time remains a major issue
when deploying a KPA system that should serve
many users, and process large datasets.

Thus, a core challenge in developing a real-
world KPA system is improving matching effi-
ciency, without degrading its quality. In the fol-
lowing sections we describe the setup of our experi-
ments, and specifically the data (§3) and the various
matching approaches we experimented with (§4.1),
followed by experimental results (§4.2). Then, we
describe additional solutions we implement for real-

1The latter is performed by applying the match score in
both directions and taking the average.

2Our classifier treats suggestions, which commonly occur
in surveys, as negative feedback.
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world KPA: addressing incremental updates (§5),
and a scalable system architecture (§6).

3 Data

In this section we briefly describe the datasets that
were used to train the matching model, and to as-
sess its quality.

Out of our three training sets and five test sets,
two (ArgKP and ArgKP-21) are existing public
datasets. The remaining six datasets were created
as part of this work, utilizing diverse public and
internal data sources. Each of the datasets includes
correct (positive) and incorrect (negative) examples
of mapping sentences to KPs. The label of each
instance was obtained by consolidating multiple
human annotations. Some statistics on the train
and test sets are given in Table 1.3

Train and Development sets. The matching
model was trained on the following datasets, com-
bined:

• ARGKP: the ARGKP dataset (Bar-Haim et al.,
2020a,b) consists of pro and con arguments for
28 controversial topics4 that were mapped to KPs
composed by a professional debater. The annota-
tors selected the matching KPs for each argument.
The train and dev sets comprise 24 and 4 topics,
respectively. An initial system was trained on the
train set, and its output was utilized for construct-
ing the rest of the datasets, as described below.
The dev set was used for tuning the matching
thresholds, as described in Section 4.

• EMPLOYEE: an internal employee feedback
dataset. The dataset consists of sampled sen-
tences and a manually-revised version of the top
KPs extracted by the system. Similar to ARGKP,
the annotators selected the matching KPs for each
sampled sentence.

• MUNICIPAL: This dataset was generated by run-
ning the system over the open-ended responses to
the 2018 Austin Community Survey5. To ensure
the inclusion of difficult examples, we annotated
(sentence, KP candidate) pairs on which an en-
semble of models disagreed.

3The negative examples in the EMPLOYEE and MUNICI-
PAL train sets were downsampled, to obtain a more balanced
training set.

4A subset of the IBMArgQ-Rank-30kArgs dataset (Gretz
et al., 2020)

5https://data.austintexas.gov/dataset/
Community-Survey/s2py-ceb7

Dataset #Pairs
Total Positive

ARGKP 20,635 4,260
Train EMPLOYEE 1,454 291

MUNICIPAL 2,861 1,001
Dev ARGKP 3,458 738

ARGKP-21 3,923 552
ARGKP-LARGE 9,281 928

Test EMPLOYEE 4,990 154
MUNICIPAL 15,189 356
PRODUCT 3,738 379

Table 1: Statistics on the train, development
and test datasets.

Test sets. The matching model was evaluated on
the following benchmarks:

• ARGKP-21: the test set from the 2021 KPA
shared task (Friedman et al., 2021). This dataset
was constructed following the same methodology
as ARGKP, and includes three topics.

• ARGKP-LARGE: this benchmark maps argu-
ments for ten topics from the Gretz et al. dataset
that are not in ARGKP to KPs automatically ex-
tracted by the system.

• EMPLOYEE: constructed similarly to the train
EMPLOYEE dataset, with data from a different
year.

• PRODUCT: an internal product feedback bench-
mark, generated from responses to Net Promoter
Score (NPS) surveys. It is composed of sampled
sentences and manually-revised versions of the
top KPs extracted by the system.

• MUNICIPAL: generated from the Austin Munici-
pal Survey of 2016-2017, similarly to the PROD-
UCT benchmark.

We release two novel KPA benchamrks, ARGKP-
LARGE and MUNICIPAL, along with this paper.6

4 Efficient Matching

4.1 Models
The design of a matching model is critical for both
the quality and the run time of a KPA system. In
this section we propose several alternatives for im-
plementing such a model, and assess their tradeoffs
empirically. Each of the models described below
was fine-tuned on our training set. The matching
thresholds for the DeBERTa and SBERT models
were tuned over the development set.

