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Abstract

In the context of a voice assistant system, steer-
ing refers to the phenomenon in which a user is-
sues a follow-up command attempting to direct
or clarify a previous turn. We propose STEER,
a steering detection model that predicts whether
a follow-up turn is a user’s attempt to steer the
previous command. Constructing a training
dataset for steering use cases poses challenges
due to the cold-start problem. To overcome
this, we developed heuristic rules to sample
opt-in usage data, approximating positive and
negative samples without any annotation. Our
experimental results show promising perfor-
mance in identifying steering intent, with over
95% accuracy on our sampled data. Moreover,
STEER, in conjunction with our sampling strat-
egy, aligns effectively with real-world steering
scenarios, as evidenced by its strong zero-shot
performance on a human-graded evaluation set.
In addition to relying solely on user transcripts
as input, we introduce STEER+, an enhanced
version of the model. STEER+ utilizes a se-
mantic parse tree to provide more context on
out-of-vocabulary words, such as named en-
tities that often occur at the sentence bound-
ary. This further improves model performance,
reducing error rate in domains where entities
frequently appear, such as messaging. Lastly,
we present a data analysis that highlights the
improvement in user experience when voice
assistants support steering use cases.

1 Introduction

In the context of voice assistants, steering refers to
the phenomenon in which a user issues a follow-up
command attempting to direct or clarify a previous
turn. However, the current state of voice assistants
poorly supports steering, resulting in users hav-
ing to restate their requests, causing disruptions
in the natural flow of conversation and leading to
a bad user experience. Support for steering use
cases in voice assistants enables users to provide
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unprompted follow-ups, clarifying or refining their
previous requests; Listing 1 presents several exam-
ples of steering use-cases.

Listing 1: Steering use case examples
Request Steering
----------------------------------------
Set an alarm at 7 AM
Call Mom on Speaker
Take me to San Jose Costa Rica

Building a training dataset around steering use
cases is challenging because they constitute a rela-
tively minor fraction of user follow-up requests.
This is primarily due to the cold-start problem,
where voice assistants poorly support steering, in
turn causing users to avoid its use. Moreover, sim-
ulating training examples for steering is difficult,
as arbitrarily cutting a sentence may not accurately
capture the natural points in a request where users
typically steer. To address this challenge, we de-
veloped heuristic rules to sample opt-in usage data
without the need for explicit labeling.

As a step towards solving the under-explored
problem of steering with the help of the data sam-
pled using our heuristics, we first introduce STEER,
a simple transformer-based model that utilizes
query transcripts. In addition, we propose STEER+,
a model that incorporates semantic parse tree (SPT)
as a supplementary text-based modality. The SPT
contains essential information about the intent, tar-
gets, and entities. It enhance the model’s accuracy
across many domains, especially in domains where
entities are prevalent such as messaging. Finally,
we present data analysis highlighting how support
for steering use case in voice assistants can reduce
user friction and improve conversation naturalness.

2 Related Work

Endpoint detection is a fundamental task in Au-
tomatic Speech Recognition (ASR) (Lamel et al.,
1981; Zhang et al., 2020). Traditional endpoint
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systems use mainly acoustic information to detect
where the endpoints happen (Li et al., 2001, 2002;
Yamamoto et al., 2006; Roy et al., 2019). More
recently, semantic information has also been ex-
plored for the problem (Hwang and Chang, 2020;
Liang et al., 2022). All these papers work on im-
proving the end pointer system to improve overall
accuracy. On the other hand, our paper focuses
on improving the end to end user experience by
identifying users attempts to steer, possibly when
end pointing fails.

Sentence boundary detection, or punctuation
restoration, is a post-processing process after ASR
to decide where sentences begin and end (Sanchez,
2019; Che et al., 2016). Acoustic information such
as pause, pitch and speaker switch (Xie et al., 2012;
Levy et al., 2012; Sinclair et al., 2014) and seman-
tic information (Gravano et al., 2009; Lu and Ng,
2010; Ueffing et al., 2013; Zhang et al., 2013) have
been used for this problem. However, most of these
methods aim to detect sentence boundaries from
a long transcribed text, and assume all the previ-
ous and future text are available beforehand. Our
work targets improving the understanding accuracy
in a voice assistant environment where ASR tran-
scriptions arrive in a stream, with limited future
semantic context available at any given time.

