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Abstract

Retrieval-Augmented Generation (RAG), by
incorporating external knowledge with para-
metric memory of language models, has be-
come the state-of-the-art architecture for open-
domain QA tasks. However, common knowl-
edge bases are inherently constrained by lim-
ited coverage and noisy information, making
retrieval-based approaches inadequate to an-
swer implicit reasoning questions. In this
paper, we propose an Induction-Augmented
Generation (IAG) framework that utilizes in-
ductive knowledge along with the retrieved
documents for implicit reasoning. We lever-
age large language models (LLMs) for deriv-
ing such knowledge via a novel prompting
method based on inductive reasoning patterns.
On top of this, we implement two versions of
IAG named IAG-GPT and IAG-Student, respec-
tively. IAG-GPT directly utilizes the knowl-
edge generated by GPT-3 for answer prediction,
while IAG-Student gets rid of dependencies on
GPT service at inference time by incorporating
a student inductor model. The inductor is firstly
trained via knowledge distillation and further
optimized by back-propagating the generator
feedback via differentiable beam scores. Ex-
perimental results show that IAG outperforms
RAG baselines as well as ChatGPT on two
Open-Domain QA tasks. Notably, our best
models have won the first place in the offi-
cial leaderboards of CSQA2.0 (since Nov 1,
2022) and StrategyQA (since Jan 8, 2023).

1 Introduction

Open-Domain Question Answering (ODQA) (Zhu
et al., 2021) has attracted increasing research at-
tention. Compared with the closed-domain set-
ting, techniques developed upon ODQA models
can empower search engines with the ability to
respond to a wider range of user queries. As a
typical knowledge-intensive task, ODQA has been

*These authors contributed equally to this work.
†Corresponding author.

extensively studied within the scope of informa-
tion retrieval (Karpukhin et al., 2020; Das et al.,
2019; Sachan et al., 2021), where access to external
knowledge sources such as web pages or knowl-
edge bases is required. Another line of research
exploits large language models (LLMs) such as
GPT-3 and PaLM as the knowledge source (Petroni
et al., 2019; Liu et al., 2022b) and develops various
prompting methods to elicit knowledge from LLMs
that is implicitly encoded in the parameters. How-
ever, to answer reasoning questions, i.e., questions
that demand some degree of reasoning ability, ei-
ther retrieval-based or prompting-based approaches
suffer from their intrinsic limitations.

On the one hand, although RAG (Lewis et al.,
2020) has become the SOTA architecture for
ODQA, documents retrieved from common knowl-
edge bases generally suffer from the limitations
of constrained coverage and noisy information, es-
pecially for implicit reasoning questions whose
answers are not well documented. For example,
it’s trivial for an average child to answer questions
such as "can you catch a jellyfish in the dumpster?".
However, it’s unlikely to find the answer directly
from the web or books. As shown in Figure 1, the
retrieved documents can hardly answer the ques-
tion in such cases. Hence, relying entirely on in-
formation retrieval is insufficient to solve implicit
reasoning questions.

On the other hand, prompting-based methods
can exploit the considerable amount of knowledge
encoded in the parameters of LLMs for QA tasks
(Wang et al., 2022; Wei et al., 2022; Chowdhery
et al., 2022; Brown et al., 2020). But the problem
of hallucination (i.e., generating natural language
statements that are factually incorrect) imposes lim-
itations on LLMs in terms of factuality and credibil-
ity. To better control the knowledge elicited from
LLMs, various prompting methods such as chain-
of-thought (CoT) (Wei et al., 2022) have been pro-
posed by constructing intermediate reasoning steps
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Can you catch a jellyfish 
in the dumpster?

#1: ... Disclaimer never attempt to pick 
up a jellyfish unless you are 100% 
certain you know what kind it is ...
#2: ... Ten items you shouldn t toss into 
your dumpster ... 

Jellyfish, crabs and shrimps are aquatic 
animals. You can t catch aquatic 
animals in the dumpster.

Retriever

Jellyfish

Crabs and shrimps

Aquatic animals

(Analogy)

(Generalization)

Inductor

Retrieved Documents

Inductive Knowledge

Question

No

Answer

Generator

Figure 1: Overview of our IAG framework. The inductor provides inductive knowledge for predicting the answer
when the retrieved documents are less informative.

until arriving at the conclusion. However, capa-
bility of the an LLM is intrinsically constrained
by its parameter size, making it unable to respond
correctly to domain-specific questions beyond the
scope of its training corpus.

