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Abstract

Product attribute extraction is an emerging
field in information extraction and e-commerce,
with applications including knowledge base
construction, product recommendation, and en-
hancing customer experiences. In this work,
we explore the use of generative models for
product attribute extraction. We analyze their
utility with hard and soft prompting methods,
and demonstrate their ability to generate im-
plicit attribute values, which state-of-the-art
sequence tagging models are unable to extract.
We perform a wide range of experiments on
Amazon and MAVE product attribute datasets,
and are the first to present results on multi-
lingual attribute extraction. Our results show
that generative models can outperform state-
of-the-art tagging models for explicit product
attribute extraction while having greater data
efficiency, that they have the unique ability to
perform implicit attribute extraction, and that
in certain settings large language models can
perform competitively with finetuned models
with as little as two in-context examples.

1 Introduction

E-commerce has exploded in recent years, with
large online retailers offering billions of products
and shipping millions of packages per day. With
such a large number of offerings, having a complete
set of each product’s properties is imperative for
effective retrieval (search), product analytics, and
recommendations (Zalmout et al., 2021). However,
the sheer number of offerings makes building prod-
uct profiles with this metadata a challenge—filling
in large sets of product properties is arduous for
sellers, and new fields for existing products must
be filled retroactively. Clearly, automated methods
are necessary for scalable extraction.

Product attribute extraction is designed to ad-
dress this challenge. In this task, a product profile
with text and possibly visual data is provided to

∗ Work done during an internship at Amazon.

Figure 1: An example product listing with extracted
product attributes highlighted. The attribute extraction
models take as input the product title and product de-
scription (not pictured), then attempt to produce values
for a specified attribute based on the product text.

a model, along with a pre-defined attribute whose
value is to be determined. These attributes repre-
sent key product characteristics, such as the size
of a shirt or the scent of a candle. The goal is
for the model to determine the set of attribute val-
ues from the product profile, or to indicate that no
value can be found if such information cannot be
inferred (Xu et al., 2019; Yan et al., 2021; Wang
et al., 2020a; Yang et al., 2021). Extracted prod-
uct attributes can be used for a variety of purposes,
including analyzing data to better understand the
product offerings, recommending relevant products
for customers, and providing easy access to distin-
guishing product information.

Existing efforts frame product attribute extrac-
tion as sequence labeling (Zheng et al., 2018; Xu
et al., 2019; Yan et al., 2021; Yang et al., 2021) or
extractive question answering tasks (Wang et al.,
2020a; Ding et al., 2022). While these approaches
yield high precision (the answers are necessarily
grounded in the text), they cannot discover attribute
values that are implied but not explicitly mentioned
in the text. For example, a table described as hav-
ing a “wavy grain” can be inferred to be made out
of wood. However, unless the word wood appears
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in the text, sequence labeling and extractive ques-
tion answering architectures are unable to extract
this value for the material attribute.

Generative models do not suffer from this limita-
tion. Such models are not constrained to pointing
to tokens in the input text, and instead produce free-
form text by generating tokens autoregressively.
This enables generative models to conceivably gen-
erate any value, encountered in the input or not. At
the same time, this freedom can result in hallucina-
tions, where language models produce inaccurate
or imagined values (Maynez et al., 2020; Zhou
et al., 2021; Li et al., 2021; Ji et al., 2022).

Motivated by this flexibility, we aim to address
three research questions: 1. How do generative
models compare to state of the art sequence-tagging
models on product attribute extraction? 2. To what
extent are generative models able to produce im-
plicit attribute values? 3. How does the input
prompt affect extraction performance?

In this work, we apply generative language mod-
els to product attribute extraction. We define the
task of implicit attribute extraction, and show that
generative models can extract implicit attributes
while outperforming or achieving comparable per-
formance to state-of-the-art sequence labeling ar-
chitectures on the MAVE (Yang et al., 2021) dataset
and monolingual and multilingual Amazon data.
We show that generative models are especially
effective in low-resource scenarios, and demon-
strate that in certain settings large language models
(LLMs) can perform as well as finetuned models
with as few as two in-context examples.

