
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 811–819
December 6-10, 2023 ©2023 Association for Computational Linguistics

Graph Meets LLM: A Novel Approach to Collaborative Filtering for
Robust Conversational Understanding

Zheng Chen∗, Ziyan Jiang∗, Fan Yang∗, Eunah Cho,
Xing Fan, Xiaojiang Huang, Yanbin Lu, Aram Galstyan

Amazon
{zgchen, ziyjiang, ffanyang, eunahch, fanxing, xjhuang, luyanbin, argalsty}@amazon.com

Abstract
A Personalized Query Rewriting system aims
to reduce defective queries to ensure robust
conversational functionality by considering in-
dividual user behavior and preferences. It’s
usually structured as a search-based system,
maintaining a user history index of past suc-
cessful interactions with the conversational AI.
However, this approach encounters challenges
when dealing with unseen interactions, which
refers to new user interactions not covered by
the user history index.

This paper introduces our “Collaborative
Query Rewriting” approach, which utilizes un-
derlying topological information to assist in
rewriting defective queries arising from unseen
interactions. This approach begins by construct-
ing a “User Feedback Interaction Graph” (FIG)
using historical user-entity interactions. Subse-
quently, we traverse through the graph edges to
establish an enhanced user index, referred to as
the “collaborative user index”.

We then delve deeper into the utilization of
Large Language Models (LLMs) to assist in
graph construction by understanding user pref-
erences, leading to a significant increase in in-
dex coverage for unseen interactions. The ef-
fectiveness of our proposed approach has been
proven through experiments on a large-scale
real-world dataset and online A/B experiments.

1 Introduction

Defective queries frequently occur during user in-
teractions with conversational AI systems such as
Alexa, Siri or Google Assistant. These are induced
by user ambiguities or mistakes, along with errors
in automatic speech recognition (ASR) or natural
language understanding (NLU). Defective queries
impact the robustness of the conversational AI sys-
tem, as they hinder users from receiving the in-
tended results and often require further clarifica-
tion. Query Rewriting (QR) is a subsystem within

∗∗Authors contributed equally to this research. Authors
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the conversational AI that plays a crucial role in
reducing defective queries. By automatically re-
fining or correcting these defective queries, QR
enhances the overall robustness of the AI system
and significantly improves the user experience.

Personalized Query Rewriting (Personalized
QR) takes into account individual preferences or
unique error patterns identified from a user’s his-
torical interactions with the conversational AI. It
plays a crucial role in addressing a wide range
of user-specific defects, particularly in the torso
and tail distribution. For instance, when a user
presents a defective query like “play abcdefg”, a
non-personalized QR system might rewrite it to
“play alphabetic song” based on the high overall
transition probability from “abcdefg” to “alpha-
betic song”. However, for this particular user, the
query was intended for the song “abcdefu” by the
American singer Gayle.

A personalized QR system is often designed as
a search-based approach, which requires a user his-
tory index to capture historical non-defective user
experiences. The user history index includes each
user’s own historical successful queries, rephrases,
rewrites, and related metadata & statistics. During
runtime, given a user query (e.g. “play abcdefg”),
the system checks if a successful historical query
utterance (e.g. “play abcdefu by gale”) in the user
history index closely matches the current query.
The user interactions covered by the user history
index are called the “seen interactions”.

Despite the effectiveness of personalized QR
for reducing defects in conversational AI, we have
identified the challenge posed by “unseen interac-
tions” not covered by the user history index. We
have observed that users frequently engage in new
experiences, leading to approximately 50% of the
queries/interactions not being covered by the user
history index. We refer to these queries/interactions
as “unseen”. Moreover, unseen queries/interactions
have a defect rate roughly 7% higher. This under-
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scores the potential benefits of query rewriting for
these unseen interactions.

We introduce our approach “Collaborative
Query Rewriting” (Collaborative QR), designed
to overcome the constraints of the user history in-
dex. This approach is inspired by our observation
that users who interact with similar entities through
a conversational AI often make similar queries or
experience comparable defects (see Figure 1). The
cornerstone of our approach is the “User Feedback
Interaction Graph” (FIG), which captures users’
previous interactions with various entities through
the conversational AI in a user-entity interaction
graph (see Section 3.2). Our key idea is to leverage
FIG to form a collaborative user index consisting
of additional rewrite candidates not found in the
user history index.