Semantic parsing was traditionally done using
flat intent-slot schema (Mesnil et al., 2013). This
representation was further extended to support com-
positional semantics using approaches like Task
Oriented Parsing (TOP; Gupta et al. (2018)) which
represented the task in the form of a hierarchical
parsing tree to allow representation for nested in-
tents, Dialogue Meaning Representation (DMR)
(Hu et al., 2022) that significantly extends the
intent-slot framework into directed acyclic graph
(DAG) composed of nodes of Intent, Entity and pre-
defined Operator and Keyword, as well as edges
between them. Cheng et al. (2020) introduces
TreeDST, which is also a tree-structured dialogue
state representation to allow high compositionality
and integrate domain knowledge. These complex
semantic representations provide information about
an ongoing task, which helps recognize if a current
query is a steering of the previous one.

3 Motivation

The ability to handle steering for voice assistants
is crucial in enhancing the overall user experience.
Firstly, it allows users to interact with voice as-

sistants in a natural and efficient manner, without
having to repeat their entire query when they want
to refine or clarify a previous command. Section
8.1 shows how STEER can reduce user friction
from this standpoint.

Secondly, we analyze how support for steering
can improve conversational naturalness in Section
8.2. In particular, support for steering allows users
to pause more often, providing time for them to
clarify, refine or adapt their queries through interac-
tions. This is important in achieving more natural
conversations, as humans typically have high-level
intent before they speak, rather than having a fully
formed query in mind. In particular, previous re-
search has studied speech pauses in natural conver-
sation (Seifart et al., 2018) and in queries to voice
assistants (Dendukuri et al., 2021). These studies
have shown that pauses before spoken words tend
to be longer when the cognitive load on the speaker
is higher.

In voice assistants, balancing between latency
and accuracy is an important factor in determining
how long the VA system waits for a user to finish
their turn (yiin Chang et al., 2022). On one hand,
a VA may shorten wait time to prioritize respon-
siveness; on the other, this approach could result in
under-specified queries, leading to unsatisfactory
responses. Steering opens up opportunities to end-
point more aggressively to reduce latency while
not worried about ending a request prematurely, as
users can just add on to their previous command.

This requirement of responsiveness also places
several limitations on the overall architecture and
permissible model size and latency. Thus, although
recently popular large language models (such as
Chung et al. (2022); Ouyang et al. (2022)) are able
to handle conversation end-to-end without a tradi-
tional pipelined approach (although an evaluation
on how they perform on steering requests does not,
to the best of our knowledge exist), they tend pro-
hibitively expensive in terms of storage, memory,
compute and inference time required, particularly
if they were to be run completely on a low-power
device, a setting in which voice assistants often
operate.

The examples in Listing 1 highlight that queries
suitable for steering are also inherently ambigu-
ous. To leverage this observation, we propose us-
ing Semantic Parse Trees (SPTs) of a query as
an additional text-based modality for modeling.
These SPTs are obtained as described in Cheng
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et al. (2020); Aas et al. (2023). An example of a
SPT is illustrated below in Listing 2.

Listing 2: A sample Semantic Parse Tree for the request
"Set an alarm at 10:30 called Bedtime"
create:alarm

.name.Str("bedtime")

.time.Time
.hour.Int(10)
.minute.Int(30)

When a steerable request is ambiguous, it may
reflect the lack of information to construct a com-
prehensive SPT. This aspect can be captured by the
model, facilitating more accurate steering detection.
Moreover, SPTs offer a hierarchical representation
of tasks, targets, and entity names parsed from a
user’s query, commonly used in a VA’s Natural Lan-
guage Understanding system (Cheng et al., 2020).
Raw text may not reflect the presence of entity
names well, since they are likely out-of-vocabulary
words for a model. This issue is particularly com-
mon in steering, as named entities frequently ap-
pear at sentence boundaries, as shown in Figure 3.
Employing SPTs as a feature complements raw text
by organizing the request and labeling the entities
present in it.

4 Data Sampling

Sampling data for an unsupported task presents a
challenge due to the cold-start problem: If a user
attempts steering and the assistant fails to respond
appropriately, the user is unlikely to attempt steer-
ing again. However, we observe that in face of
an incomplete query that was incorrectly executed,
users tend to reiterate the intended request in full
again, resulting in a self-contained valid query. In
light of this, we devised a data sampling strategy for
positive data, where the follow-up intends to steer
the context; and for negative data, where the follow-
up is a separate request, illustrated in Fig 1. Both
data sampling processes start from an anonymized
randomly sampled VA dataset, leveraging heuris-
tic rules to sample opt-in usage data to create an
unsupervised training set.

