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Abstract
Deep semantic retrieval has achieved remark-
able success in online E-commerce applica-
tions. The majority of methods aim to dis-
tinguish positive items and negative items for
each query by utilizing margin loss or soft-
max loss. Despite their decent performance,
these methods are highly sensitive to hyper-
parameters, e.g., the margin and the tempera-
ture, which measure the similarity of negative
pairs and affect the distribution of items in met-
ric space. How to design and choose adaptively
parameters for different pairs is still an open
challenge. Recently several methods have at-
tempted to alleviate the above problem by learn-
ing each parameter through trainable/statistical
methods in the recommendation. We argue
that those are not suitable for retrieval scenar-
ios, due to the agnosticism and diversity of
the queries. To fully overcome this limitation,
we propose a novel adaptive metric learning
method that designs a simple and universal
hyper-parameter-free learning method to im-
prove the performance of retrieval. Specifi-
cally, we first propose a method that adaptive
obtains the hyper-parameters by relying on the
batch similarity without fixed or extra-trainable
hyper-parameters. Subsequently, we adopt a
symmetric metric learning method to mitigate
model collapse issues. Furthermore, the pro-
posed method is general and sheds a highlight
on other fields. Extensive experiments demon-
strate our method significantly outperforms pre-
vious methods on a real-world dataset, high-
lighting the superiority and effectiveness of our
method. This method has been successfully
deployed on an online E-commerce search plat-
form and brought substantial economic bene-
fits.

1 Introduction

In recent years, pre-trained deep semantic retrieval
models have made significant progress and appli-
cation, particularly in the e-commerce field, with
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the research and application of deep learning tech-
nology. Compared with traditional lexical-based
methods, the deep semantic retrieval model has the
advantages of high accuracy, low mismatch, and
strong generalization. The classical deep semantic
retrieval methods could be split into two categories,
sparse-based retrieval (Bai et al., 2020; Shen et al.,
2022; Formal et al., 2021; Gao et al., 2021), and
dense-based retrieval (Zhang et al., 2020; Khattab
and Zaharia, 2020; Zhan et al., 2021; Qiu et al.,
2022; Wang et al., 2023). Although there are dif-
ferences in representation, they all learn the deep
model through an end-to-end paradigm using con-
trastive learning methods. Specifically, they first
represent the query and item into dense/spare vec-
tors in metric space. Then, they adopt softmax loss
or margin loss to distinguish the positive item and
the negative item. The hyper-parameters of mar-
gin or temperature measure the disagreement of
similarity of query and candidate items.

Nevertheless, we argue that this paradigm also
has several limitations as it fails to meet query re-
quirements. For instance, different queries have
different metrics for candidate items. Some queries
are general words, and the distance between the
query and candidate items may be smaller than
precise words. Reflected in the metric space, this
query should be a smaller margin in margin loss,
and vice versa. Analogously, the temperature of the
general query should be large, which has a greater
entropy for the similarity of query and items. How-
ever, the classical Deep retrieval method fails to ad-
dress these issues due to the fixed hyper-parameters.
As we know, hyper-parameter searches are highly
time-cost expensive to find the optimum by grid
approach and have a significant impact on perfor-
mance.

Designing and choosing adaptive parameters for
different pairs remains an open challenge. Recently
several methods considered to alleviate the above
problem by learning each parameter through train-
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able/statistical methods in recommender systems.
Typically, (Li et al., 2020) first presents a concept
of user/item bias to measure the margin in met-
ric space for margin loss, which could be trained
by background optimization. (Ma et al., 2020) pro-
poses to learn an adaptive margin for different users
via bi-level optimization (Jiao et al., 2022), where a
proxy function is built to explicitly update the mar-
gin generation-related parameters. However, those
are not available for retrieval scenarios, due to the
agnosticism and diversity of the query. Similarly,
(Chen et al., 2023) also finds that the temperatures
play an important role from the perspective of lim-
itation of normalization and develop an adaptive
fine-grained strategy for the temperature with satis-
fying four desirable properties including adaptivity.
This is the first work to explicitly talk about the
problem and attempt to study how to adaptively
set the proper temperature for recommender sys-
tems. We argue that this method is complex and
unavailable in retrieval systems because the query
is unknown in the real world not like the field of
recommendation, where users are given.