Graph traversal through the FIG is the most
straightforward approach for constructing the col-
laborative user index (see Section 3.3). To enhance
the collaborative user index, we delve deeper into
Large Language Models (LLMs) (see Section 3.4).
In this paper, we investigate the potential of inte-
grating a publicly available LLM, “dolly-v2-7b”
(Conover et al., 2023)1, with graph traversal to fur-
ther improve the coverage of the collaborative user
index.

Our key contributions are summarized as the
following:

1. To the best of our knowledge, we are the first
to propose “Collaborative Query Rewriting”,
which uses topological user-entity interaction
information to reduce query defects. We have
validated our approach through experiments
on a large-scale real-world dataset and online
A/B experiments.

2. We have explored the use of LLMs to learn
from the user preference in the FIG graph.
Our findings show a marked boost in index
coverage for previously unseen user interac-
tions. This led to a notable improvement in
the defect reduction trigger rate, while the col-
laborative user index size cap is reduced from
500 to 200 to save runtime latency and cost.

2 Related Works

Query Rewriting Query Rewriting (QR) in dia-
logue systems aims to reduce frictions by refor-

1This is the best public model available for commercial
use at the time of our experiments. Therefore, we chose to
experiment with this model to evaluate its performance.

mulating the automatic speech recognition com-
ponent’s interpretation of users’ queries. Initial
efforts (Dehghani et al., 2017; Su et al., 2019) treat
QR as a text generation problem.

Some recent studies (Chen et al., 2020b; Fan
et al., 2021a; Cho et al., 2021; Naresh et al., 2022)
are based on neural retrieval systems. In these
retrieval-based frameworks, the rewrite candidate
pool is aggregated from users’ habitual or histori-
cal queries so that the rewrite quality can be tightly
controlled. Compared to generation-based systems,
retrieval-based systems may sacrifice flexibility and
diversity of the rewrites, but in the meanwhile pro-
vide more stability which is more important in a
runtime production setup.
LLMs for User Preference Learning There has
been a surge of recent researches affirming LLM
can learn from user affinity and make predictions
or recommendations. (Chen, 2023) fine-tunes a
LLaMA 7B model to learn from the user affinity of
movie-lens dataset and the Amazon beauty dataset,
and out-performs the SOTA models on the recom-
mendation task. (Kang et al., 2023) investigates the
ability of Large Language Models (LLMs) to un-
derstand user preferences and predict user ratings.
The study finds that while zero-shot LLMs lag be-
hind traditional recommender models that utilize
user interaction data, they can achieve compara-
ble or even superior performance when fine-tuned
with a small fraction of the training data. (Cui
et al., 2022) proposed a generative pretrained lan-
guage model that serves as a unified foundation for
various tasks in recommender systems, using user
behavior data as plain texts and converts tasks into
language understanding or generation.

3 Methodology

3.1 Notation and Preliminaries
Users interact with a conversational AI agent by
providing an input termed a “query”. Within the
agent, there is a natural language understanding
(NLU) component designed to comprehend the de-
tails of the given query, such as classifying the
query into a domain, extracting and resolving enti-
ties from the query. This process is how we capture
multi-domain user-entity interactions with the con-
versational AI.

Definition 1. Let γ be an integer such that 1 ≤
γ < ∞. The natural language understanding of
a query for our purpose can be understood as a
mapping function, h : Q → D × [E]γ , where Q
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Figure 1: High-level illustration of the FIG and its application in collaborative QR. User X and Y interacted with
the same or similar baking videos, which indicates their similarity. There was a successful historical rewrite “play
easy cake → play is it cake on netflix” for user Y, which effectively resolved entity to the correct one. When user X
encounters a defective query such as “play is it cake”, the historical rewrite from user Y (“play easy cake → play is
it cake on Netflix”) can be considered as a rewrite candidate and utilized to correct it as “play is it cake by Netflix”.

refers to the query space, D refers to the domain
space and E refers to the entity space. The entity
space, E := ET ×EV , may further be decomposed
into the entity type space ET and the entity value
space EV . All spaces are defined over Unicode
strings.