For positive data sampling, we first start by iden-
tifying reiterations from user. This is done by iden-
tifying consecutive turns where: 1. the previous
turn is an exact prefix of the current turn; 2. the
two turns happened within a short time difference.
While this approach is simplistic, the resulting data
is of surprisingly high quality. Next, with pairs
of reiterations, we synthetically infer what a user

Figure 1: Illustration of data sampling process. Note
that all examples shown in this paper are author-created
examples based on patterns observed from anonymized
and randomly sampled VA logs. In both examples,
queries in green are found in real-world usage, queries in
yellow are synthetically generated, representing our best
guess of what the user could do if STEER is in place.
For positive data, during the data sampling phase, we
follow the solid lines. Given reiterations, synthetic steer-
ing follow-ups are generated. During model training,
we follow the dotted lines. The model is provided with
the context query and the follow-up request, then asked
to predict if the follow-up is a steering request. For
negative data, we use self-contained follow-ups found
in the VA logs.

could have said in lieu of a complete reiteration,
should we have the ability to detect and handle
steering. For example, in Fig 1, we identified a
pair of reiterations Play the Worst Pies in London
and Play the Worst Pies in London by Patti LuPone.
By extracting the suffix in the second turn, we syn-
thetically create By Patti LuPone as the steering
follow-up for Play the Worst Pies in London.

For negative data sampling, we capture natural
non-steering follow-ups directed to the VA. As is
previously mentioned, in a VA that doesn’t support
steering, existing steering use cases are extremely
rare. Therefore, we simply sample consecutive
turns from the anonymized VA usage logs of users
that have opted in.

The positive and negative datasets are combined
in a 1:1 ratio, resulting in a dataset of four million
samples in total. This combined dataset is then ran-
domly split into training (80%), validation (10%),
and testing (10%) sets. Our model is thus trained
on a positive set comprising solely of unlabeled
data, obtained without any annotation.

While our negative data is reflective of real-
world usage, our positive dataset is derived from
heuristics. To establish more certainty about this
proxy dataset, we further evaluate the performance
on a real-world dataset, in which steering follow-
ups are manually identified and annotated from
opt-in data sampled from the VA usage logs.
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5 Model

The steering detection task can be formulated as
follows: Given two turns, determine whether the
second turn is a user’s attempt to steer the first
turn. We experimented with two variations of the
transformer encoder architecture: The first model
STEER, solely utilizes the transcriptions of the
turns. The second model, STEER+, incorporates
an additional feature: the encoding of a linearized
Semantic Parse Tree (SPT) derived from the first
turn.

STEER, depicted in Figure 2, follows the gen-
eral architecture of a transformer encoder (Vaswani
et al., 2017). It operates on tokenized queries and
incorporates positional encoding and turn encoding,
where the turn encoding denotes 0 for the first turn
and 1 for the follow-up turn. The three encodings
are projected to match the input size of the encoder
and are then summed. The model consists of four
transformer encoder layers, each comprising 128
hidden dimensions and 8 attention heads. Follow-
ing this, the output head implements mean pooling
across the sequence dimension. This pooled output
is then passed through a dense classification head
for the final prediction.

STEER+, also illustrated in Figure 2, utilizes the
same token, positional, and segment embeddings
as the baseline model. However, it differs by in-
corporating a linearized semantic parse tree (SPT)
encoding, depicted in Figure 2c. Each unique tree
node, excluding payloads, is assigned a node in-
dex. To represent the SPT’s structure, we introduce
two additional indices: a depth index, encoding
the node depth, and a sibling index, denoting the
node’s position among its siblings. As an example,
the SPT in Listing 2 can be encoded as Table 1.

Once the linearized SPT is encoded into three
groups of indices, we map them into three se-
quences of embeddings. These three SPT embed-
dings are then summed together, and the sum is

Node Node Index Depth Index Sibling Index
create:alarm v 0 0
.name.Str("bedtime") w 1 0
.time.Time x 1 1
.hour.Int(10) y 2 0
.minute.Int(30) z 2 1

Table 1: SPT from Listing 2 translated to indices. Nodes
are encoded with indices from node vocabulary that
maps to the model’s encoding layer. Depth and sibling
indices encode the structural information.

treated as an additional token to the original query
embedding along the sequence dimension. This
combined input is subsequently fed into the trans-
former encoder and dense prediction layers, which
are identical to the baseline STEER model. It is
worth mentioning that we chose to keep the SPT en-
coding straightforward. An interesting direction of
future research would be to explore more advanced
techniques like Tree-LSTMs (Tai et al., 2015) and
Tree Transformers (Nguyen et al., 2020) to encode
the parse tree, training the system jointly in an end-
to-end fashion.