2 Related Work

The task of product attribute extraction has be-
come increasingly relevant with the rise of e-
commerce (Zheng et al., 2018; Yang et al., 2021;
Xu et al., 2019; Yan et al., 2021). Performing
closed-vocabulary attribute extraction, where prod-
uct attribute values are selected from a fixed set, can
be realized as a classification problem (Ghani et al.,
2006). However, such methods are less scalable as
the number of products increases, and newly intro-
duced products can contain never-before-seen at-
tribute values. To address this, (Zheng et al., 2018)
pioneered the task of open-vocabulary attribute ex-
traction, where attribute values are not restricted
to a fixed set. (Zheng et al., 2018) achieves this
by using a sequence tagging architecture to mark
tokens that are values for a given attribute.

Since (Zheng et al., 2018), state-of-the-art mod-
els have followed extractive paradigms such as se-
quence tagging or extractive question answering.
(Xu et al., 2019) scales up the OpenTag model of
(Zheng et al., 2018) by training a single model to
handle all attributes, instead of training one model
per attribute. (Wang et al., 2020a) improves upon
the architecture of (Xu et al., 2019) and frames the
attribute extraction problem as extractive question
answering. (Yan et al., 2021) returns to sequence
tagging, but uses hypernetworks and a mixture of
experts to personalize model parameters for each
attribute without needing to train a separate net-
work for each. Finally, (Yang et al., 2021) intro-
duces the MAVE dataset and the MAVEQA model,
which uses the ETC (Ainslie et al., 2020) long-
document model to handle large product profiles in
a sequence-tagging paradigm.

Three prior approaches have applied generative
models to product attribute extraction. (Roy et al.,
2021) formulates the extraction problem as text-
infilling and generation tasks, generating attribute
values from the product title. (Roy et al., 2022)
generates attributes present in the text and their cor-
responding values, instead of using the attribute as
as query. (Lin et al., 2021) performs multimodal
attribute extraction with image and textual inputs.
Our work differs from those prior in that we dis-
tinguish between implicit and explicit attribute ex-
traction and consider generative models’ ability
to produce implicit values, we evaluate generative
models on multilingual data, we provide results for
large language models, and we explore the impor-
tance of different prompt setups.

3 Method

3.1 Problem Formalization

The product attribute extraction problem may be
formalized as follows: given product text t and an
attribute to extract a, the goal is to produce a set of
strings {s1, . . . , sn} which indicate the product’s
attribute values for a based on the text t. These val-
ues may be surface mentions—that is, substrings
of t. For example, given product text for a deco-
rated Christmas tree including the profile’s title and
description, and the attribute color to extract, any
mentions of colors in the product text, e.g. “red”
and “gold”, should be extracted. Such mentions
are called explicit attribute values, as they occur
directly in the text. However, attribute values may
not be explicitly mentioned: for example, the tree
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Figure 2: The hard and soft prompting architectures. The models receive the product text along with a prompt
detailing the attribute to extract and the product type (category). Blue denotes the input text, and yellow indicates
the hard prompt or dynamically generated soft-prompt embeddings. Note that generative models can produce the
value green for the color attribute, despite the word green not occurring in the product text.

may be decorated in red and gold, but the tree itself
is green. A model should ideally identify green as a
value for the attribute color, regardless of whether
the word green appears in the product text. We
call such values implicit attribute values as they are
implied but not explicitly mentioned by the text,
and this task implicit attribute value extraction.

3.2 Generative Framework
Our framework for product attribute extraction uses
a generative language model which takes as input
the product text, product type (category), and the
attribute to extract. The model predicts the attribute
values from the input by autoregressively generat-
ing text. We specify the product type and attribute
to extract by in-filling a template, then passing this
text in with the product text.

Product text may have multiple distinct values
to extract. To represent these values, we join them
with the word “or”. So a product with attribute
values A and B would have the generation target
“A or B”. The generated text is post-processed to
extract the attribute values. During training, the
values are ordered as they occur in the product text
for consistency and training stability.