6https://research.ibm.com/haifa/dept/vst/
debating_data.shtml
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Cross-encoder (DeBERTa). This is our baseline
model. The original KPA algorithm (Bar-Haim
et al., 2020b) implemented the matching model as
a RoBERTa-large cross-encoder, which receives
as an input a concatenation of the sentence and
the KP/KP candidate. In our experiment we used
DeBERTa-v3-large7 instead, as we found that it
provides better results, with a comparable run time.
Cross-encoders are accurate, as they can model
complex interaction between the texts, but slow,
since inference is required for each pair.

Bi-encoder (SBERT). a much faster alterna-
tive to cross-encoders is a bi-encoder such as
SBERT (Reimers and Gurevych, 2019), a pre-
trained Transformer model that was fine tuned us-
ing a Siamese network architecture to derive se-
mantically meaningful sentence embeddings. The
semantic similarity between two texts can be com-
puted as the cosine-similarity between their embed-
dings. This reduces model inference complexity
from quadratic to linear, as each sentence is only
encoded once. However, this comes at the expense
of a more simplistic modelling of the interaction be-
tween the texts. Furthermore, this model is symmet-
ric, while the relation between a sentence and a key
point is directional (the KP should summarize the
sentence). Therefore, we might expect bi-encoders
to be less accurate than cross-encoders. Here, we
use the all-mpnet-base-v2 model, which is a pre-
trained MPNet model (Song et al., 2020) that was
fine-tuned over 1.2B sentence pairs8.

Combined. To get the best of both worlds, we
propose to combine the two methods and use the
fast bi-encoder to filter the inputs fed into the slow
cross-encoder. First, the matching scores of the
SBERT model are computed. Then, only the top
matching KPs for each sentence are scored by the
slow DeBERTa matcher, while the rest are assigned
a zero score. We selected the top 10% key points
for each sentence9, but no less than two. A sim-
ilar “retrieve and rerank” approach10 that applies
a pipeline of bi- and cross-encoders has been pro-
posed for zero-shot entity linking (Wu et al., 2020).

7https://huggingface.co/microsoft/
deberta-v3-large

8https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

9out of the key points with the same topic and stance.
10https://www.sbert.net/examples/applications/

retrieve_rerank/README.html

Generative LLM (Flan-T5-XL). Following the
recent success of generative models, we also ex-
perimented with Flan-T5-XL (Chung et al., 2022;
Longpre et al., 2023) for matching sentences to
KPs. This model was tuned for the matching task
with QLora (Dettmers et al., 2023), for one epoch,
since performance on the development set has not
improved beyond that point. The prompt used in
this experiment is described in the Appendix.

4.2 Experiments

We first compare the quality of the different models
(measured as a micro-F1 score over the pairs in
each test set), as well as the mean number of pair-
wise inferences performed per sentence (Table 2).

While the fast SBERT model alone performs
poorly, the Combined model results are compara-
ble to or better than the baseline DeBERTa results
for 4 of the 5 benchmarks (except for PRODUCT

where it’s slightly lower), with far fewer pairwise
inferences per sentence.

The fine-tuned Flan-T5-XL model performance
is comparable to the DeBERTa model on four out
of the five test sets (except PRODUCT) while being
nearly 15 times slower11, so overall we did not find
it beneficial for our system.

Having established the quality of the Combined
model, we next test its impact on the run time of
the full KPA system12. Table 3 presents the end-to-
end run time of KPA over subsets of different sizes
from an internal large-scale employee survey, for
both the DeBERTa and the Combined models. The
Combined model becomes more beneficial as the
input size increases, approaching a five-fold run
time reduction for 100,000 comments.

Based on the above experimental results, we
selected the Combined matching model for our
deployed KPA system, and it is used in the rest
of the experiments, to be described in the next
sections.

