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Abstract

Large Language Models have proven highly
successful at modelling a variety of tasks. How-
ever, this comes at a steep computational cost
that hinders wider industrial uptake. In this pa-
per, we present MWT: a Multi-Word Tokenizer
that goes beyond word boundaries by represent-
ing frequent multi-word expressions as single
tokens. MWTs produce a more compact and
efficient tokenization that yields two benefits:
(1) Increase in performance due to a greater
coverage of input data given a fixed sequence
length budget; (2) Faster and lighter inference
due to the ability to reduce the sequence length
with negligible drops in performance. Our re-
sults show that MWT is more robust across
shorter sequence lengths, thus allowing for ma-
jor speedups via early sequence truncation.

1 Introduction

The field of Natural Language Processing (NLP)
has seen major breakthroughs with the advent of
Large Language Models (LLMs) (Vaswani et al.,
2017; Devlin et al., 2018; Touvron et al., 2023;
OpenAI, 2023). Despite their successes, LLMs
like ChatGPT (OpenAI, 2023; Brown et al., 2020)
possess hundreds of billions of parameters that
entail enormous computational cost by design.
Traditional model compression methods such as
Knowledge Distillation (Hinton et al., 2015), Prun-
ing (Michel et al., 2019; Zhu and Gupta, 2017), and
Quantization (Shen et al., 2020; Gupta et al., 2015)
have focused on creating lighter models either by
shrinking the architectural size or by reducing the
number of FLOPs.

Recently, LLMs have been shown to produce
impressive performance on inputs that have been
carefully designed to contain all the necessary in-
formation for a given instruction. As such, there
is an increasing trend in designing longer and
longer prompts that has led to a significant rise
in computational cost. To address this, interest has

grown in compressing the input sequences from
the tokenizer (Gee et al., 2022; Mu et al., 2023;
Petrov et al., 2023). Indeed, various works have
shown the importance of tokenization in determin-
ing the length of a sequence in specialized do-
mains (Gee et al., 2022) or on underrepresented
languages (Petrov et al., 2023).

In this paper, we propose a method for reducing
the computational cost of a LLM by compress-
ing the textual inputs using Multi-Word Tokenizers
(MWTs). To achieves this, we enrich the vocabu-
lary of the tokenizer with statistically determined
multi-word expressions. By encoding the frequent
n-grams with single tokens, the sequences pro-
duced are both shorter and more informative, thus
allowing for major speedups via early sequence
truncation. Additionally, MWTs are shown to
be compatible with the aforementioned traditional
compression methods. Experimentally, we assess
MWTs on three text classification datasets. We
show how our approach still performs well when
combined with distilled models (Sanh et al., 2019)
and other sequence compression techniques (Gee
et al., 2022). The code for our paper is publicly
available1.

The rest of the paper is organized as follows.
First, we review the related works in Section 2.
Then, we describe our approach in Section 3 and
present the experiments in Section 4. Finally, we
draw our conclusions in Section 5.

2 Related Works

Most model compression research falls into one
of the following categories: Knowledge Distilla-
tion (Hinton et al., 2015; Sanh et al., 2019; Jiao
et al., 2020; Wang et al., 2020; Sun et al., 2020),
Pruning (Zhu and Gupta, 2017; Michel et al., 2019),
and Quantization (Shen et al., 2020). The family
of approaches is somewhat complementary and

1https://github.com/LeonidasY/
fast-vocabulary-transfer/tree/emnlp2023
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Input: an energizable member is operably coupled to the outer sleeve .

Tgen: an, en, ##er, ##gi, ##zable, member, is, opera, ##bly, coupled, to, the, outer,
sleeve, .

T 1000
gen : an, en, ##er, ##gi, ##zable, member_is, opera, ##bly, coupled_to, the_outer, sleeve,

.

T100: an, energizable, member, is, operably, coupled, to, the, outer, sleeve, .

T 1000
100 : an, energizable, member_is, operably, coupled_to, the_outer, sleeve, .

Figure 1: Tokenization using generic Tgen and adapted T100 tokenizers. T 1000
gen and T 1000

100 are extended with the
top-1000 bigrams. Tokens obtained with domain-adaptation or MWT are highlighted in orange and blue respectively.
MWTs are shown to be highly complementary to existing tokenizers for sequence compression.

can be applied individually or jointly. Each ap-
proach alters the model’s size to obtain a more effi-
cient architecture. Differently, other works such as
FlashAttention (Dao et al., 2022) seek to optimize
a model’s implementation. In particular, LLMs
are sped up by reducing the number of memory
accesses for the self-attention mechanism.