Thus, the above limitation motivates us to de-
sign a simple and hyper-parameter-free method to
enhance the performance of deep retrieval. Toward
this end, we present a unified solution to address
the problem for both softmax loss and margin loss.
More precisely, we first analyze the limitation of
the original method from the metric space. Sub-
sequently, we present a heuristic method, which
generates the margins/temperatures by the inner
product of batch samples adaptively. To prevent
the collapse of the training process i.e., all items’
embedding have high similarity, we adopt the sym-
metric metric learning method to push the posi-
tive items far away from the negative items. We
conduct extensive experiments in the real-world
e-commerce field, and the results demonstrate the
effectiveness of the proposed.

The contributions of this paper can be summa-
rized as follows:

• This is the first work to present a unified so-
lution for hyper-parameters-free learning in
deep semantic retrieval.

• We propose a novel adaptive learning method
that designs a parameters-free component to
adjust the distance of items in metric space
and aligns the query and item embedding
space via symmetric metric learning.

• We conduct extensive experiments on a real-
world dataset. Experimental results show that
our model achieves significant improvement
over the classical models.

• This method has been successfully deployed
on an online E-commerce search platform and
brought substantial economic benefits.

2 PRELIMINARIES

In this section, we first give the formulation of the
retrieval task and then present the heuristic method
for two classical paradigms, i.e., margin loss and
softmax loss. Finally, we will give a detailed de-
scription of the proposed hyper-parameters-free
methods.

2.1 Formulation
In the E-commerce field, the dense retrieval prob-
lem can be formulated as follows (Wang et al.,
2023). Suppose there is a set of query Q and a set
of items V , and all query-item interactions(clicked
or ordered) are noted as I = (q, v)|q ∈ Q, v ∈ V .
Given a query q, The algorithm of dense retrieval is
to recall the K most relevant items from the large
collection of N items. The dimension of represen-
tation of query or item is denoted as D. For a clear
definition, throughout the rest of this paper, bold
lowercase letters represent vectors.

2.2 Representation Learning
The most classical model of representation learning
is the dual-encoder based model (Qu et al., 2021;
Karpukhin et al., 2020; Ren et al., 2021; Li et al.,
2021; Huang et al., 2020; Qiu et al., 2022), i.e.,
query encode and item encode, which represent
queries and products with embeddings. Consider-
ing the personalized effect, the user’s identifying
information will be included, denoted as:

q = f(q, u) ∈ RD, v = f(v) ∈ RD (1)

where f is the mapping function, such as MLP,
Bert; the u denotes the user’s features and v denotes
the item’s features. The similarity of query and
item is calculated by inner-product:

s(q, v) = ⟨q, v⟩ (2)

2.3 Loss Function
The object of the dual-encode model is mainly
trained by negative sampling or batch-negatives
(Zhang et al., 2020; Li et al., 2021). Specifically,
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given a sample list with one positive item and n
negative items, i.e., < q, v, v−1 , v

−
2 , . . . , v

−
n >, the

goal is to push the negative item away from the
query and pull the positive item close to the query.
The mathematical formula could be described as:

s(q, v) > max
(
s(q, v−1 ), . . . , s(q, v

−
n )

)
(3)

There are two classical loss functions for training
in E-commerce, i.e., margin loss and softmax loss.

2.3.1 Margin Loss
The margin loss aims to distinguish the positive
item and negative item by a margin δ, which is
a fixed hyper-parameter that controls the decision
boundary in the metric space. The formulation of
margin loss could be denoted as follows:

Lmargin =
n∑

i

[
s(q, v−i )− s(q, v) + δ

]
+

(4)

where [∗]+ = max(∗, 0).

2.3.2 Softmax Loss
The softmax loss could achieve great training sta-
bility and align well with the ranking metric. It
usually achieves better performance than others
and thus attracts much attention in retrieval. The
formulation is denoted as:

Lsoft = − log
exps(q,v)/τ

exps(q,v)/τ +
∑n

i=1 exp
s(q,v−i )/τ

(5)
where τ is the temperature (Wang and Liu, 2021; Li
et al., 2021), smoothing the overall fitted distribu-
tion of the training data. A small value means that
the model completely fits the supervisory signals
and is more focused on the hard negative items, and
vice versa.

3 Approach

In this section, we will first talk about the limitation
of the loss function above-mentioned and then will
give a general heuristic method in accordance with
the measure assumptions. Finally, we describe the
complete method, the symmetric metric learning
method in detail.