5 Incremental KPA

Previous work applied KPA only to static datasets.
In real-world scenarios, however, data is often accu-
mulated over time, and it is required to rerun KPA
periodically, over all the data collected so far. Sup-
pose that we have already run KPA over customer
feedback collected in January, and now we obtain

11Measured on a single A100 GPU.
12Run time experiments were conducted over ten K80

GPUs, in a dedicated environment.
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Benchmark Model F1
#Pairwise
inferences/
sentence

SBERT 0.55 0
ARGKP- DeBERTa 0.65 6.62
LARGE Combined 0.72 2

Flan-T5-XL 0.67 6.62

ARGKP-21

SBERT 0.54 0
DeBERTa 0.70 5.43
Combined 0.75 2
Flan-T5-XL 0.73 5.43

EMPLOYEE

SBERT 0.32 0
DeBERTa 0.48 26.68
Combined 0.49 3.49
Flan-T5-XL 0.47 26.68

PRODUCT

SBERT 0.33 0
DeBERTa 0.62 9.92
Combined 0.59 2
Flan-T5-XL 0.72 9.92

MUNICIPAL

SBERT 0.47 0
DeBERTa 0.61 38.36
Combined 0.60 3.8
Flan-T5-XL 0.57 38.36

Table 2: Micro F1 score and mean number of pairwise
inferences performed per sentence for each matching
model and test set.

#Comments Run time
DeBERTa

Run time
Combined Ratio

1,000 7.8 3.7 0.47
5,000 44.2 11.2 0.25
10,000 91.4 21.5 0.24
50,000 515.7 112.8 0.22
100,000 1308.5 270.1 0.21

Table 3: Run time (mins.) of the full KPA system
over subsets of different sizes from an internal
large-scale employee survey.

additional data from February. We may want to run
KPA over the whole period (January+February),
or compare the differences between the January
and February KPA results. This scenario raises
several issues. First, rerunning KPA from scratch
on the entire data is inefficient, since it does not
leverage computations from previous runs. This
can be partially addressed by caching of match
scores for previously-inferred pairs. However, run-
ning KPA over the unified dataset may surface KP
candidates (and consequently, KPs) that are para-
phrases or near-paraphrases of the KPs found for
January. Pairs that include these KPs/candidates
may not be in the cache, increasing the computa-
tion time. Moreover, it would be difficult to align
the January+February KPA results with the January
results, as they may contain semantically similar
but different key points (the same problem would
occur when running only on the February data).

To allow consistent and efficient incremental
analysis, we modified the KPA algorithm to reuse
KPs from previous runs and incrementally add new
ones. In our example, we run KPA over the Jan-
uary+February data while using the final key points
from January as key point candidates. The sys-
tem would only add new candidates that are suf-
ficiently different from the previous ones (accord-
ing to the matching threshold). New KPs in the
summary would represent emerging points that are
over-represented in the new data. Since KPA out-
put includes the mapping of each sentence to its
corresponding KPs, KPA results can be derived for
any subset of the sentences. Thus, given the results
for January+February, we can easily extract the
results for either January or February. Moreover,
since both subsets are mapped to the same set of
key points, we can also compare the distribution
of the key points in the two sets, and even apply
statistical significance tests to the differences in
their relative frequencies.

KP reuse also leads to substantial run time sav-
ing: since the matching scores for the old data are
cached, old sentences need to be matched only with
the new candidates, whose number is significantly
reduced. Moreover, key point selection is faster,
since the list of candidates from the old data is
already reduced to the final list of key points.

Experimental Results. To test the impact of
caching and KPA reuse on run time, we ran KPA
incrementally on 50,000 comments from the inter-
nal employee engagement survey, adding 10,000
comments at each stage.

The results are summarized in Table 4, demon-
strating the contribution of both caching and KP
reuse. While in the baseline system, processing
50K comments is about 5 times slower than the
first 10K batch, this ratio is reduced to 1.4 in our
improved incremental implementation.

To ensure to quality of the incremental results,
we compared the top 50 key points generated with
and without KP reuse over the entire dataset. While
only 5 of the key points overlapped, we found that
80% of the key points output by the full run were
covered by the key points of the incremental run,
and 92% were at least partially matched, that is,
almost all of the insights uncovered by the full run,
were also found by the incremental run.
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Comments No
Caching Caching Caching

+KP Reuse
10,000 21.5 21.7 22.8
20,000 44.7 33.8 17.4
30,000 66.7 43.8 20.8
40,000 90.4 54.9 24.3
50,000 112.8 58.6 29.3

Table 4: Run time (mins.) for incremental KPA

Figure 2: KPA System Architecture

6 A Scalable Architecture for KPA

The previous two sections focused on improving
the matching component in terms of efficiency and
incremental processing. We next turn to describe
our overall system architecture, and how it ad-
dresses the requirements from a real-world KPA
system: scalability, resiliency, efficient GPU uti-
lization, and fair, responsive multi-user service.