Sequence Compression. An emerging direction
for reducing the cost of LLMs involves the design-
ing of shorter input sequences. Prompting tech-
niques such as Mu et al. (2023) compress repetitive
lengthy prompts into gist tokens. Other works em-
phasize the role of tokenization in sequence com-
pression. In Petrov et al. (2023), the authors show
how the tokenizer of most LLMs strongly favor
the English language over other languages. For un-
derrepresented languages, the same translated sen-
tence may consist of inputs that are up to 15 times
longer. Analogously, Gee et al. (2022) investigated
the tokenization efficiency of general-purpose tok-
enizers in vertical domains such as medicine and
law. They proposed a transfer learning technique
that adapts the vocabulary of a LLM to specific
language domains. An effect of a dedicated vocab-
ulary is a more efficient tokenization that reduces
the number of sub-word tokens in a sequence.

In this work, we push this effect further, go-
ing beyond word boundaries by introducing Multi-
Word Expressions (MWEs) in the form of n-grams
into the tokenizer as shown in Figure 1. The under-
lying intuition behind this is that a more compact
tokenization can save computations by allowing
the model to process shorter sequences without
a significant loss of information. The usage of
MWEs is not novel with several works (Lample
et al., 2018; Otani et al., 2020; Kumar and Thawani,
2022) introducing phrases or n-grams to improve
the quality of machine translation. In Kumar and

Thawani (2022), the authors generalized BPE (Sen-
nrich et al., 2016) to multi-word tokens. However,
to the best of our knowledge, we are the first to
investigate MWEs in the context of sequence com-
pression.

3 Multi-word Tokenizer

Tokenization is a necessary step in the feeding of
textual data to a LLM. Typically, tokenizers split a
text into a sequence of symbols which can be entire
words or only subparts. To do this, a vocabulary is
first constructed by statistically learning the most
frequent tokens from a large general-purpose cor-
pus (Sennrich et al., 2016; Schuster and Nakajima,
2012; Kudo and Richardson, 2018). The resulting
tokenizer can then be used to segment an input
text by greedily looking for the solution with the
least number of tokens. Building upon this, we
inject into the tokenizer new symbols formed by
n-grams of words. We do this by first selecting
the most frequent n-grams to include in its vocabu-
lary. Then, we place an n-gram merging step within
the tokenization pipeline as sketched in Figure 2.
The added n-grams will be treated as single tokens
further down the tokenization pipeline.

N-gram Selection. In order to maximize the se-
quence reduction, we statistically estimate the top-
K most frequent n-grams in a reference training
corpus. Although the approach is greedy, hence
sub-optimal, it still effectively yields significant
compression while being extremely fast and easy
to compute. More formally, given a corpus D
and N ≥ 2, we compute all the possible n-grams
gn ∈ D, where n = 2, . . . , N . Then, we count
their frequency f(gn), ∀gn ∈ D. The K most fre-
quent n-grams GK are included in the vocabulary
V ← V ∪ GK of the tokenizer T .
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Figure 2: Sketch of the Multi-word Tokenizer pipeline. First, n-grams are statistically learned from the training set.
Then, the top-K n-grams are added to the vocabulary of the tokenizer. N-grams are merged from left to right within
a sequence after pre-tokenization.

energizable +

+member_is

en
##er

##zable

member

is
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Pre-trained LM
embeddings

Adapted Tokenizer
embeddings

##gi

Figure 3: Fast Vocabulary Transfer. The pre-trained
embeddings of existing tokens are combined to form the
embeddings of the newly adapted vocabulary.

Fast Vocabulary Transfer. Given that the vocab-
ulary of the tokenizer has changed, the newly added
symbols GK must be included into the embedding
matrix of the language model as well. To avoid
retraining the entire model from scratch which is
highly resource-demanding, or a random initializa-
tion of new tokens which would perform poorly,
we make use of Fast Vocabulary Transfer (FVT)
instead (Gee et al., 2022).

FVT is a transfer learning technique that assigns
embeddings to new tokens by combining existing
elements of the embedding matrix as shown in Fig-
ure 3. After initializing the multi-word embeddings
with FVT, we found it beneficial to tune the model
with Masked-Language Modeling (MLM) as done
by Gee et al. (2022). We believe this is helpful as
it aids the model in further readjusting the embed-
dings of the new tokens.