3.1 Limitation

The loss function mentioned above depends on
the hyper-parameters, which play a significant role

in performance. Specific experiments will be dis-
cussed in the following section. Unfortunately, tra-
ditional methods suffer from the problem of choos-
ing hyper-parameters adaptively. Additionally, in
personalization scenarios, each pair requires a spe-
cific margin and temperature value, making it even
more challenging to learn or select the appropriate
value.

While other fields, such as recommender sys-
tems, have addressed this issue through bi-level or
statistical learning, we argue those methods are not
suitable for retrieval scenarios. Retrieval scenarios
involve input queries that are different from rec-
ommendations because input queries from online
systems are abundant and agnostic. Therefore, a
parameter-free method is necessary to generate the
specific value.

To this end, we first present a heuristic method
that computes the value by inner product and then
propose a symmetric metric learning method to
alleviate the problem of collapse in the training
process.

3.2 Heuristic Method

In the metric space, the position of the hardest
negative items is very close to the positive item,
while easy or random negative items remain far
away from positive items. We need to distinguish
the negative items in fine-grained. Given a pair
< q, v, v−i >, if v−i is the hardest negative, the
similarity of query and positive v should be higher,
in other words, the margin should be smaller in
margin loss. Similarly, for the hardest negative, the
temperature τ also should be smaller in the softmax
loss.

Without generality, we adopt the inner product
to measure the similarity of items in this paper.
According above metric assumption, given a pair
< q, v, v−i >, the corresponding margin δiq could
be computed as follows:

δqi = α ∗ (1− < v, v−i >) + δ0 (6)

where α and δ0 could be trainable or global con-
stant parameters, scaling the value for different
datasets. It is easy to find that, when α = 0, the
heuristic method is equivalent to the original model
with fixed margin δ0.

Because multi-pairs will share the positive and
negative items, e.g., < q1, v, v

−
i >,< q2, v, v

−
i >

, . . . , < qm, v, v−i >, in practice, we could share
the margin value in one batch, i.e., δi = δqi .
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Though the heuristic method is simple and free-
trained, we discuss that it will suffer from model
collapse during the training process, resulting in
all items being clustered together in a metric space.
From the perspective of gradient, we can know that
the adaptive margin will affect the update direction
of positive and negative items.

∂Lmargin

∂v
= −q−α∗

∑

i

v−i ;
∂Lmargin

∂v−i
= q−α∗v

(7)
To remit the problem of model collapse, the

straightforward method is to adopt the stop gra-
dient strategy eliminating the effect of margin.

δi = α ∗ (1− < sg(v), v−i >) + δ0 (8)

where sg(*) is the operation of stop_gradient. The
final loss function could be formulated as follows:

Ladap_margin =
n∑

i

[
s(q, v−i )− s(q, v) + δi

]
+

(9)

3.3 Symmetric Metric Learing
Although the above function is efficient in some
scenarios, there is still a risk of collapse due to
bad initialization, such as s(q, v) <= s(q, vi)). Es-
sentially, the distance between the query and the
item s(q, v) is too large, while the distance of item
pairs s(v, vi) is smaller, reflecting the problem of
misalignment of the two spaces, i.e., the query’s
space and the item’s space.

To avoid this problem completely, we introduce
an additional symmetric metric learning loss based
on rank loss. More specifically, it exchanges the
anchor of a given sample list, i.e., v as the anchor,
q as the positive item, which aims to push the neg-
ative item away from the positive item, denoted
as:

s(q, v) > max
(
s(v, v−1 ), . . . , s(v, v

−
n )

)
(10)

Similar as Equation 9, the approximate function is:

Lsymm_margin =

n∑

i

[
s(v, v−i )− s(q, v) + δ

′
i

]
+

(11)
where δ

′
i = α ∗ (1− < sg(q), v− >) + δ0. Since

this is an auxiliary task, it could be set to δ0 (i.e.,
α = 0) for simplicity.

3.4 Overall Loss
Now we summarize the optimization complete ob-
jective of origin margin loss and symmetric loss as
follows:

L = Ladap_margin + w ∗ Lsymm_margin (12)

where w is the weight of symmetric loss.
Along the same perspective, we can give the total

objective for the softmax loss paradigm, denoted
as:

L = Ladap_soft + w ∗ Lsymm_soft =

− 1

N

∑
log

exps(q,v)/τ0

exps(q,v)/τ0 +
∑n

i=1 exp
s(q,v−i )/τi

− w

N

∑
log

exps(q,v)/τ0

exps(q,v)/τ0 +
∑n

i=1 exp
s(v,v−i )/τ

′
i

(13)
where τi = δi, τ

′
i = δ

′
i.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the performance of the proposed method
and investigate the effect of different components
by ablation studies.