3.3 Prompting
One advantage of generative models is their abil-
ity to receive natural language (hard) or soft (em-
bedding) prompts that can better elicit language
model’s parametric knowledge than unstructured
inputs. Tuning such natural language or soft
prompts with a frozen language model has been
shown to generalize well to few-shot tasks and

rival full fine-tuning (Liu et al., 2021; Li and
Liang, 2021; Lester et al., 2021; Tu et al., 2022).
Due to prompts’ potential importance, we explore
two different prompt setups for our medium-sized
models—a term we use to refer to any model not
considered a “large language model” (LLM).

As product attribute extraction is a task signifi-
cantly different from language models’ pretrain-
ing objectives, prompting frozen medium-sized
language models does not produce viable results.
Therefore, we finetune the medium-sized models
on the product data and leave the LLMs frozen,
using prompts for both to indicate the product type
and the attribute to be extracted. For the medium-
sized models, we experiment with hard and soft–
prompted architectures.

3.3.1 Hard Prompt

For hard prompts, we provide the model with man-
ually defined natural language templates which are
in-filled with the product type and attribute informa-
tion (Figure 2, left). Hard prompts for the medium-
sized language models have a <mask> token which
represents the attribute value(s) to be extracted.
The intent is for the prompt to resemble the lan-
guage model’s pretraining objective—having the
model denoise the masked text—in order to per-
form our desired task.

As the large language models are frozen, we
provide them with a task description and two in-
context examples (Brown et al., 2020) of the at-
tribute to be extracted (Section A.4).
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3.3.2 Soft Prompts
Typical soft prompting approaches prepend a se-
quence of learned embeddings to the input text
which are tuned in place of the entire model (Liu
et al., 2021; Gao et al., 2021; Li and Liang, 2021;
Lester et al., 2021). As mentioned previously, we
tune the medium-sized language model parameters,
but we also maintain a separate prompter module
(Figure 2, right) which generates prefix embed-
dings that are conditioned on the attribute and prod-
uct type (Liu et al., 2021; Levine et al., 2022). We
choose BERT (Devlin et al., 2019) as our prompter
network and freeze all but its top two layers.

4 Experiments

In this section we present our experiments on prod-
uct attribute extraction with generative models. We
start by comparing generative models to sequence-
tagging architectures on implicit and explicit at-
tribute extraction. Next, we demonstrate that gen-
erative frameworks continue to perform well on
multilingual attribute extraction. Finally, we scale
up the number of attributes with explicit attribute
extraction on the MAVE dataset.

All models are evaluated using precision and
recall via set-wise comparison. Precision is the
likelihood that a predicted attribute value extraction
is in the set of ground truth values, and recall is
the likelihood that a ground-truth attribute value is
predicted by the model. Models may tag no values
or output unknown to indicate no values are present.
Additional details can be found in Section A.1.

For all experiments, we use the 7B parameter
versions of the Llama (Touvron et al., 2023) and
conversation-tuned Vicuna (Chiang et al., 2023)
large language models. We provide these models
with a task description and two in-context exam-
ples, followed by the product profile to extract from.
This saturates the models’ context windows of 2048
tokens. Training details for the finetuned models
can be found in Section A.3.

4.1 Monolingual Attribute Extraction

To determine the efficacy of generative models for
implicit attribute extraction, we evaluate sequence-
tagging and generative models on an in-the-wild
Amazon product dataset. Unlike the MAVE dataset
which is constructed primarily by an ensemble of
sequence-tagging models, the attribute values in
this English Amazon dataset are filled by sellers
and do not need to occur in the product text. We

choose SUOpenTag and AdaTag (Xu et al., 2019;
Yan et al., 2021) as our tagging models. For gener-
ative models, we evaluate the finetuned hard- and
soft-prompted BART architectures, along with the
hard-prompted frozen LLMs. Dataset statistics can
be found in Appendix Table 5.