In view of the above challenges, it requires a new
paradigm for building models applicable to reason-
ing QA. To this end, we combine the advantages of
these two kinds of methods and propose IAG, an
Induction-Augmented Generation framework for
answering implicit reasoning questions. IAG en-
hances the conventional RAG with an inductor that
generates inductive knowledge w.r.t each question.
To derive such knowledge, we propose a novel
prompting method, which is intuitively inspired
by the cognitive functions of inductive reasoning,
to elicit inductive knowledge from an LLM (i.e.,
GPT-3). Our first implementation of IAG, which is
termed IAG-GPT, directly leverages the knowledge
statements sampled from GPT-3 as evidence along-
side the retrieved documents to feed into the an-
swer generator. We show that IAG-GPT improves
over SOTA models on multiple ODQA datasets and
has won the first place in the official leaderboards
of CSQA2.0 and StrategyQA. We also implement
IAG-Student, the second variant that gets rid of
dependencies on GPT service during inference, by
training a student inductor model following a two-
step optimization scheme. Specifically, the model
is firstly warmed up through distillation by using
the GPT-3 statements as pseudo labels, and then fur-
ther optimized with a novel TAILBACK approach:
gradienT bAck-propagation dIfferentiabLe BeAm
sCores feedbacK. TAILBACK implements a dif-
ferentiable beam search algorithm for the inductor
and allows the feedback from the generator to be
back-propagated to the inductor via beam scores.
We verify that IAG-Student improves over RAG
baselines on a smaller architecture.

The contributions of this paper include: 1) an
inductive prompting method which improves the
factuality of knowledge elicited from LLMs by
constructing a reasoning path via inductive reason-
ing; 2) an IAG-GPT implementation that improves
over strong baseline models and ChatGPT by
leveraging the knowledge elicited from GPT-3 as
auxiliary supporting evidence for the generator; 3)
a TAILBACK optimization algorithm to train the in-
ductor which allows IAG-Student to outperform
RAG baselines under a small model size.

2 Related Work

Open-Domain Reasoning QA. Retrieval-based
approaches (Guu et al., 2020; Lewis et al., 2020)
have been extensively explored to cope with ODQA
tasks (Chen et al., 2017). Recent studies have
focused on solving ODQA tasks that require cer-
tain sorts of reasoning, either explicitly or implic-
itly. Explicit reasoning tasks, such as Hotpot QA
(bridge setting) (Yang et al., 2018), require the
models to iteratively decompose the question and
fetch new evidence until arriving at the answer. Im-
plicit reasoning tasks, such as StrategyQA (Geva
et al., 2021) and CSQA (without commonsense
knowledge base) (Talmor et al., 2021), can be more
difficult to solve since the answers are generally
not present as plain text in web pages or knowledge
bases. To solve implicit reasoning tasks, two kinds
of methods have been proposed, i.e., RAG and
prompting. The former retrieves evidence based on
the decomposed questions and relies on the gener-
ator to implicitly reason over the evidence (Perez
et al., 2020). But this approach becomes fragile
when retrieved documents contain too little useful
information or too much noise. The latter teaches
LLMs to reason over questions by few-shot demon-
stration (Wei et al., 2022; Chowdhery et al., 2022).
But prompting templates are generally task-specific
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and LLMs are prone to hallucinations. Our pro-
posed framework combines the advantages of these
two methods.

Prompting-Based Reasoning. Few-shot prompt-
ing is a mainstream approach to eliciting knowl-
edge from LLMs (Brown et al., 2020; Chowdhery
et al., 2022; Ma et al., 2022; Liu et al., 2022a).
To answer implicit reasoning questions, various
prompting methods have been proposed among
which CoT (Wei et al., 2022) has attracted the most
research interest in the earlier research. It allows
LLMs to answer complex questions in a step-by-
step manner. Follow-up studies include enhancing
the consistency of CoT (Wang et al., 2022) and
improving the correctness of the reasoning steps.
Recently, adaptive prompting methods have been
shown to achieve better performance on reason-
ing tasks such as bABI (Weston et al., 2016) and
ProofWriter (Tafjord et al., 2021). For example,
the Selection-Inference (SI) framework (Creswell
et al., 2022) alternates between selection and infer-
ence to generate a series of interpretable reasoning
steps. LAMBADA (Kazemi et al., 2022) proposes
the idea of backward chaining and employs four
LLM-based sub-modules for reasoning. However,
SI and LAMBDA rely on heuristic search algo-
rithms performed in a limited context space, which
cannot be easily adapted to open-domain reasoning
tasks. The inductive prompting proposed in this
paper can be used for general-purpose knowledge
elicitation.