6 Experimental Setup

Both models undergo training for a total of 300
epochs with a batch size of 256. A linear learning
rate warmup is applied for the initial 30 epochs,
from 1e-7 to 1e-4, followed by a linear learning rate
decay throughout the remaining the epochs back
to 1e-7, with early stopping. We used AdamW as
model optimizer and cross-entropy as loss function.

We experimented with various training settings,
such as a hyperparameter search on the learning
rate and learning rate schedule, batch size varia-
tions, and other optimizers. Additionally, we ex-
plored changes in the model architecture, including
varying the number of transformer encoder lay-
ers from 2 to 6, and experimenting with pooling
methods such as average pooling and max pool-
ing. Our experimental results are based on the best-
performing configuration of STEER. It is important
to note that our hyperparameter and architecture
search was specifically done on STEER, and we
maintained an identical configuration for STEER+
to ensure a fair comparison.

All our experiments were conducted on systems
with a single V100 GPU. On average, STEER takes
about 39 hours to train, and STEER+ trains slightly
faster, for around 38 hours due to early stopping.
Both STEER and STEER+ models are comparable
in size, with STEER having 4.5 million parameters
and STEER+ having 4.7 million.

7 Results

Task performance is evaluated based on prediction
accuracy on a held-out test dataset randomly split
from the training data. Table 2 presents the accura-
cies of the models, along with their 95% confidence
intervals, calculated from 32 independent trials.

STEER achieves a macro accuracy of 95.99%
± 0.04, where macro accuracy represents the av-
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(a) The overall model architecture for steer-
ing detection. Note that the concatenation of
the SPT Encoding is done along the sequence
dimension, rather than the hidden dimension.
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(b) The encoding process for constructing Token Encodings that are inputs to the
architecture in Figure 2a, represented by t1 . . . tn. Applies to both STEER and
STEER+ architectures.
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(c) The encoding process of the first turn’s semantic parse tree for creating SPT Encodings. This encoding is fed
into Figure 2a for STEER+. Each SPT Encoding is the concatenation of a node, sibling, and level encoding.

Figure 2: Illustration of STEER (Figure 2a without SPT Encoding) and STEER+ (Figure 2a as a whole, including
the SPT Encoding shown in dotted lines). Figures 2b and 2c detail how the Token Encodings and SPT Encodings
are generated respectively.

eraged classification accuracy on both data cat-
egories: consecutive reiteration (positive) and
follow-ups (negative). Within each data category,
STEER has an accuracy of 96.09% ± 0.09% on the
consecutive reiteration data and 95.89% ± 0.08%
on the follow-up data.

In comparison, STEER+ exhibits improvement
over the baseline across all data categories with
statistical significance. It achieves a macro accu-
racy of 96.44% ± 0.03%. Furthermore, within
each data category, STEER+ attains an accuracy of
96.47% ± 0.05% on consecutive reiteration data
and 96.40% ± 0.06% on follow-up data.

In addition to evaluating the models on the data
collected using the heuristic sampling approach,
we conducted a human grading task that involved
gathering over 800 real-world steering examples.

Both models were evaluated to assess their capa-
bility zero-shot in practical scenarios. Our data
sampling strategy demonstrated strong alignment
with real-world steering use cases, as both mod-
els achieved an accuracy of over 90%. Moreover,
STEER+ showcased statistically significantly bet-
ter performance, achieving an accuracy of 91.20%
± 0.16%, compared to STEER with an accuracy of
90.71% ± 0.17%.