4.1.1 Explicit Attribute Extraction
Table 1 shows the results. As sequence tagging
models can only produce values found in the text,
we separately evaluate all models on explicit val-
ues. Even in this setting, generative models are
competitive with the tagging baselines. Surpris-
ingly, the soft-prompted model achieves signifi-
cantly higher precision than the tagging models, de-
spite tagging models receiving negative examples
from non-tagged tokens during training. Individual
examples show that the soft-prompted model was
likely to ground its answers in the text, resulting
in its higher precision on explicit examples than
its hard-prompted counterpart. AdaTag, the better
performing tagging model, made most of its errors
tagging words which were reasonable attribute val-
ues, but which were incorrect in the context of the
attribute or product. For example, AdaTag tagged
coffee as the scent for a clove conditioner, when
coffee was used for coloring instead of for its scent
(see Figure 3 for additional such examples). This
suggests that generative models have a better con-
textual understanding of the attributes, as they are
less likely to tag values which are reasonable only
in isolation.

4.1.2 Implicit Attribute Extraction
Considering performance on both implicit and ex-
plicit examples, we see that the tagging models’
recall drops precipitously as they are unable to pre-
dict implicit values. The hard-prompted model
does not ground its extractions as often as the
soft-prompted model, and so gets a larger num-
ber of implicit values correct. However, the soft-
prompted model is also capable of generating im-
plicit values—manual inspection of a random sam-
ple to account for synonyms shows that the soft-
prompted model achieves .29 precision for these
implicit values. See Figure 3 for qualitative exam-
ples on implicit attribute extraction.

4.2 Multilingual Attribute Extraction

To further analyze the effectiveness of generative
models, we train and evaluate multilingual gener-
ative models on an in-house multilingual dataset
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Explicit Implicit + Explicit

Precision Recall F1 Precision Recall F1

AdaTag .5145 .4226 .4640 .3978 .3497 .3722
SUOpenTag (BERT) .4312 .3827 .4055 .4005 .3219 .3569
BART (Hard Prompt) .4643 .3903 .4241 .4343 .3570 .3919
BART (Soft Prompt) .7131 .4195 .5282 .3982 .3862 .3921

Llama∗ (Hard Prompt) .5484 .3205 .4046 .2996 .3447 .3206
Vicuna∗ (Hard Prompt) .4973 .2326 .3170 .3520 .2065 .2603

Table 1: Results on the English Amazon dataset, evaluated on examples with only explicit attribute mentions and on
those with both implicit and explicit mentions. ∗ indicates the model was frozen.

en_US fr_FR de_DE

Precision Recall Precision Recall Precision Recall

SUOpenTag (mBERT) .4244 .3184 .5158 .2050 .3678 .2145
SUOpenTag (XLM-base) .4323 .3104 .5193 .1936 .3761 .2126
SUOpenTag (XLM-large) .4705† .3050 .5633† .1942 .3982 .2081
mT5-small (Hard Prompt) .4167 .3145 .4866 .1781 .3810 .2650
mBART-50 (Hard Prompt) .3701 .3279† .4084 .2062† .3533 .2839†

Llama∗ (Hard Prompt) .2315 .2580 .2386 .1142 .1604 .1623
Vicuna∗ (Hard Prompt) .2936 .1239 .1094 .0371 .1514 .0652

mT5-small (Translated Prompt) .3900 .2450 .5073 .1569 .4219† .2393
mBART-50 (Translated Prompt) .3445 .2926 .3883 .1923 .3408 .2657

Llama∗ (Translated Prompt) .2435 .2535 .2186 .0872 .2068 .1575
Vicuna∗ (Translated Prompt) .2931 .1242 .0923 .0455 .1424 .0525

Table 2: Results on the Multilingual Amazon dataset. The top set of models receive English prompts, regardless of
the product text’s language. The bottom set translates the prompt into the product text’s language. Bold indicates the
best scores in the upper set of rows, and † indicates the best scores across all rows. ∗ indicates the model was frozen.

containing English, French, and German examples,
with the number of training examples decreasing in
that order (Appendix Table 6). We train mBART-
50 and mT5-small (Tang et al., 2020; Xue et al.,
2020) with hard prompts as our generative models,
and use SUOpenTag (Xu et al., 2019) with mBERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2019) as our sequence-tagging baselines (AdaTag
is based on Glove (Pennington et al., 2014) and is
English-only). The Llama and Vicuna LLMs are
prompted as before.