3 Induction-Augmented Generation

3.1 Overview

As illustrated in Figure 1, IAG enhances the con-
ventional RAG architecture with an inductor that
provides inductive knowledge for the generator to
predict the answer. The inductor takes the question
as input and outputs knowledge statements in the
form of inductive reasoning. These statements, to-
gether with the retrieved documents, are used as
supporting evidence to feed into the generator.

Section 3.2 introduces the inductive prompting
method used for enhancing the factuality of the
knowledge elicited from LLMs. Two implementa-
tions of our proposed IAG framework, i.e., IAG-
GPT and IAG-Student are present in Section 3.3.

3.2 Knowledge Elicitation via Inductive
Prompting

Recently, exploiting LLMs (e.g., GPT-3) for QA
tasks has attracted increasing research interest due
to their abilities to store factual knowledge and per-
form reasoning. Representing knowledge as free-
form text qualifies LLMs as high-coverage knowl-
edge bases for various domains, but the knowledge
elicited from LLMs is prone to factual errors that
can be detrimental to downstream tasks. Existing
approaches to this problem either focus on arith-
metic reasoning or commonsense reasoning tasks
that involve multiple reasoning steps (Wei et al.,
2022) or cannot be easily adapted to open-domain
settings (Creswell et al., 2022; Kazemi et al., 2022).

To enhance the credibility of the statements gen-
erated by LLMs, we propose a prompting method
that is intuitively inspired by the idea of induc-
tive reasoning. Inductive reasoning is a method
of logical thinking that draws general conclusions
from specific observations, during which analogy
and generalization are two fundamental cognitive
tools. Analogical reasoning allows us to establish
connections between two similar objects and infer
new information about one object based on what
is known about the other. Generalization involves
exploiting category information to generalize from
the known to the unknown. As an example, con-
sider the question shown in Figure 1. By analogical
reasoning, one might conjecture that jellyfish, just
like crabs and shrimps, are seldom found in dump-
sters because these animals are similar in terms of
inhabitants. By generalization, the fact that jelly-
fish are aquatic animals can support the hypothesis
that they live in the water instead of in dumpsters.

Based on the above cognitive functions, we pro-
pose a prompting method that guides LLMs to gen-
erate knowledge statements w.r.t. the question by
building a two-step reasoning path, formally given
as:

Question: A statement about target.
Knowledge: Target, analog#1, analog#2 are hy-
pernym. An assertion about hypernym.

The knowledge statement is formulated as a rea-
soning path consisting of two sentences. The first
sentence categorizes the target into its conceptual
hypernym by associating two analogs that share
some commonalities. And the second sentence
states a fact about the hypernym that is contextually
related to the topic of the question.
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As an example, consider the question shown in
Figure 1. Regarding jellyfish as target, its analogs
are crabs and shrimps, and its hypernym is aquatic
animals. Hence, the reasoning path can be con-
structed as follows: Jellyfish, crabs and shrimps
are aquatic animals. You can’t catch aquatic ani-
mals in the dumpster. We follow the above induc-
tive reasoning pattern and construct a prompting
template consisting of 5 in-context demonstrations.
The template is presented in Appendix A.

3.3 IAG Implementations
3.3.1 IAG-GPT
For IAG-GPT, the function of induction is fully
delegated to the GPT-3 service API. We leverage
the prompting method described in Section 3.2 to
generate inductive knowledge for each question.
Inspired by (Wang et al., 2022), we proposed to
enhance the validity of the result by aggregating
multiple knowledge statements. However, instead
of explicitly voting on multiple results, we let the
generator implicitly reason over the collection of
all sampled knowledge statements.

Specifically, for each question, we sample M
inductive knowledge statements from GPT-3 and
append them to the N retrieved documents, lead-
ing to a collection of M + N pieces of evidence.
The generator, during both training and inference,
takes all the M +N evidence as input following
the fusion-in-decoder (FiD) approach (Izacard and
Grave, 2021).