4 Experiments

Given a fixed number of tokens, a more compact
input sequence preserves a greater amount of infor-

mation. This can be used to either achieve a better
performance with limited benefits in speedup, or
vice versa, i.e. making the model faster with negli-
gible drops in performance. The experiments aim
to analyze how these two aspects interact with one
another. We focus on text classification as it is a
problem of particular interest for many industry-
oriented applications.

4.1 Experimental Setup
Our experiments were conducted on the cased
versions of BERTbase (Devlin et al., 2018) and
DistilBERTbase (Sanh et al., 2019). Additionally,
we consider an adapted tokenizer with a vocabu-
lary size equal to that of the generic tokenizer from
a pre-trained model as done by Gee et al. (2022).
We refer to the generic and adapted tokenizers as
Tgen and T100 respectively. Both tokenizers are
extended with the top-K n-grams of 1000, 2500,
and 5000. Overall, we compare eight different
tokenizers indicated as: Tgen, T 1000

gen , T 2500
gen , T 5000

gen

and T100, T 1000
100 , T 2500

100 , T 5000
100 .

Implementation Details. We train each model
with 5 different random initializations. The macro-
F1 and inference speedup are measured as metrics.
The average of all 5 initializations is taken as the
final value of each metric. The inference speedup
measurements were done on a V100-PCIE GPU
with 16GBs of dedicated RAM.

Following Gee et al. (2022), we first apply one
epoch of MLM using the in-domain dataset. Next,
the model is fine-tuned for 10 epochs with early
stopping on the downstream task. We set the ini-
tial learning rate to 3 · 10−5 for both MLM and
downstream fine-tuning, while the batch size is set
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Dataset Tgen T 1000
gen T 2500

gen T 5000
gen T100 T 1000

100 T 2500
100 T 5000

100

ADE 31 26 25 23 21 18 17 16

LEDGAR 155 118 107 98 131 97 90 84

PATENT 134 110 105 100 118 94 90 86

Table 1: Average sequence length from tokenization. The generic Tgen and adapted T100 tokenizers are extended
with varying top-Ks of 1000, 2500, and 5000.

to 8 and 32 for MLM and downstream fine-tuning
respectively.

Choice of N. An important hyperparameter is N,
i.e. the maximum number of words constituting
an n-gram. In our experiments, N is set to 2 as
we believe that using bigrams only provides better
generalization properties. Increasing the value of N
may lead to an overspecialization of n-grams which
could overfit on small textual corpora.

4.2 Datasets

To determine the effectiveness of MWTs, we select
3 different text classification tasks from diverse
linguistic domains, namely medical (ADE), legal
(LEDGAR), and tech (PATENT).

ADE. A sentence classification dataset of deter-
mining whether a sentence is Adverse Drug Event
(ADE)-related or not (Gurulingappa et al., 2012).
The sentences are characterized by the presence of
medical terminologies of drugs and their adverse
effects. We use the same train, validation, and test
splits as in Gee et al. (2022).

LEDGAR. A document classification dataset of
contracts obtained from the US Securities and Ex-
change Commission (SEC) filings (Tuggener et al.,
2020). The task is to determine whether the main
topic of the contract provision from a set of 100
mutually-exclusive labels. The dataset is also part
of LexGLUE (Chalkidis et al., 2022), which is a
benchmark for legal language understanding.

PATENT. A document classification dataset2 of
US patent applications filed under the Cooperative
Patent Classification (CPC) code (Sharma et al.,
2019). A human written abstractive summary is
provided for each patent application. The task is
to determine the category that a patent application
belongs to from 9 unbalanced classes.

2https://huggingface.co/datasets/ccdv/
patent-classification

4.3 Results

Preliminary Analysis. Before measuring the ef-
fects of MWTs on LLMs, we analyze how the av-
erage sequence length changes for each dataset
depending on the tokenizer. From Table 1, in-
creasing the top-K most frequent n-grams naturally
yields a greater compression. However, even a
1000 bigrams is enough to achieve a reduction of
about 20%. When multi-words are combined with
an adapted tokenizer T100, the joint sequence nar-
rowing effects appear to be highly complementary,
achieving a compression rate close to 50% in ADE.
In practice, a 50% reduction means that on average
we can store the same amount of text in half the
sequence length. Consequently, we could in princi-
ple reduce a LLM’s maximum sequence length by
a factor of 2.