As an example, given a query string q =“Play
The Real Slim Shady”, the corresponding NLU hy-
pothesis is h(q) =(Music, [(SongName, The Real
Slim Shady)]) where the domain is Music and the
entity value is “The Real Slim Shady” with the
entity type of “SongName”.

3.2 User Feedback Interaction Graph

Graph emerges as a natural structure to represent
user historical interactions with various entities
through the conversational AI (Markowitz et al.,
2023). These entities can span diverse categories
like songs, videos, books, and more. We extract
non-defective user-entity interactions from the raw
conversational AI logs and integrate them into a
user-entity interaction graph. Different nodes of the
graph represent different users and entities, while
the edges encapsulate the information related to
their interactions. This interaction information
encompasses the user’s queries as well as asso-
ciated feedback signals (e.g. impression, defect

rate, barge-in rate, termination-rate). We refer to
this graph as “User Feedback Interaction Graph”
(FIG), where the term “feedback” emphasizes that
the graph incorporates explicit and implicit feed-
back from users.

Figure 1 offers a high-level depiction of the FIG
and its application in collaborative QR. It includes
user nodes (such as “User X”, “User Y”, “User
Z”) and entity nodes (like “Video: Is It Cake” and
“Recipe: Susie Cake”). The user queries encapsu-
lated in the edges represent non-defective interac-
tions between the user and the entity. Here, “non-
defective” refers to user-entity interactions where
the defect rate (Gupta et al., 2021) falls below a
certain threshold. These queries might consist of
the user’s original input utterances (for example,
“play is it cake from netflix on the living room tv”2)
or a pair of utterances if a rewrite for the original
input was successful in the past (such as “play easy
cake” being revised to “play is it cake on netflix”).
Feedback signals, also encapsulated in the edges,
include various elements such as impression (repre-
senting the past frequency of the query), defect rate
(Gupta et al., 2021), barge-in rate (the probability
that the user interrupted the agent’s response to this
query), termination-rate (the probability that the

2All queries are in lower case for this paper.
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user stopped the agent’s response to this query).

3.3 Collaborative User Index Through Graph
Traversal

We leverage the FIG to build a collaborative user
index through graph traversal. The intuition is that
users who have interacted with the same entities in
the past are likely similar, and could also exhibit
similar interactions in the future. As we traverse the
FIG, we collect the interaction information encap-
sulated within these edges (e.g. historical queries
for this interaction, with their associated feedback
signals, see Section 3.2) and integrate them into
our collaborative user index. Within this process,
user queries are considered potential candidates for
rewriting, while feedback signals can serve as rank-
ing features (see Section 3.5). Currently, we limit
our consideration up to a 3-hop traversal (that is,
paths such as “User X → Entity A → User Y → En-
tity B”) due to computational resource constraints.
The collaborative user index is pre-constructed of-
fline to reduce runtime latency and is periodically
refreshed. We also implement heuristic rules to
surface more promising candidates while control-
ling the size of the collaborative user index (see
Appendix A.1).

After considering both runtime system latency
constraints and the coverage of unseen interactions,
we have settled on a size cap of 500 for the collab-
orative user index.

3.4 Collaborative User Index Enhanced By
LLMs

Large language models have showcased remark-
able capability in deducing user preferences and
predicting future behavior by analyzing historical
interactions (Chen, 2023; Wang et al., 2023). Be-
fore the graph traversal step, we employ a large
language model for link prediction between the
user nodes and the entity nodes. We have cho-
sen the “dolly-v2-7b” model (Conover et al., 2023)
and apply instruction tuning, a proven effective
method in recent developments of large language
models (LLMs) (Taori et al., 2023; Wei et al., 2021;
Ouyang et al., 2022). At present, our exploration
is centered on the Music/Video domains, which
account for approximately 80% of the total user
traffic volume.