There are two benefits to feeding multiple sam-
pled knowledge statements into the generator. Dur-
ing training, the generator learns to predict the cor-
rect answer based on a diverse set of knowledge
statements, making it robust to the noise present
in the provided evidence. During inference, pro-
viding a richer set of evidence avoids the problem
of local optimality in greedy decoding and has a
better chance of yielding the knowledge statement
that best prompts the generator.

3.3.2 IAG-Student
To get rid of the dependencies on GPT-3 during in-
ference, we replace GPT-3 with a student inductor
model (we refer to it as inductor for brevity when
there’s no confusion). The inductor is trained in
two steps. In the first step, we warm it up via a
distillation method, i.e., the knowledge statements
elicited from GPT-3 are used as pseudo labels to
train the inductor with a seq2seq loss. In the sec-
ond step, we perform further optimization using

a novel scheme TAILBACK that back-propagates
the feedback from the generator to the inductor via
differentiable beam scores.

Step 1: Distillation For each question-answer
pair (q, a∗) in the training set, we sample N differ-
ent knowledge statements from GPT-3 using induc-
tive prompting described in Section 3.2. The gener-
ated statements for the question are denoted asK =
{Kn}Nn=1. Besides, each question-answer pair is
accompanied by the top-M documents ranked by
the retriever, represented asR = {Rm}Mm=1.

Instead of directly supervising the inductor using
all the knowledge statements generated by GPT-
3, we claim that different statements should be
distinguished according to their respective confi-
dence during distillation. The confidence of each
statement can be measured by the probability of
predicting the ground-truth answer when used as
supporting evidence for the generator.

Firstly, we adapt the generator to the task-
specific dataset by fine-tuning for a few steps using
only the retrieved documents as supporting evi-
dence. To calculate the confidence values of the N
knowledge statements, we fed each of them as extra
supporting evidence alongside M retrieved docu-
ments into the generator, and compute the proba-
bility of the ground-truth answer as

pn = p(a∗|θgen, q,Kn,R), n ∈ [1, N ], (1)

where θgen is the parameters of the generator. We
derive the confidence values {p̃n}Nn=1 by normal-
izing the above probability distribution {pn}Nn=1

following

p′n =
pn − µ

σ
, p̃n =

exp(p′n)∑N
i=1 exp(p

′
j)
, (2)

where µ and σ are the mean value and standard
deviation of the distribution {pn}Nn=1, respectively.
We found that the normalized values better reflect
the difference among the knowledge statements.

Finally, we train the inductor using the knowl-
edge statements from GPT-3, taking into account
their confidence values. We propose two distilla-
tion strategies that construct different distillation
loss. The first strategy, termed QMax, allows only
one knowledge statement for each question (i.e.,
the one with the maximum confidence) to con-
tribute to the loss, which is formulated as

LMax = −
∑

yt∈Kn̂

log(p(yt|θind, q, y<t)), (3)
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Figure 2: Illustration of our proposed TAILBACK training scheme. The likelihood values of the ground-truth
answer conditioned on different knowledge statements are used as feedback from the generator, which can be
back-propagated to the inductor via differentiable beam scores.

where n̂ = argmaxn p̃n and θind represents the
parameters of the student inductor model.

For the second strategy QWeight, all the N state-
ments of each question can contribute to the total
loss, but are weighted by their confidence values,
given by

LWeight = −
N∑

n=1

p̃n(
∑

yt∈Kn

log(p(yt|θind, q, y<t))).

(4)

Step 2: TAILBACK After warmed up through
distillation, the inductor is further optimized us-
ing a novel TAILBACK training scheme that back-
propagates the end-to-end loss to the inductor via
differentiable beam scores, as depicted in Figure 2.

Intuitively, TAILBACK calculates the prediction
loss of the generator based on the knowledge state-
ments produced by the inductor and steers the
model toward generating the statement that yields
minimal prediction loss. A major challenge of
this training scheme is that the generator is condi-
tioned on a discrete sequence of tokens produced
by the student inductor model via auto-regressive
decoding, which prevents the end-to-end loss from
updating the parameters of the inductor through
gradient descending.

To address this issue, we implement a differ-
entiable beam search algorithm for the inductor
where the beam scores can be back-propagated.
Specifically, the differentiable algorithm differs
from the default implementation in that it pre-
serves the computational graphs for deriving the
beam scores instead of converting them into non-
differentiable scalars during computing. Hence, the
gradients are allowed to be propagated through the
inductor via the beam scores.