The KPA system architecture is depicted in Fig-
ure 2. The system consists of the following compo-
nents: a Python client allows the users to submit
KPA tasks to the system, and retrieve the results,
either synchronously or asynchronously.

The Backend Service is the primary service that
implements the KPA algorithm. Uploaded com-
ments undergo preprocessing, which includes split-
ting the comments into sentences, and comput-
ing sentence-level scores (stance, argument quality
and key point quality). Then, an analysis task is
launched over the preprocessed sentences. The
analysis stage executes the core KPA algorithm,
including the computation of pairwise matching
scores.

To facilitate incremental processing, users can
define multiple domains, to which comments are
uploaded. A domain may contain multiple sets
of comments, accumulated over time, and each
analysis task is applied to all the comments in the
specified domain.

The backend service initiates inference by each
of the system’s models: stance, argument quality
and KP quality for preprocessing; SBERT embed-

ding and DeBERTa pairwise matching for the anal-
ysis tasks. The backend service breaks the data to
be inferred into batches, and submits batch infer-
ence requests via a message queue. To optimize
GPU usage and equitably distribute resources be-
tween tasks, each task is capped at 20 pending
inference requests.

The backend selects the next task for execution
based its size and user priority. Tasks are classified
into small, medium or large, and the system limits
the number of active tasks of each type13. Users’
priority is determined by their current and recent
activity, as well as their predefined priority level.
In other words, users with a superior predefined
level, lower recent activity, and no active tasks are
prioritized.

Inference requests are handled in parallel by mul-
tiple instances of the Multi Models Service - one
per each available GPU. Each instance can serve
requests for any of the models, swapping models in
the GPU memory as required. The number of con-
secutive inferences of the active model is limited,
to ensure that none of the other models is starved.

The processed data, including intermediate and
final results, is stored persistently in a database.
Specifically, we use MongoDB as a cloud service.
This adaptable, secure, and robust service allows
swift resource expansion - memory, CPU, and net-
work - as needed. In addition, a watchdog mecha-
nism monitors comment-batch processing and anal-
ysis task execution. If a task stalls beyond a prede-
fined duration, it is restarted.

The above architecture has several important
benefits. Breaking tasks into batches and exe-
cuting them parallelly enables fast processing of
large tasks, as well as serving multiple users. The
backend task scheduling mechanism facilitates re-
sponsiveness and fairness among users. The multi-
models services ensure that the GPUs are fully uti-
lized, by dynamically adapting the mixture of mod-
els being served to the incoming inference requests.
The system’s throughput can be easily scaled up
linearly by adding more GPUs. The database pro-
vides both a caching mechanism, saving redundant
computations, and failure recovery by recording
the system’s state. Using a message queue further
enhances the system’s scalability and resilience.
It decouples the producers and consumers of in-
ference requests, ensures asynchronous communi-
cation, buffers during high loads or failures, and

13Up to 1 large, 2 medium and 10 small tasks.
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Figure 3: KPA run time improvement when adding
GPUs (10,000 comments).

mitigates the impact of slower multi-models ser-
vices. Finally, the watchdog mechanism ensures
that tasks are progressing and not getting stuck.

Scalability Evaluation. We tested empirically
the impact of the number of GPUs on the run time
for analyzing 10,000 comments (split into 16,220
sentences). The results, shown in Figure 3, demon-
strate that the expected inverse proportional rela-
tion between the number of GPUs and the run time
does hold in practice in our implemented system.

7 Use Cases

The deployed KPA system serves multiple teams
across IBM. Below we describe several use cases,
in which KPA has been applied to extract fine-
grained insights from large textual datasets, saving
the time and cost of manual analysis.

Feedback on internal applications. IBM uses
a common tool to collect internal user feedback
and verbatim comments. Each product owner or
application team has to dedicate time and efforts
to manually read, categorize user comments and
feedback, summarize and identify actions to be
taken to address them. The My Cognitive Adviser
(MCA) tool was created as a common solution to
be used by owners of internal applications. Using
KPA services, it analyzes and displays application-
specific feedback summarized by key points, sen-
timent, associated sentence count and trends over
time. Automated analysis is provided monthly or
quarterly, depending on the volume of feedback.
It allows users to understand the top pain points
for their applications, without having to manually
review, categorize and label each user feedback.