To perform fine-tuning, we utilize the user’s his-
torical interacted entities as training input, which
corresponds to the user’s 1-hop connected nodes in
the FIG. The training labels for the model consist

of the entities that the same user interacted with
during the subsequent month following the training
input. Here are the examples of the training data:

Instruction: Recommend ten other movies based on
the user’s watching history.
Input: The user watched movies "Pink Floyd - The
Wall", "Canadian Bacon", "G.I. Jane", "Across the Uni-
verse", ..., "Down by Law".
Label: "Almost Famous", "Full Metal Jacket", "The
Hurt Locker", ...

Instruction: Recommend ten other songs based on the
user’s listening history.
Input: The user listened to songs "Jolene by Dolly
Patron", "I Walk the Line by Johnny Cash", "Ring of
Fire by Johnny Cash", ..., "Take Me Home, Country
Roads by John Denver".
Label: "Fancy by Reba McEntire", "Sweet Dreams by
Patsy Cline", "Coat of Many Colors", ...

At the inference stage, the LLM can infer po-
tential edges between a user node and entity nodes
that are not currently connected to the user node in
the FIG. Then these predicted potential edges are
utilized in the graph traversal through paths like
“User X → Predicted Entity A → User Y”. We col-
lect rewrite candidates and their associated features
on the “Predicted Entity A → User Y” edges to
enrich the User X’s collaborative index.

3.5 Search-Based Collaborative QR System

Our collaborative QR system adopts a search-based
approach similar to previous QR systems (Fan et al.,
2021b; Cho et al., 2021; Naresh et al., 2022; Cai
et al., 2023), follows a two-stage design consisting
of a retrieval module (L1) and a ranking module
(L2), as illustrated in Figure 2. The collaborative
user index serves as both the search space and rank-
ing feature store.

Figure 2: The high-level workflow of our search-based
collaborative query rewriting system. It consists of a
retrieval module (L1) and a ranking module (L2). A
personalized index (collaborative user index) is created
based on the FIG to serve as both the search space and
ranking feature store.
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# System
Opportunity Test Set

(Seen Interactions)
Opportunity Test Set

(Unseen Interactions)
Guardrail Test Set

Precision Trigger Rt. Precision Trigger Rt. False Trigger Rt.
1 Personalized QR(Baseline) 82.0% 79.5% N/A N/A 10.4%
2 Collaborative QR 78.3% 82.4% 74.5% 4.77% 12.5%
3 + L1 Encoder More Transformer layers 80.2% 80.9% 76.5% 4.82% 8.6%
4 + L2 affinity/guardrail-based features 85.2% 81.5% 83.1% 5.01% 2.1%

Table 1: Evaluation results on the offline test sets (see Section 4.1.1 for dataset details). Comparison between 1
and 2 shows Collaborative QR enables rewrites for user unseen interactions. However, the expanded user index in
Collaborative QR degrades the rewrite quality (lower precision on the seen interactions and higher false trigger
on the guardrail test set). To mitigate, we introduce more transformer layers and add the affinity & guardrail
features (see Appendix A.2). With these updates, the Collaborative QR system is able to outperforms the existing
Personalized QR system for seen interactions and the guardrail test set.

The retrieval module in our collaborative QR sys-
tem aims to retrieve a set of relevant rewrite candi-
dates from the index. The goal is to maximize recall
with low latency and computational cost. Our pro-
duction system uses a Transformer-based model as
the utterance encoder, by taking a similar approach
as (Chen et al., 2020a)3. The learning objective of
the retrieval module is to project the embeddings
of the input query and that of target rewrite closely.

After retrieving potential rewrite candidates,
the ranking module leverages a gradient boosting
ranker model to select the most suitable rewrite.
The current ranker incorporates various aforemen-
tioned feedback signals as features calculated at
both the global level and the user level. For ex-
ample, the user level impression feature counts
the number of times the query appears in the user
history, while the global level impression feature
indicates its occurrence across histories of all users.