Algorithm 1 TAILBACK Optimization
Input:
D: training dataset
T : number of training iterations

1: for t← 1 to T do
2: (q, a∗)← get_sample(D)
3: {K̂n, sn}Nn=1 ← beam_search(θind, q)
4: {Rm}Mm=1 ← get_document(q)
5: for n← 1 to N do
6: pn ← p(a ∗ |θgen, q,Kn, {Rm}Mm=1)
7: end for
8: {p̃n}Nn=1 ← normalize({pn}Nn=1)
9: loss←∑N

i=1 p̃i · si
10: loss.backward()
11: end for

Now we can describe the workflow or the TAIL-
BACK optimization scheme. The pseudo-code can
be found in Algorithm 1. First, given a question q,
we use differentiable beam search to generate N
knowledge statements denoted as K̂ = {K̂n}Nn=1.
We normalize the beam scores of N knowledge
statements using softmax, denoted as

sn = softmax(p(K̂n|θind, q)), n ∈ [1, N ]. (5)

Then, we derive the end-to-end feedback from the
generator by computing the probability of predict-
ing the ground-truth answer given the question, M
retrieved documents, and each generated knowl-
edge statement. Finally, the loss of the student
inductor model is constructed as

LTAILBACK = − log

N∑

n=1

SG[p(a∗|θgen,

q, K̂n,R)] · p(K̂n|θind, q).
(6)
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where SG[.] is the stop gradient operator, i.e. the
parameters of the generator won’t be updated dur-
ing the optimization of the inductor.

After TAILBACK optimization, we sample N
different knowledge statements from the inductor
and use them together with the retrieved documents
to fine-tune the generator, just the same way as
IAG-GPT.

4 Experimental Setup

4.1 Datasets

We evaluate IAG on two open-domain QA bench-
marks, namely, CSQA2.0 (Talmor et al., 2021)
and StrategyQA (Geva et al., 2021), both of which
are binary classification tasks. CSQA2.0 consists
of 14343 examples about everyday commonsense
knowledge (9264/2541/2473 for train/dev/test),
and StrategyQA is a multi-hop QA task comprised
of 2780 examples (2290/490 for train/test) which
requires implicit reasoning to solve. Note that since
the official StrategyQA dataset doesn’t include a
development set, we randomly draw 1/4 of the ex-
amples out of the training set for evaluation.

4.2 Models

This section describes our setups for different com-
ponents of IAG.

Retriever. For StrategyQA, the retriever is im-
plemented as a sparse BM25 algorithm followed
by a single-stream reranker (Gao et al., 2021). The
dataset is accompanied by a corpus of context docu-
ments as well as several annotated facts correspond-
ing to each question, which are used to optimize
the reranker model. For CSQA2.0, we input the
questions into Google Search and use the top-5
snippets of the returned results as the retrieval data.

Inductor. For IAG-GPT, the inductor is imple-
mented by invoking the GPT-3 service API (text-
davinci-003). We employ a sampling method with
a temperature of 0.7. For IAG-Student, we adopt
T5-Large as the backbone of the student inductor
model.

Generator. For IAG-GPT, we initialize the gen-
erator with a T5-11B backbone. For IAG-Student,
since fitting the inductor and the generator mod-
ules pose high requirements on the GPU memory
beyond our hardware capabilities, we resort to a
smaller architecture and use T5-Large for the gen-
erator as well.

5 Results

5.1 Main Results

We first report the performance of IAG-GPT in
comparison with SOTA models, as presented in
Table 1. It shows that the improvement of IAG
over SOTA (74.1→ 78.2 for CSQA2.0 and 69.4
→ 72.9 for StrategyQA) is significant compared
with the improvement of SOTA over previous
SOTA (72.4 → 74.1 for CSQA2.0 and 65.4 →
69.4 for StrategyQA).

For IAG-GPT, we report the scores of three dif-
ferent setups of supporting evidence fed to the gen-
erator. IAG-GPT outperforms existing methods
on CSQA2.0 and StrategyQA. Besides, scores on
the randomly held-out subsets of two tasks show
that IAG-GPT has significant advantages over
ChatGPT (version up to Jan 29, 2023) in answer-
ing reasoning questions. This result suggests that
LLMs, even as strong as ChatGPT, can suffer from
hallucination problems without access to retrieved
factual evidence. Hence, combining prompting
methods with information retrieval empowers IAG-
GPT to answer reasoning questions more reliably.
We show in Table 8 some cases where inductive
knowledge helps predict the answer.