Multi-word Tokenization. As a first evaluation,
we assess the macro-F1 and inference speedups
achieved by fine-tuned BERT models with multi-
word tokenizers: T 1000

gen , T 2500
gen , T 5000

gen . The pre-
trained BERT with a generic tokenizer Tgen is con-
sidered as the reference model. From Table 2,
MWTs are shown to either improve the reference
performance or induce a relatively negligible degra-
dation. At the same time, the sequence compres-
sion from MWTs yields a natural speedup that de-
pending on the dataset varies from about x1.1 to
x1.4.

MWT and Domain Adaptation. Additionally,
we investigate the application of MWTs with tok-
enizers adapted to the dataset: T 1000

100 , T 2500
100 , T 5000

100 .
With the exception of PATENT, most models are
shown to achieve significant inference speedups
of up to x1.8 with minimal degradation in per-
formance from Table 2. We hypothesize that
this is due to the fact that the language domain
of PATENT is not as specialized as ADE and
LEDGAR, which reduces the benefits of using an
adapted tokenizer.
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Figure 4: Plot of macro-F1 against maximum sequence length. The generic Tgen and adapted T100 tokenizers are
represented by solid and dashed lines respectively. MWTs are shown to be more robust on shorter sequence lengths,
thus allowing for major speedups via early sequence truncation.

Method
ADE LEDGAR PATENT

∆F1 Speedup ∆F1 Speedup ∆F1 Speedup

Tgen 90.74 ± 0.84 1.00 82.12 ± 0.33 1.00 61.44 ± 0.38 1.00

T 1000
gen -0.09 ± 0.70 1.32 0.54 ± 0.24 1.14 -0.42 ± 0.54 1.11

T 2500
gen 0.37 ± 0.54 1.38 0.05 ± 0.44 1.23 -0.07 ± 0.46 1.16

T 5000
gen 0.29 ± 0.68 1.43 -0.05 ± 0.41 1.33 -0.46 ± 0.69 1.19

T100 0.24 ± 0.67 1.51 0.00 ± 0.41 1.10 -1.27 ± 0.39 1.06

T 1000
100 -0.86 ± 1.21 1.71 0.32 ± 0.58 1.36 -0.78 ± 0.62 1.24

T 2500
100 -0.88 ± 0.72 1.78 -0.19 ± 0.57 1.47 -1.04 ± 0.42 1.30

T 5000
100 -0.51 ± 0.65 1.79 0.02 ± 0.58 1.57 -1.66 ± 0.44 1.34

Table 2: Absolute values of BERT fine-tuned on the downstream task using a sequence length of 128, 512 and 256
for ADE, LEDGAR and PATENT respectively. Tgen is shown on the first row, while relative values to Tgen are
shown on subsequent rows.

MWT and Truncation. Based on the prelim-
inary analysis, we analyze how truncating se-
quences with different maximum lengths affects
both the performance and inference speedup. Re-
ducing the maximum sequence length has a dou-
ble impact on the inference speedup given a fixed
amount of resources. First, latency linearly grows
with respect to the sequence length. Second,
reducing the sequence length releases GPU re-
sources that can be used to enlarge the batch size.
We consider 4 maximum sequence lengths for
each dataset by progressively halving the initial
maximum sequence length, i.e. {128, 64, 32, 16}
for ADE, {256, 128, 64, 32} for LEDGAR, and
{512, 256, 128, 64} for PATENT.

From Figure 4, we can see the performance of
Tgen dropping more rapidly than MWTs as trun-
cation increases (maximum sequence length de-
creases). In the extreme 8-times truncation, the
performance of Tgen falls dramatically for both

ADE and LEDGAR. However, MWTs are shown
to be more robust to truncation, hence their degra-
dation in performance is smoother and without sud-
den collapses. In both ADE and LEDGAR, a 4-
times truncation leads to nearly identical or better
performance, while bringing significant inference
speedups of ∼x2.4 and ∼x4.4 respectively. If a
certain performance degradation is acceptable, the
inference speedup can be maximized, reaching up
to ∼x9.4 in LEDGAR.

MWT and Distillation. Additionally, we investi-
gate the interaction between sequence compression
and knowledge distillation in Table 3. To this end,
we utilize a DistilBERT model with MWTs. For
simplicity, we restrict our analysis to LEDGAR and
to a single multi-word tokenizer T 2500

gen on different
maximum sequence lengths. From the table, our
MWT is shown to retain most of its performance
with a quarter of the sequence length and an in-
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ference speedup of ∼x8.8. Even with an extreme
sequence truncation to only 64 tokens, we can still
achieve a ∼x18.1 inference speedup with only a
2.7% drop in relative performance.