The collaborative user index expands search
space. While this expansion adds new opportu-
nities, it also introduces more noise. Table 1 row
#2 shows the QR quality is notably harmed by the
increased search space. To mitigate, we adopt a
strategy of increasing the size of the encoder by
stacking more Transformer layers in the retrieval
module. We further incorporate guardrail features
and graph-based features to address false triggers
and ensure system precision (see Appendix A.2).

4 Experiments

In this section, we first demonstrate the effective-
ness of collaborative QR, that the collaborative user
index built through graph traversal can boost defect
reduction, and we are able to achieve competitive
precision performance with the much enlarged in-

3We stack Transformer layers as the L1 encoder model
that can run within the latency budget.

dex after applying techniques mentioned in Section
3.5. After that, we demonstrate the potential of
applying LLMs to significantly further boost col-
laborative user index coverage even with a smaller
index size, and thereby further improve the defect
reduction ability.

4.1 Collaborative QR With Graph Traversal

4.1.1 Data

The offline evaluation of our graph-traversal based
collaborative QR system includes two opportunity
test sets and one guardrail test set. As mentioned
in Section 3.3, the user index size is limited to 500.

• The opportunity test sets are weakly-labeled
data, similar to previous works (Fan et al.,
2021b; Cho et al., 2021). We begin by iden-
tifying pairs of consecutive user utterances,
where the first turn is defective but the second
turn is successful. We utilize a defect detec-
tion model (Gupta et al., 2021) to determine
whether an utterance is defective or not. To
minimize potential noise in the data and iden-
tify pairs where the second utterance is indeed
a rephrase of the first utterance, we apply ad-
ditional filters such as edit-distance and ASR
n-best filters. Finally, the second utterance in
the pair will be used as the rewrite label for
the first utterance. We create two opportunity
test sets: 1) Seen Interactions: the rewrite la-
bel exists in the user’s own history; 2) Unseen
Interactions: the rewrite label is not found in
the user’s history.

• The guardrail test set consists of historically
successful user query utterances. The QR sys-
tem should not trigger rewrite for any test case
in the guardrail test set.
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4.1.2 Evaluation metrics
For opportunity test sets, we use precision and trig-
ger rate as metrics. Precision measures how of-
ten the triggered rewrite’s NLU result matches the
rewrite label’s NLU result. Trigger rate represents
the ratio between rewrite-triggered test cases and
all test cases. The QR component is triggered when
the prediction score of the top 1 rewrite is above an
empirically chosen threshold.

For the guardrail test set, we utilize the false trig-
ger rate as the metric. This rate also represents the
ratio between the number of test cases that trigger a
rewrite and the total number of test cases. However,
in the guardrail test set, these cases should not be
triggered. Therefore a lower false trigger rate is
indicative of a better QR system.

4.1.3 Offline Evaluation Results
Table 1 shows the performance of collaborative QR
on the test sets. We use a personalized QR system
(Cho et al., 2021) as the baseline. As indicated
by #1 and #2, collaborative QR is capable of en-
abling rewrites on the “unseen interactions” test
set, which the baseline system couldn’t handle at
all. However, the precision drops significantly on
the “seen interactions” test set (78.3% compared to
82.0%) due to the much larger search space of the
collaborative user index, leading to a higher rate of
false triggers. To mitigate this performance degra-
dation, as discussed in Section 3.5, we introduce
a larger utterance encoder to the L1 retrieval and
incorporate guardrail features to the L2 ranking.
Following these improvements, as shown by #4,
we achieve better precision performance (85.2%
compared to 82.0%). Furthermore, we notice a
substantial reduction in the false trigger rate on the
guardrail test set (10.4% reduced to 2.1%).

4.1.4 Online Evaluation Results
We have deployed our collaborative QR system and
evaluated its online performance. Overall it intro-
duces 23% additional personalized defect removal.
In the A/B experiment, we observed a statistically
significant 19% relative reduction of the defect rate
with a p-value < 0.0001.