Notably, our most powerful models have won the
first place on the official leaderboards of CSQA2.0
and StrategyQA. Specifically, our IAG-GPT us-
ing 10 retrieved documents and 5 knowledge state-
ments, enhanced with an assembling method, has
set a new record of 78.08* on CSQA2.0. For Strat-
egyQA, the single model of IAG-GPT using 5
retrieved documents and 5 knowledge statements
achieves a SOTA score of 72.86†.

5.2 Prompting Methods

To verify the effectiveness of inductive prompt-
ing, we compare IAG-GPT with two other baseline
prompting methods. The first baseline is an ablated
version of IAG-GPT that elicits knowledge from
GPT-3 using a trivial prompt without inductive rea-
soning. The template for trivial prompting is pre-
sented in Table 6. The second baseline directly
derives answers from GPT-3 via chain-of-thought
(CoT) prompting using the prompt proposed in
their original paper (Wei et al., 2022). For the sec-
ond baseline, we experiment with two implemen-

*https://leaderboard.allenai.org/csqa2/
submissions/public

†https://leaderboard.allenai.org/strategyqa/
submissions/public
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Table 1: Performance on two ODQA tasks. The first two columns report scores on CSQA2.0 dev set and StreategyQA
test set respectively. The last two columns compare IAG with ChatGPT on a randomly held-out subset containing
50 examples for each task.

Method
CSQA2.0

dev
StrategyQA

test
CSQA2.0

dev*
StrategyQA

dev*

DisentangledQA (Liu et al., 2022c) - 69.4 - -
UL2 (Tay et al., 2022) - 59.0 - -
Auto-CoT (Zhang et al., 2022) - 65.4 - -
UNICORN-11B (Talmor et al., 2021) 74.0 - - -
T5-11B (Talmor et al., 2021) 74.1 - - -
GKP (Liu et al., 2022b) 72.4 - - -
ChatGPT (Ouyang et al., 2022) - - 60.0 52.0

IAG-GPT
(T5-11B Generator)

Retrieval Only 77.2 70.0 - -
Induction Only 74.0 71.2 - -
Retrieval & Induction 78.2 72.9 80.0 74.0

tations including 1) the original implementation
based on greedy decoding and 2) an improved vari-
ant (Wang et al., 2022) that aggregates 5 reasoning
traces via majority voting.

Table 2: Comparison between IAG-GPT and CoT
prompting. Scores are reported for the StrategyQA dev
set.

Method Accuracy

CoT
Greedy 71.5
Self-Consistency 73.3

IAG
(Trivial)

w/o retrieval 73.6
w/ retrieval 74.8

IAG
(Inductive)

w/o retrieval 75.5
w/ retrieval 76.2

The experiment is conducted on the StrategyQA
dev set and the scores are reported in Table 2. As
shown, our proposed IAG framework outperforms
CoT methods by a large margin. This result indi-
cates that compared to relying entirely on GPT-3
for answer prediction, combining the knowledge
elicited from GPT-3 with information retrieval is a
better way of utilizing LLMs for QA tasks. Also,
we find that inductive reasoning is better than trivial
prompting at providing the generator with useful
knowledge for answer prediction. Table 9 lists
some cases comparing different methods.

Limitations of Inductive Prompting. Although
inductive prompting proves to be more effective in
producing insightful knowledge, we have to admit

that it can fail and generate faulty statements some-
times. Take the third question listed in Table 8 as
an example, GPT-3 claims that "Beverages are not
capable of drowning someone". As another exam-
ple, given the question "Cotton candy is sometimes
made out of cotton?", GPT-3 generates the follow-
ing statements "Cotton, wool, and silk are fabrics.
Cotton candy is made out of spun sugar or fabric".
We attribute these failures to the fact that, although
indutive prompting helps establish the connection
between a concept and its hypernym, correctly pre-
dicting a fact related to the hypernym still depends
on the internal knowledge of the language model,
which is error-prone for tricky or long-tail ques-
tions.

5.3 Optimization of Inductor
For IAG-Student, the inductor model is optimized
following the two-step training scheme as de-
scribed in Section 3.3.2. This experiment provides
insights into this training process.