8 Analysis

From Table 2, we observe that incorporating SPT
into our model leads to improved accuracy. Our
hypothesis is that when the first turn is steerable, its
corresponding SPT can be enriched with additional
information, which signals incompleteness. Fur-
thermore, steering often involves clarification with
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STEER STEER+
Consecutive Reiteration Accuracy 96.09 ± 0.09 96.47 ± 0.05
Follow-up Accuracy 95.89 ± 0.08 96.40 ± 0.06
Macro Accuracy 95.99 ± 0.04 96.44 ± 0.03
Real-world Positive Accuracy 90.71 ± 0.17 91.20 ± 0.16

Table 2: Experimental results with 95% confidence in-
tervals calculated from 32 independent trials. The first
two rows show the accuracy for each data bucket re-
spectively: Consecutive Reiteration data (positive) and
Follow-up data (negative). The following row, macro
accuracy, aggregates the two data buckets as an overall
accuracy. The final row shows the accuracy of real-
world graded steering use case dataset (positive).

entity names as evident Figure 3, and the SPT can
offer context on where these entities occur, enhanc-
ing the model’s understanding. To further validate
our assumption that the SPT can provide model
with entity context, Table 3 shows a domain-wise
break-up of STEER and STEER+ performance.
STEER+ shows significant gains in entity prevalent
domains such as messaging, social conversation,
and images. Fusing SPT also improves STEER+’s
performance across most other domains, with only
minor drops in a few specific domains.

In addition to model evaluation, we also assessed
the benefits of a voice assistant system having steer-
ing support brings to end users. This analysis fo-
cus on two aspects: we first show that there is
a substantial reduction in user friction. Then, we
demonstrate how support for steering improves con-
versational naturalness by allowing users to pause
and formulate (or refine) their query. We present
additional analysis in Appendix A.

Domain STEER Accuracy (%) STEER+ Accuracy (%) ∆ (%)
Messaging 93.54 96.73 3.18
Productivity 92.15 94.84 2.69
Social Conversation 90.92 92.9 1.98
Images 96.46 98.23 1.77
Ambiguous 93.77 94.75 0.98
Web Search 94.93 95.84 0.91
Music 97.32 98.11 0.8
Sports 96.45 97.16 0.71
Phone Call 94.08 94.62 0.54
Knowledge 95.83 96.26 0.43
Video 91.76 92.05 0.28
Math 97.91 98.17 0.26
Weather 98.39 98.27 -0.12
Maps 95.75 95.47 -0.28
System Actions 96.18 95.83 -0.35
Time Utilities 98.14 97.15 -0.99

Table 3: Domain-wise break down of STEER and
STEER+ performance in accuracy on 20k positive test
samples. ∆ highlights the performance difference of
STEER+ over STEER.

8.1 Reducing User Friction
To quantify how a steering-enhanced system can
help reduce user friction, we design a proxy metric,
which involves measuring the number of words a
user is saved by not having to reiterate their entire
query, since users can simply pick up where they
left off in the previous turn by issuing a steering
followup.

Given a steering use case, we quantify the over-
all user friction reduction as f , as outlined in equa-
tion 1. When the model correctly predicts steer-
ing, the user does not have to repeat the original
request and can continue with the steering com-
mand, resulting in a friction reduction of frequest.
However when the model fails to predict steering
correctly, the user has already issued the steering
request, leading to additional friction, denoted by
fsteer. This indicates that the user has paid an extra
cost compared to a voice assistant system that does
not support steering:

f = frequest · ŷ − fsteer · (1− ŷ), (1)

where ŷ is the model’s prediction. We measure user
friction f in equation 1 as the average number of
words saved and average proportion of total query
saved by steering as detailed in Table 4.

Words Saved Fraction of Query Saved (%)
STEER 3.963±0.007 58.06±0.07
STEER+ 4.095±0.005 58.64±0.05
Upper Bound 4.417 62.17

Table 4: Reduction in user friction is compared between
STEER and STEER+ on a 20k positive test set. On
average, STEER saves 58.06% of query from repetition
(equivalently 3.96 words per query). 0.6% abs improve-
ment observed with STEER+. A perfect model (upper
bound) will save 62.17% of request from repetition.

8.2 Improving Conversation Naturalness
Steering provides the ability to handle disfluencies
in user speech, which might include thought pauses
and slow speech. This is expected to be more pro-
nounced before named entities (Seifart et al., 2018;
Dendukuri et al., 2021). Figure 3 shows steering
to be robust to such disfluency in speech. Steering
allows the user the flexibility to provide named en-
tities in a separate request, and avoids the need for
users to be prepared with an entire query before
engaging with voice assistants. This flexibility en-
ables fluid conversations, allowing users to have
a natural, human-like experience. Since steering
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Figure 3: Illustration of part-of-speech transition prob-
ability at the steering boundary. Steering is most fre-
quent when the user provides a named entity; in particu-
lar, transitions from prepositions/subordinating conjunc-
tions (IN) to nouns (NN) (for example: ’what time is it
in’, ’portland’) and NN to NN (for example: ’how far is
las vegas from watsonville’, ’california’) are common.

can be triggered multiple times within a single re-
quest, it offers support for long and complex re-
quests. The steering explored in this work thus
serves as a foundational framework for building
next generation voice assistants that are capable
of executing complex instructions, often involving
multiple tasks.