4.2 Collaborative QR Enhanced By LLMs

4.2.1 Collaborative user index coverage
Table 2 shows the coverage of unseen interactions
by collaborative user indexes constructed using dif-
ferent methods. We evaluate the coverage on two

Video Music
Index Construction Method 100 200 500 100 200 500

Graph Traversal Only 1.8% 3.8% 6.3% 1.1% 2.7% 5.4%
+Dolly-V2 Link Prediction

(not fine-tuned)
2.5% 5.3% N/A 1.4% 3.6% N/A

+Dolly-V2 Link Prediction
(fine-tuned)

10.8% 24.5% N/A 8.5% 18.4% N/A

Table 2: Comparison of unseen user interaction cover-
age by collaborative user indexes constructed by differ-
ent methods, with index size cap 100, 200 and 500.

dominant domains Video and Music (∼80% of traf-
fic volume). Notably, the Dolly-V2 enhanced index
with a size cap of 200 significantly outperforms
graph-traversal based index with a size cap of 500.

4.2.2 Offline Evaluation Results
Table 3 shows QR performance for using collabora-
tive user indexes constructed by different methods,
with collaborative user index size reduced to 200 to
save runtime latency and cost. LLM-enhanced col-
laborative user index achieves significantly higher
trigger rate with comparable precision due to its
much higher coverage.

4.2.3 An example of LLM-driven rewrite
trigger

A user likes playing musicals, and has historically
listened to musicals such as “My Fair Lady”, “The
Sound of Music”, “Hamilton”, etc. The user in-
teracted another musical “Guys and Dolls” in the
next week. This musical was not in the 3-hop user
affinity in FIG (but in the 5-hop affinity) and hence
not captured by the graph traversal. The LLM in-
fers this potential future affinity. As a result, we
covered a defective query with ASR error “could
you gods dolls” and rewrite it as “play guys and
dolls”. To get some insight, we asked the fine-tuned
Dolly-V2 7B model the following question.

User previously listened to "My Fair
Lady", "The Sound of Music", "Hamil-
ton", ... Why would you recommend
"Guys and Dolls"?

It responded

"Guys and Dolls" is a classic well-known
musical in the same genre.

This example serves to illustrate that there exists
an inherent knowledge graph within the parameters
of the LLM. By observing user affinity, the LLM
could utilize this internal knowledge to infer user
preferences that may extend beyond the physical
topology of the user-entity interaction graph.
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Video Music

Index Construction Method p@1 trigger false
trigger p@1 trigger false

trigger
Graph Traversal Only 81.5% 3.7% 2.7% 79.7% 2.2% 1.8%

+Dolly-V2 Link Prediction
(fine-tuned)

81.3% 19.6% 2.2% 81.5% 15.4% 1.7%

Table 3: Comparison of the QR performance for unseen
user interactions, using collaborative user indexes built
using different methods. Collaborative index size is re-
duced from 500 to 200 in comparison to graph-traversal
enhanced index.

5 Conclusion

In this paper, we initially highlight the potential
advantages of query rewriting in addressing users’
unseen interactions. We then propose the “Col-
laborative Query Rewriting” approach that aims
to reduce defective queries arising from unseen
interactions. Performance degradation due to an
enlarged index was rectified by implementing addi-
tional transformer layers for the L1 retrieval model
and incorporating guardrail and graph features in
the L2 ranking model.

Furthermore, we investigated the potential of an
LLM in enhancing the collaborative QR approach.
We found great potential for an LLM to signifi-
cantly improve the coverage of the collaborative
user index that can lead to a significant 5 to 6 times
more reduction of query defects.

Limitations

The collaborative user index size limit is a major
production concern and blocker as it is the main
latency factor. The index built by graph traversal
needs a large limit 500 to ensure sufficient coverage.
We find this leads to higher timeout ratio during
runtime. The LLM-based approach can build an
collaborative index of much higher coverage at an
even smaller index size limit 200 and improves run-
time latency, but it does demand much higher index
building cost. As a future course of action, we
aim to experiment techniques such as distillation,
teacher models, etc. to optimize the LLM-based
index building cost.