We hypothesize that as the models were pre-
trained with single-language instances, using
single-language inputs better matches their pre-
training objectives. To determine whether code-
switching affects performance, we use prompts
translated into the product text’s language (prompts
are in English by default), training variants of the
mBART-50 and mT5-small models on these transla-
tions and providing the LLMs with these prompts.

The results are shown in Table 2. Surpris-
ingly, the single language–input models (Translated
Prompt) perform slightly worse than those with
the code-switched inputs, and the LLMs perform
comparably. We speculate that the medium-sized
models perform worse as they saw more English
data during pretraining, and therefore perform bet-
ter with English inputs. The LLMs’ performance is
limited most by the number of in-context examples,
so the prompt language makes little difference.

The generative models achieve significantly
higher recall on German, the lowest resource lan-
guage, than the tagging models. These results are
consistent with generative models’ better perfor-
mance in Section 4.1—they appear to have a better
understanding of the attributes and so require fewer
training samples.
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Figure 3: Examples from the English Amazon dataset with correct and incorrect predictions. 1. BART learns
that nutritional supplements are likely to be powders, and this example fits that prototype, despite “powder” being
implicit. 2. The label “metal” is unmentioned, but can be inferred from the bolded text. 3. BART is unable to infer
that the product is a liquid from the “8 fl. oz” measurement. 4. AdaTag is able to extract the explicitly mentioned
scent. 5, 6. The attribute values are implicit, but AdaTag still incorrectly outputs attribute values for secondary
objects (see Section 4.1.1).

Low Resource Medium Resource High Resource All

Precision Recall Precision Recall Precision Recall Precision Recall

AdaTag .3910 .8815 .6491 .8045 .8341 .9410 .5919 .8627
SUOpenTag (BERT) .3369 .5188 .3264 .6023 .4652 .7579 .3602 .6159
BART (Hard Prompt) .8454 .7964 .9040 .8190 .9576 .9245 .8994 .8385
BART (Soft Prompt) .8136 .7751 .8927 .8324 .9498 .9342 .8816 .8405
Llama∗ (Hard Prompt) .2658 .4936 .2024 .3950 .1962 .4745 .2245 .4448
Vicuna∗ (Hard Prompt) .2207 .4097 .2418 .3942 .2664 .3357 .2392 .3845

Table 3: Results on the MAVE dataset after splitting it into low, medium, and high resource attributes and performing
stratified-sampling. Bold indicates the best performance in a column, and ∗ that the model was frozen.

4.3 Explicit Attribute Extraction on MAVE

Finally, we evaluate explicit attribute extraction on
a subset of the MAVE dataset (Yang et al., 2021),
a product attribute dataset created by an ensemble
of sequence tagging AVEQA models (Wang et al.,
2020b). The MAVE dataset’s unique advantage is
its large number of attributes. To consider how the
amount of training data affects performance, we
categorize the attributes in MAVE by how many
examples they have: low (< 500), medium (500 ≤
. . . ≤ 5000), and high-resource (> 5000). We then
sample 1/10th of the attributes from each of these
strata, obtaining 28 low, 27 medium, and 14 high-
resource attributes. We consider the same models

as in the monolingual Amazon data1.
Table 3 shows the results. The hard and soft-

prompted generative models perform compara-
bly, and experience little performance degradation
across resource levels. On the other hand, consis-
tent with the results in the multilingual setting, the
sequence tagging models struggle more on the low-
resource attributes than their generative alterna-
tives, indicating that generative models have better
low-resource generalization. Plots of model perfor-
mance as a function of each attribute’s number of
training examples (Figure 4) suggest that the fine-
tuned generative models outperform the tagging

1We trained the MAVEQA model using the code released
for (Yang et al., 2021) but were not able to obtain good results.
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models across resource levels.