Productivity improvement ideas. IBM Finance
and Operations (F&O) launched an organization-
wide initiative to improve productivity within the

company, by organizing and executing 900+ work-
shops resulting in 7500+ ideas from employees
(posted in Slack and Mural boards). KPA was used
to analyze and summarize these ideas to identify
the top 15 key areas for productivity improvements
within the company. This analysis gave the F&O
executives a very quick synopsis of the workshops,
enabling them to hear the voice of their employees,
without having to spend weeks manually reviewing
and categorizing the ideas.

Employee engagement survey. KPA has also
been applied to analyze the annual IBM employee
engagement survey. Over 300K employees wrote
more than 550K sentences in total. These sentences
were automatically classified into positive and neg-
ative, and KPA was applied to each set separately to
identify positive and negative key points. We also
compared year-to-year differences in key points
distribution, as well as differences between sub-
organizations, and between detractors and advoca-
tors. KPA results enabled the HR survey research
team to extract actionable and valuable insights
from this very large dataset, with significantly less
effort.

8 Discussion and Conclusion

KPA is a promising approach for large-scale quanti-
tative summarization of opinions, with many practi-
cal applications. Yet, moving from academic exper-
imentation to a real-world implementation poses
significant research and engineering challenges.

We described a deployed KPA system, for which
we presented a comprehensive architecture, as well
as algorithmic improvements that enable efficient
matching and incremental processing. Our contri-
butions have been evaluated in terms of both quality
and run time over the most comprehensive set of
KPA benchmarks to date, including both internal
and public datasets.

It is important to note the compound effect of
combining the above individual improvements. For
example, as shown in Table 3, the baseline run
time for 50K comments is 515.7min. Using our
Combined model, this is reduced to 112.8min, and
in an incremental setting, it is further reduced to
29.3min, using caching and KP reuse (Table 4).
Additional speed-up can be obtained by adding
more GPUs, as shown in Figure 3.

In future work, we plan to further explore the
use of generative LLMs for KPA, aiming to achieve
both hiqh-quality results and feasible run time.
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Ethical Considerations

The datasets used in this work include anonymous
feedback and do not contain personal details. All in-
ternal datasets were provided by the respective data
owners in our organization, and were processed
on a strict need-to-know basis. Data has been en-
crypted both in transit and at rest, for increased
security and privacy.
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9 Appendix

A Training Details

DeBERTa. Fine tuning was performed as de-
scribed in (Bar-Haim et al., 2020b), except using
a deberta-v3-large model instead of roberta-large,
and using 6 trainig epochs.

SBERT. The all-mpnet-base-v2 model was fine-
tuned for 3 epochs with learning rate 5e-6. We
used mean pooling over each sentence embedding,
cosine similarity over the vectors representing each
pair and contrastive loss. The sequence length was
limited to 256 tokens, and the train batch size was
32.

Flan-T5-XL. When tuning with QLora, the pa-
rameters were set to r = 8, α = 32 and dropout
0.05. LoRA update matrices were only applied to
the query and value modules within the transformer.
Bias parameters were not trained. The learning rate
was 1e− 05, and the optimizer was paged Adamw
with 32 bits.

B Prompts

The following prompt was considered for the
experiment with the Flan-T5-XL model (§4):

{{opening_sentence}}
A key point matches a sentence if it either:

- Summarizes or repeats a part of the sentence
or expresses the same main point.
- Is directly supported by a point made in
the sentence. The sentence can support
the key point by an example, elaboration,
discussing an aspect of the point made in the
key point, suggesting a solution to a problem
mentioned in the key point, etc.
You will be presented with a key point and
a sentence and asked to determine if the key
point matches the sentence. The options are:
- Yes
- No
- Faulty sentence (not a valid sentence or
unclear)
Here is the sentence: "{{sentence_text}}"
And here is the key point: "{{key_point}}"
Does the sentence match the key point?

The placeholder {{opening_sentence}} was
replaced with a sentence describing the dataset,
for example, "I am going to show you sentences
which are replies to a community survey about the
city of Austin." with the MUNICIPAL dataset. The
{{sentence_text}} and {{key_point}} placeholders
were replaced with the sentence and key point
texts, respectively.

491

https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519