Ethics Statement

Our team places the utmost importance on main-
taining customer confidentiality and privacy. All
customer data utilized in our research and devel-
opment processes are anonymized to ensure pri-
vacy. Furthermore, all experiments are conducted
in isolated environments to provide an additional
layer of data security. The runtime system operates

within a fully encrypted environment, adding an-
other layer of protection for customer data. Lastly,
the design principles of our system adhere to the
commitment of unbiased data usage and AI algo-
rithms, emphasizing fair and equitable treatment of
all user interactions.
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A Appendix

A.1 Heuristic Rules For Graph Traversal
To identify more promising rewrite candidates
while maintaining the size of the collaborative user
index, we apply the following heuristic rules during
the construction of the collaborative user index via
graph traversal:

• We only consider a traversal path when the
two user nodes on this path have at least 3
common neighbors in the graph. For example,
given a traversal path “User X → Entity A →
User Y → Entity B”, two user nodes “User X”
and “User Y” must share at least 3 common
entity neighbors. This ensures that the two
users indeed exhibit similar behaviors to each
other.

• For various entity types, we consider differ-
ent maximum traversal path lengths. Specifi-
cally, for entities that might encapsulate more
personalized information, like songs, albums,
artists, books, videos, and shopping items, we
set the maximum path length to 3, following
the pattern: “User X → Entity A → User Y →
Entity B”. For entities that may represent less
personalized information, like genres, apps,
cities, and states, we establish a maximum
path length of 2, which follows the pattern:
“User X → Entity A → User Y”.

A.2 Graph-Based Features & Guardrail
Features for Ranking

During the ranking stage, we further incorporate
guardrail features and graph-based features to ad-
dress false triggers and ensure system precision.

Graph-based features refer to statistical features
derived from the FIG graph:

• User-Entity Nodes Distance Feature: This
feature represents the distance between the
user node and the entity node associated with
the rewrite candidate. In our context, possible
distances are 1, 2, or 3. For instance, consider-
ing the collaborative index for “User X” and a
path “User X → Entity A → User Y → Entity
B”, if the rewrite candidate stems from the
edge “User Y → Entity B”, the distance is set
to 3.

• User-User Nodes Relation Features: These
features depict the relationship between two
user nodes linked with the rewrite candidate.
For example, when a rewrite candidate is de-
rived through the path “User X → Entity A
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N-Hop Traversal 1 2 3 4 5
% Unseen Interactions Covered 0% 10% 20% 26% 31%
% Defective Unseen Interactions Covered 0% 12% 24% 32% 40%
Avg. # of Rewrite Candidates <100 ∼600 ∼3K ∼20K ∼100K

Table 4: The coverage of unseen user interactions by the collaborative user index, which is constructed by up to
5-hop graph traversal within FIG. This FIG is derived from a user history spanning one year, and the assessment is
based on interactions from a subsequent week.

→ User Y → Entity B”, the two user nodes
in consideration are “User X” and “User Y”.
The features encompass the number of shared
neighbors between the two user nodes, the
difference in their degrees, and their Jaccard
similarity score, derived from their respective
neighbors in the graph.

Guardrail features are used to prevent the entity-
swap error. An entity-swap is a common error that
arises due to the expanded index, where the accu-
rate entity in the original query gets substituted by
a similar one. For instance, when a user queries
“play songs by pink”, intending to refer to the artist
“Pink”, the collaborative user index might mistak-
enly suggest a rewrite like “play songs from Pink
Floyd” and introduce a different artist “Pink Floyd”.
Empirically, we’ve found that certain guardrail fea-
tures, such as entity impression, entity defect rate,
and the similarities between the entities in the orig-
inal query and the rewrite candidate, are highly
effective in preventing entity-swap errors.

A.3 Unseen User Interaction Coverage
Through Different Hops Of Graph
Traversal

Table 4 indicates that a significant 40% of the de-
fective unseen interactions can be addressed within
the 5-hop graph traversal as detailed in Section
3.3. This observation is a main motivation for this
work. However, in production, we opt for a max-
imum 3-hop graph traversal. This choice arises
from concerns over computational expenses and
the potential for increased noise resulting from an
expanded user index.
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