4.4 Performance of Large Language Models

While the LLMs’ performance is limited by the
number of examples that fit in their context win-
dows, they perform surprisingly well on explicit
attribute extraction on the English Amazon dataset:
Vicuna and Llama achieve higher precision than
half and three fourths of the finetuned models re-
spectively, while obtaining respectable recall. How-
ever, on MAVE the finetuned medium-sized models
far outperform the prompted LLMs, emphasizing
the usefulness of finetuning. The difference in re-
sults on the MAVE and Amazon datasets is due to
the distribution shift between the Amazon dataset’s
train and test splits: the attribute values in the train-
ing data are filled by sellers, and do not conform
to strict rules; the Amazon test data is manually
annotated by a team of annotators following rigid
instructions to ensure high quality. On the other
hand, MAVE’s data is completely generated by an
ensemble of AVEQA (Wang et al., 2020b) models,
so the train and test splits follow the same distri-
bution. This indicates that frozen LLMs have the
opportunity to outperform finetuned medium-sized
models, especially under distribution shift, as their
task definition and pretraining makes them less re-
liant on training examples.

Comparing the LLMs to one another, we find
that despite Vicuna’s conversation tuning and im-
pressive performance compared to much larger
models (Zheng et al., 2023), Llama performed al-
most universally better on all three datasets. This
performance difference was not only by way of
extraction quality, but was also due to Llama’s ad-
herence to the prompt’s specified generation for-
mat (see Section A.4). Vicuna answered in various
conversational formats, not following instructions,
hence making answer extraction from the generated
text more difficult.

5 Conclusion

In this work, we demonstrated the benefits of gen-
erative models for product attribute extraction. We
showed that generative models can outperform
state-of-the-art sequence tagging models on ex-
plicit attribute extraction and, unlike sequence tag-
ging models, can perform implicit attribute extrac-
tion. Next, we demonstrated that generative models
perform better in low-resource settings than tagging
models on both multilingual data and the MAVE

dataset. Finally, we showed that large language
models can perform well with as few as two in-
context examples, emphasizing generative models’
data efficiency. For future work, we plan to scale
up our soft prompt architecture to large language
models, and push the limits of their performance
with long context lengths to provide additional in-
context examples.
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A Appendix

A.1 Evaluation Details

For sequence tagging models, we define a predic-
tion as a contiguous sequence of “I”-tagged tokens
in an “I/O” tagging scheme, whereas a null pre-
diction occurs if no tokens are tagged. For gener-
ative models, we define a prediction as any “or”-
separated words besides a single unknown token,
and a null prediction by having the model output
an unknown token. All precision and recall values
are macro averages over the evaluated attributes.
Postprocessing is applied to extract the attribute val-
ues from the generated text in the case of multiple
generated values.

Text which exceeds the model input length is
truncated for the medium-sized models. For the
LLMs, text which exceeds the input length is
treated as an “unknown” prediction.

A.2 Dataset Details

A.2.1 Amazon Datasets
Table 5 and Table 6 show the dataset statistics for
the Amazon datasets. A separate validation set
was split off from 20% of the training data for
model selection. The training datasets are derived
from seller’s attribute annotations, whereas the test
datasets are curated by a team of annotators. The
train datasets contain a single attribute value per
example, whereas the test datasets can contain mul-
tiple values per example, representing multiple ac-
ceptable answers. Refer to (Zalmout and Li, 2022)
for more details on the processing setup for this
dataset.

Each locale has five attributes in their training
and evaluation datasets. The English Amazon
dataset contains the Material, Scent, Item Form,
and Flavor, and Fabric Type attributes. For the mul-
tilingual dataset, all three locales share the Material,
Scent, Item Form, and Flavor attributes, all in each
locale’s respective languages. Each locale also has
an additional, unique attribute: en_US with Fabric-
Type, fr_FR with Recommended Uses for Product,
and de_DE with Color.

We use SUOpenTag initialized with different
multilingual encoders on the Multilingual Amazon
dataset instead of AdaTag, as the AdaTag model is
based on English Glove embeddings (Pennington
et al., 2014) and is not inherently multilingual.

A.2.2 Stratified Mave Subset
As described in Section 4, we divide the MAVE
dataset into low, medium, and high–resource at-
tributes. We then sample one tenth of the attributes
from each of the divisions to ensure that our sub-
set is representative of the overall MAVE dataset—
directly sampling from the examples would favor
high-resource attributes as these examples domi-
nate the dataset, forcing the medium resource at-
tributes towards the low end, and low-resource at-
tributes towards zero examples. We define our
strata by attributes having fewer than 500 exam-
ples, between 500 and 5000 examples, and greater
than 5000 examples.