Model Length ∆F1 Speedup

Tgen 512 82.12 1.00

Distil. + Tgen 512 -0.78 2.43

Distil. + T 2500
gen 128 -0.32 8.81

Distil. + T 2500
gen 64 -2.70 18.13

Table 3: The macro-F1 and inference speedup results
on LEDGAR with DistilBERT. MWTs are shown to be
highly compatible with distilled models.

5 Conclusion

In this work, we proposed a sequence compression
approach that reduces textual inputs by exploit-
ing the use of multi-word expressions drawn from
the training set according to their top-K frequen-
cies. We conducted an investigation on 3 differ-
ent datasets by evaluating each model in conjunc-
tion with other compression methods (Gee et al.,
2022; Sanh et al., 2019). Our approach is shown to
be highly robust to shorter sequence lengths, thus
yielding a more than x4 reduction in computational
cost with negligible drops in performance. In the
future, we expect to extend our analysis to other
language models and tasks such as language gener-
ation in the scope of sequence compression.

6 Limitations

As demonstrated in the paper, MWTs work well
on text classification problems. Despite not having
conducted experiments on generative tasks, there
are no limitations in extending MWTs to them. Dif-
ferently, the application of MWTs to token classifi-
cation problems can be challenging. Specifically,
when merging multiple words together, it is unclear
how to label such fused tokens.
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A Further Details

A.1 Results
We tabulate the complete results for BERT and
DistilBERT on ADE, LEDGAR, and PATENT in
Tables 4 and 5 respectively. The values in each
table are averaged across 5 seeds.
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Model
Maximum Sequence Length