9 Conclusion

In this work, we proposed STEER, a steering de-
tection model for voice assistants. Our research
presents a data sampling strategy that enables us
to obtain high quality steering data without annota-
tion. Additionally, We introduced STEER+, which
jointly learns from token features and a semantic
parse tree, achieving over 91% classification accu-
racy on real-world data, and showing significant
error reduction and lower user friction over STEER.
Lastly, we present a data analysis highlighting how
support for steering use case in voice assistants can
reduce user friction and improve conversation natu-
ralness. We hope that this work can support future
research and advancements in VA systems, ulti-
mately enhancing their capabilities and usability in
various domains.
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A Additional Analysis

In this appendix section, we present additional anal-
ysis around the impact of using SPTs in STEER+
and the benefits this offers over STEER. We also
delve deeper into the reduction in user friction
explored in Section 8.1, both by examining our
proposed STEER model, but also by examining
STEER+ in comparison with STEER.

A.1 STEER vs STEER+
We further dive the comparison between STEER
and STEER+, visualizing the statistically signifi-
cant improvement provided from encoding the SPT
in STEER+ demonstrated in Table 2.
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Figure 4: STEER+ shows statistically significant im-
provement over STEER as observed by the distributions
above and 95% CI reported in Table 4. This highlights
the benefit of using semantic signals to the end user.

In Figure 4 above shows histograms that aim
to summarize the performance of all STEER and
STEER+ models trained in terms of how they help
reduce user friction (refer Section 8.1 for details).
In sub-plot 4a, the x-axis buckets represent the (ab-
solute) number of words saved when a steering

system is in place; in sub-plot 4b the x-axis buckets
represent the fraction of the query that the user does
not have to repeat. In both sub-plots, the y-axis cap-
tures how many among our repeated, independent
trials fell into a particular bucket.

As is evident from the figure, in both cases, we
see that even the worst performing STEER model
helps reduce user friction. Interestingly, as is seen
from the two histograms, we find that even the best
performing STEER model from all our runs is com-
parable to among the worst performing STEER+
models, with a clear separation between the two
histograms in sub-plot 4a and almost no overlap in
sub-plot 4b.

A.2 User Impact Breakdown

To further explore the user impact and reduction
in user friction analyzed in Section 8.1, we present
two histograms below.

Figure 5 is a histogram in which the buckets on
the x-axis represent fraction of the requests saved
by STEER, as calculated by Equation 1; the y-axis
represents the frequency (as a fraction of our anal-
ysis set). While there are a very small number
of cases where STEER degrades the user’s experi-
ence by incorrectly identifying a steering request
as a follow-up, the figure clearly illustrates that, an
overwhelming majority of the time, there is a net
improvement in the user experience.
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Figure 5: Illustration of user impact from steering. In
some instances, when the model fails to detect steering,
the user has to repeat their request on top of the query
that they used to attempt to steer: this accounts for the
distribution on the negative side of the x-axis. How-
ever, since most steering cases are detected correctly,
the STEER model effectively provides a significant net
benefit to the user.

Figure 6 aims to show a detailed comparison of
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how STEER+ performs in comparison to STEER.
To do this, as in Figure 5, we show a histogram
in which the y-axis represents the frequency (as
a fraction of our analysis set); however, here, the
buckets on the x-axis represent the difference in
the fraction of the requests saved by STEER and
those saved by STEER+. A positive value means
that STEER+ has a higher frequency of datapoints
falling into that bin than STEER. Here, we see that
almost all bins below 0 are negative, which implies
that STEER+ consistently reduces the number of
cases in which steering failed to be detected; like-
wise, almost all bins above 0 are positive, implying
that STEER+ consistently increases the number of
cases in which steering was correctly detected.
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Figure 6: Illustration of improvement from STEER+.
Owing to the improved accuracy of STEER+, we see
better detection of steering. This, in turn, results in
fewer instances of users repeating the steering query.
We thus see an improvement in terms of user experience
by incorporating semantic signals

649