A.3 Training details

On the English Amazon dataset, we use learning
rates of 2e-5 for all models besides AdaTag, which
benefits significantly from a higher learning rate of
3e-4. On the Multilingual Amazon dataset, we use
a learning rate of 2e-5 for all models. On MAVE ,

583

https://doi.org/10.18653/v1/2022.emnlp-industry.47
https://doi.org/10.18653/v1/2022.emnlp-industry.47
https://doi.org/10.18653/v1/2022.emnlp-industry.47
https://doi.org/10.1145/3447548.3470825
https://doi.org/10.1145/3447548.3470825
https://doi.org/10.1145/3219819.3219839
https://doi.org/10.1145/3219819.3219839
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120


[Prompt]: The <attribute> of the <product_type> is <mask>

[Title]: ... [Description]: ...

[Prompt]: The <attribute> of the <product_type> in <locale> is <mask>

[Title]: ... [Description]: ...

Table 4: The input templates used for the hard-prompted, medium-sized generative models. The templates are used
for monolingual and multilingual data, respectively. The product_type is a known category from a taxonomy to
which each product belongs; we include this to improve extraction performance. The <attribute>, <product_type>,
and <locale> tokens are in-filled before being passed to the model.

Figure 4: The models’ F1 scores on each attribute of the MAVE subset, with the attributes sorted in increasing
order by number of training examples. Curves are approximated with polynomial regression with interpolation for
attributes with no predictions. Some variation is due to differing attribute difficulty, despite the increasing number
of training examples (e.g. the frozen Llama and Vicuna models’ downward trends).
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Explicit Implicit Unknown

Train 72.5 (152798) .50 (1050) 27 (57073)
Test 52.9 (2885) 7.8 (427) 39.3 (2139)

Table 5: Dataset statistics for the English Amazon
dataset used for implicit and explicit attribute extrac-
tion. The first numbers indicate approximate percent-
ages across a row, and the parenthesized numbers are
the raw counts.

en_US fr_FR de_DE

Train 38 (210895) 32 (174507) 30 (164972)
Test 30 (5451) 40 (7107) 30 (5564)

Table 6: Dataset statistics for the multilingual Amazon
dataset. The first numbers indicate approximate percent-
ages, and the parenthesized numbers are the raw counts.

we use a learning rate of 3e-5 for all models besides
AdaTag, which again uses a learning rate of 3e-4.
We use the Adam (Kingma and Ba, 2014) optimizer
for all models.

We train models on the English and Multilingual
Amazon datasets for 100K steps and on the Strati-
fied MAVE Subset for three epochs, evaluating on
a holdout set and selecting the best models based
on their validation losses. We use batch sizes of 16
for the Amazon datasets and 8 for MAVE.

The input prompt for the soft-prompted BART’s
prompter module is padded to 20 tokens in order
to pass a fixed number of prompt embeddings to
BART.

A.4 Large Language Model Prompt

To prompt the Llama and Vicuna large language
models, we provided a task description followed by
two in-context examples of the extraction task for
the given attribute. For the experiments on trans-
lating the input text, we translated the entirety of
the prompt besides the product text and answers.
We experimented first with a non-conversational
prompt for the Llama model, which described the
task but lacked the “interactiveness” of saying that
the model would be provided with examples, fol-
lowed by the input to be extracted from. Instead,
the prompt provided the example products with
answers delimited by [Answer] and [/Answer]
tokens, followed by the product to be extracted
from, with no distinction between the provided
examples and the product input. Surprisingly,
this performed significantly worse on the non-

Figure 5: The chosen large language model prompt.
Bolded phrases vary depending on the in-context exam-
ple. Ellipses indicate the in-filled product text.

conversational Llama than spelling out each ex-
ample, question, and answer conversationally in
our final prompt shown in Figure 5. We therefore
used this prompt for both Llama and Vicuna.
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