128 64 32 16

Tgen 90.74 ± 0.84 91.22 ± 0.74 87.78 ± 0.74 76.04 ± 2.09

T 1000
gen 90.66 ± 0.70 90.62 ± 0.41 88.62 ± 0.41 80.26 ± 0.91

T 2500
gen 91.08 ± 0.54 90.76 ± 0.87 89.06 ± 0.87 80.76 ± 0.93

T 5000
gen 91.00 ± 0.68 91.28 ± 0.62 89.28 ± 0.62 79.92 ± 1.42

T100 90.96 ± 0.67 90.82 ± 0.71 89.32 ± 0.71 82.82 ± 0.85

T 1000
100 89.96 ± 1.21 90.38 ± 0.48 89.00 ± 0.48 85.18 ± 1.11

T 2500
100 89.94 ± 0.72 90.56 ± 0.61 89.54 ± 0.61 85.78 ± 0.72

T 5000
100 90.28 ± 0.65 90.38 ± 0.75 90.70 ± 0.75 84.94 ± 0.45

(a) ADE

Model
Maximum Sequence Length

512 256 128 64

Tgen 82.12 ± 0.33 81.94 ± 0.36 81.46 ± 0.39 79.62 ± 0.56

T 1000
gen 82.56 ± 0.24 82.52 ± 0.35 82.12 ± 0.40 80.54 ± 0.37

T 2500
gen 82.16 ± 0.44 82.24 ± 0.40 81.92 ± 0.54 80.80 ± 0.57

T 5000
gen 82.08 ± 0.41 82.02 ± 0.20 81.66 ± 0.19 80.70 ± 0.16

T100 82.12 ± 0.41 82.34 ± 0.21 81.68 ± 0.43 79.74 ± 0.66

T 1000
100 82.38 ± 0.58 82.30 ± 0.68 81.80 ± 0.34 80.84 ± 0.23

T 2500
100 81.96 ± 0.57 81.78 ± 0.60 82.06 ± 0.35 80.72 ± 0.57

T 5000
100 82.14 ± 0.58 82.32 ± 0.35 81.92 ± 0.31 80.92 ± 0.71

(b) LEDGAR

Model
Maximum Sequence Length

256 128 64 32

Tgen 61.44 ± 0.38 61.28 ± 0.37 60.46 ± 0.24 58.60 ± 0.60

T 1000
gen 61.18 ± 0.54 61.28 ± 0.36 60.40 ± 0.45 59.46 ± 0.50

T 2500
gen 61.40 ± 0.46 61.40 ± 0.69 61.22 ± 0.68 59.26 ± 0.42

T 5000
gen 61.16 ± 0.69 61.08 ± 0.49 60.40 ± 0.71 59.14 ± 0.44

T100 60.66 ± 0.39 60.62 ± 1.04 59.52 ± 0.63 58.44 ± 0.63

T 1000
100 60.96 ± 0.62 60.16 ± 0.68 59.48 ± 0.25 58.76 ± 0.63

T 2500
100 60.80 ± 0.42 60.36 ± 1.02 59.98 ± 1.15 58.78 ± 0.58

T 5000
100 60.42 ± 0.44 59.80 ± 0.73 59.54 ± 0.46 58.24 ± 1.76

(c) PATENT

Table 4: Model performance of BERT averaged across 5 seeds.
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Model
Maximum Sequence Length

128 64 32 16

Distil. + Tgen 90.66 ± 0.69 91.66 ± 0.43 87.56 ± 1.64 74.78 ± 1.50

Distil. + T 1000
gen 90.18 ± 0.89 90.44 ± 0.73 88.16 ± 0.81 78.74 ± 0.88

Distil. + T 2500
gen 91.08 ± 0.28 90.64 ± 0.53 88.30 ± 0.96 79.24 ± 1.37

Distil. + T 5000
gen 89.60 ± 0.92 90.22 ± 1.11 88.06 ± 0.79 79.52 ± 1.16

Distil. + T100 90.52 ± 0.48 89.76 ± 0.84 88.54 ± 1.01 81.16 ± 0.91

Distil. + T 1000
100 88.26 ± 0.86 89.10 ± 0.44 88.52 ± 0.68 82.84 ± 0.35

Distil. + T 2500
100 88.58 ± 1.20 89.10 ± 1.18 89.32 ± 1.01 83.38 ± 0.62

Distil. + T 5000
100 87.68 ± 0.92 87.94 ± 1.22 87.88 ± 0.55 82.84 ± 0.77

(a) ADE

Model
Maximum Sequence Length

512 256 128 64

Distil. + Tgen 81.48 ± 0.52 81.12 ± 0.50 81.18 ± 0.31 79.22 ± 0.29

Distil. + T 1000
gen 82.02 ± 0.83 82.30 ± 0.31 81.56 ± 0.44 80.20 ± 0.41

Distil. + T 2500
gen 81.74 ± 0.23 81.36 ± 0.25 81.86 ± 0.18 79.90 ± 1.01

Distil. + T 5000
gen 81.38 ± 0.52 81.62 ± 0.29 81.60 ± 0.29 80.34 ± 0.28

Distil. + T100 81.42 ± 0.70 81.60 ± 0.12 81.50 ± 0.48 80.02 ± 0.54

Distil. + T 1000
100 81.42 ± 0.59 80.90 ± 0.68 81.98 ± 0.18 80.62 ± 0.47

Distil. + T 2500
100 81.80 ± 0.17 81.36 ± 0.30 82.06 ± 0.27 80.46 ± 0.38

Distil. + T 5000
100 81.58 ± 0.57 81.34 ± 0.42 81.92 ± 0.18 80.82 ± 0.43

(b) LEDGAR

Model
Maximum Sequence Length

256 128 64 32

Distil. + Tgen 60.88 ± 0.61 60.98 ± 0.67 59.88 ± 0.57 57.72 ± 0.71

Distil. + T 1000
gen 60.58 ± 0.31 59.92 ± 0.63 59.94 ± 0.94 58.36 ± 0.62

Distil. + T 2500
gen 59.96 ± 0.75 59.94 ± 0.43 59.90 ± 0.65 58.16 ± 0.61

Distil. + T 5000
gen 59.86 ± 0.61 60.10 ± 0.88 59.26 ± 0.53 58.46 ± 0.52

Distil. + T100 59.58 ± 0.77 59.22 ± 0.59 58.10 ± 0.70 57.22 ± 0.59

Distil. + T 1000
100 59.52 ± 0.49 59.88 ± 0.54 58.72 ± 0.47 57.42 ± 0.72

Distil. + T 2500
100 59.04 ± 0.32 58.82 ± 0.95 57.58 ± 0.53 56.76 ± 0.47

Distil. + T 5000
100 59.82 ± 0.57 58.74 ± 0.40 58.76 ± 0.59 57.30 ± 1.01

(c) PATENT

Table 5: Model performance of DistilBERT averaged across 5 seeds.
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