Datasets and Metrics
We collect search logs of user clicks and purchases
for 60 days from an online E-commerce website,
where the size of the dataset is 5 billion. We choose
the standard retrieval quality metric batch-top@K
to measure the results based on the batch samples,
and Recall@K to measure the results based on
the full corpus, where K ∈ {1, 2, 5, 10, 50} and
{1, 50, 500, 1000}, respectively.

To evaluate the online performance, we choose
the classical metrics(Wang et al., 2023; Li et al.,
2021; Yuan et al., 2023), such as UV-value (revenue
per Unique Visitor), and UCVR (Oderlines/UV), to
measure the results of the A/B test. We also mea-
sure the performance by the number of items after
passing the relevance module, and participating in
the pranking phase, denoted as Numprank.

Baselines
In the industrial field, the most widely used work
could be divided into two backbones: DSSM
(Huang et al., 2013) and a pre-trained model based
on Bert (Devlin et al., 2018). Without loss of
generality, we select DSSM and DPSR (Zhang
et al., 2020) (considering the personalized infor-
mation) as baselines with the backbone of DSSM,
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Table 1: Offline experimental results on recall@K (K is set to 1, 50, 500, 1000)
.

Methods recall@1 recall@50 recall@500 recall@1000
Backbone DSSMa

DSSMa (Huang et al., 2013) 0.0069 0.1789 0.5706 0.6806
DSSM+MMSE (Wang et al., 2023) 0.0228 0.4063 0.7517 0.8067

DPSR (Zhang et al., 2020) 0.0076 0.1946 0.5771 0.6817
DPSR+MMSE 0.0237 0.3993 0.7447 0.8014

LTR (Liu et al., 2009) 0.0061 0.1558 0.4782 0.5835
Backbone Bertb

RSR (Qiu et al., 2022) 0.0094 0.1980 0.5486 0.6496
RSR+M1 0.0076 0.1932 0.5622 0.6583
RSR+M2 0.0107 0.2108 0.6025 0.6993

RSR+MMSE (Wang et al., 2023) 0.0099 0.2201 0.6145 0.7104
Ours 0.0137 0.2637 0.6156 0.7122

aThe vocabulary size and batch size of backbone DSSM is set to 400k, 1024, while Bert is 20k, 350.

and RSR (Qiu et al., 2022) and variant version with
multi-objective learning (RSR + MMSE) as the rep-
resentative of the backbone of Bert. Noting that the
strong baselines are RSR, deep personalized and
semantic retrieval, devoted to tackling the person-
alized problem of different users, which had been
deployed in the online system, severing hundreds
of millions of users.

It is worth noting that the DSSM, DPSR, RSR,
and MMSE methods all used the softmax loss
paradigm during training since the performance
of softmax loss is better than margin loss. Thus,
our method also adopts softmax loss for fair com-
parison.

Our method is easily extensible and could be
adapted in various versions of dual-encode (e.g,
MGDSPR (Li et al., 2021), Colbert (Khattab
and Zaharia, 2020)), and multi-objective learning
RSR+MMSE (Wang et al., 2023).

Implementation Details
To ensure a fair comparison among different meth-
ods, we keep the feature, vocabulary size, the di-
mension of query/item, and parameters of PQ the
same as (Wang et al., 2023). Specifically, we set
the dimension as 128, batch size as 350, and n-list
of IVF-PQ as 32768, and the indexing construction
is used in the Faiss ANNS library 1. The default
temperature τ of softmax is 1/30, the margin is set
to 0.1. α is set to 0.5, δ0 is set to 0.01, and τ0 is set
to 1/30. The default value of w is set to 0.05. The
Adam optimizer is employed with an initial learn-
ing rate of 5e-5. The maximum length of query and

1https://github.com/facebookresearch/faiss

product sequences are 30, and 100, respectively.

4.1 Experiment Results

The experimental results are shown in Table 1.
From the results, we can conclude that the pro-
posed method achieves a significant improvement
over the baselines. Specifically, Our method per-
forms better than the RSR and RSR’s variations
(such as RSR + M1, and RSR +M2) in terms of
recall@K. It is particularly noteworthy that our
method is similar to RSR which is also finetuned
based on a pre-trained Bert model in the clicked
dataset. Therefore, comparing the performance of
RSR and ours, we can find that the proposed com-
ponents, i.e., hyper-parameters-free and symmetric
metric learning loss, make potential improvements
gained for retrieval. This also demonstrates that
the design of objective loss is significant for the
training process. Compared with RSR’s variation,
especially the MMSE which measures full sam-
ple space, we can see that the more finely grained
would bring great benefits, motivating us to extend
ours to multi-objective learning in the future.

4.2 Impact of Hyper-paremeters

As we mentioned in the introduction, we discuss
that hyper-parameters will have a huge effect on
performance. In this subsection, to prove that we
conduct several experiments based on RSR to in-
vestigate the impact of different margins δ and
temperature τ for margin loss and softmax loss.
According to experimental results, we find that the
metric of batch-top@K is positively correlated with
recall@K. Thus, for quick validation, we only use
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Table 2: The impact of different margin m and temperature τ for margin-loss and softmax loss, the batch size is 512.

method batch-top@1 batch-top@2 batch-top@5 batch-top@10 batch-top@50
margin loss m = 0.01 0.7502 0.8610 0.9376 0.9689 0.9976
margin loss m = 0.1 0.7510 0.8621 0.9382 0.9691 0.9977
margin loss m = 0.5 0.7016 0.8292 0.9257 0.9529 0.9973
margin loss m = 1.0 0.1811 0.2871 0.4904 0.6827 0.9617
softmax loss 1/τ = 1 0.1510 0.2481 0.4475 0.6430 0.9521
softmax loss 1/τ = 10 0.7361 0.8532 0.9436 0.9675 0.9973
softmax loss 1/τ = 50 0.7536 0.8633 0.9385 0.9691 0.9977

Table 3: Online performance of A/B tests. The improvements are averaged over 10 days in 2023. p-value is obtained
by t-test over the RSR+MMSE.

Metric Numprank UCVR UV-value
Gain +2.0% +0.450% +0.353%

p-valueb - 0.0238 0.2492
b Small p-value means statistically significant.

batch-top@k as the metric. Results are shown in
Table 2. As we have shown, the performance is
highly sensitive to hyper-parameters, both margin
and temperature. For the margin loss, the smaller
m is intended for better performance and the τ has
a similar phenomenon for softmax loss. This could
be explained by the more attention on hard neg-
ative items, the more performance improvement.
This conclusion is consistent with previous work
(Li et al., 2020; Jiao et al., 2022; Chen et al., 2023).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

batch-top@1 batch-top@2  batch-top@5
softmax loss

softmax loss with adaptive  temperature + symmetric loss

softmax loss  + adaptive  temperature + without  symmetric loss

Figure 1: The impact of different components on perfor-
mance in terms batch-top@K, K ∈ {1, 2, 5}.

4.3 Ablation Study
In this subsection, we investigate the impact of
different components on performance in terms of
batch-top@K. There are two components, adaptive
temperature, and symmetric loss. As shown in Fig-
ure 1, we can observe that the method without the
symmetric loss component will lead to extremely
poor results, which validates the above discussion
of the model collapse phenomenon. In other words,
symmetric metric learning is indispensable for the

training process. What’s more, the adaptive tem-
perature is also a useful component for retrieval.

4.4 Online A/B test

To investigate the effectiveness of the proposed
method in the real-world commercial scenario, we
conduct several A/B tests, and the online results
are reported in Table 3. Comparing with the base
model (RSR+MMSE)in the real online environ-
ment, we can note that our performance increases
by 2.0% in terms of Numprank and 0.45% in
UCVR, respectively, which demonstrates that the
designed techniques are practical gains for the on-
line system.

5 Conclusion and Future Work

This paper addresses the challenge of adaptive
hyper-parameter selection for the contrastive learn-
ing paradigm in deep retrieval fields. Toward this
end, we first present a straightforward heuristic
method, which uses the batch similarity of items
to generate a margin or temperature, eliminating
the complex trainable variables. However, our the-
oretical analysis reveals that this method is prone
to model collapse. To prevent the above problem,
we adopt the symmetric metric learning method
to align the query and items in metric space. Ex-
periments verify that our assumptions and method
are simple, effective, and significantly outperform
other models in real-world datasets. Moreover, we
have successfully deployed this method on online
search platforms, leading to significant commercial
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value. It is worth noting that, this method could
give a great inspiration for other fields, such as
recommendation and knowledge graph learning.

In future work, we aim to explore the benefits
of multi-objective learning with adaptive hyper-
parameters in the full sample space.
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