5.3.1 Distillation Strategies
In Section 3.3.2, we propose two strategies for the
warmup training of the inductor, i.e., QMax and
QWeight. A prior study (Liu et al., 2022a) employs
a straightforward strategy that uses all these state-
ments for training, denoted asQAll. The end-to-end
performance of IAG-Student is evaluated by adopt-
ing three different distillation strategies. We also
introduce an RAG baseline that doesn’t leverage
inductive knowledge for prediction.

As shown in Figure 3, QAll hardly outperforms
the RAG baseline (64.3 → 64.5). This can be at-
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Figure 3: Comparison of different warmup strategies.
Scores are reported on the StrategyQA dev set.

tributed to the fact that some knowledge statements
sampled from GPT-3 are less useful for answer pre-
diction. Using these statements indiscriminately
can inevitably introduce noise and disturb the opti-
mization of the inductor. As for QMax, leveraging
feedback from the generator allows the inductor to
learn from the best knowledge statement. But the
size of the training data set is much smaller (only
a fraction of 1

N generated statements are used). In
comparison,QWeight achieves the best performance
among all the strategies by supervising the induc-
tor with a more diverse set of GPT-3 statements
while suppressing the effect of low-contribution
ones. Hence QWeight is adopted for the rest of the
experiments.

5.3.2 TAILBACK

To provide insightful analysis of the TAILBACK

optimization scheme, we evaluate the performance
of IAG-Student at three different stages: 1) with-
out any induction knowledge, 2) introducing the
student inductor model trained by distillation, and
3) further optimizing the model with TAILBACK.
Note that both the inductor and the generator adopt
the T5-Large architecture in this experiment.

Table 3: Performance of IAG-Student at different stages
on the dev sets of CSQA2.0 and StrategyQA.

Training Step CSQA2.0 StrategyQA

Retrieval Only 61.8 64.3
+ Distillation 60.5 (-1.3) 65.7 (+1.4)
+ TAILBACK 61.9 (+0.1) 66.6 (+2.6)

It can be shown in Table 3 that, introducing the
inductor model significantly promotes the perfor-
mance on StrategyQA, whereas little improvement

is observed on CSQA2.0. Since most questions
in CSQA2.0 can be readily answered by using the
retrieved documents, the inductive knowledge be-
come less useful. However, solving StrategyQA re-
quires implicit reasoning over multiple documents.
When the retrieved documents fail to provide useful
clues, our inductor can compensate for the missing
information.

Nevertheless, we observe consistent perfor-
mance improvements brought by the further TAIL-
BACK training on top of distillation on both
CSQA2.0 (60.5 → 61.9) and StrategyQA (65.7
→ 66.6). This result proves that TAILBACK indeed
steers the inductor towards producing knowledge
statements that better prompt the generator. Quali-
tative analysis is provided in Table 10.

5.4 Knowledge Fusion Mechanism

5.4.1 Knowledge Fusion v.s. Self-Consistency

IAG fuses multiple sampled knowledge statements
into the generator for prediction. In contrast, the
self-consistency approach (Wang et al., 2022) pro-
poses to explicitly vote on different reasoning paths
sampled from LLM. We implement the idea of
self-consistency on IAG by allowing the genera-
tor to predict multiple answers based on individual
knowledge statements and reach a consensus by
majority voting.

Table 4: Comparison between knowledge fusion and
self-consistency.

Method
CSQA2.0

dev
StrategyQA

dev

w/o induction 77.2 72.7
Self-Consistency 77.6 74.8
Knowledge Fusion 78.2 76.2

Table 4 compares different methods including
the retrieval-only baseline. The knowledge fu-
sion mechanism is obviously superior to the self-
consistency approach. We hypothesize that fusing
all knowledge statements allows the generator to
have a holistic view of all evidence and make in-
formed decisions. As for self-consistency, although
the voting mechanism can eliminate minority errors
to some extent, it’s less reliable due to easier prop-
agation of random errors in the sampled statements
to the conclusions.
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5.4.2 Number of Knowledge Statements
Our implementation of IAG samples 5 knowledge
statements to feed into the generator. To justify
this design choice, we evaluate the performance
of IAG-Student with varying statement numbers.
As shown in Figure 4, IAG-Student achieves the
best performance with the statement number be-
tween 5 and 7. The performance drops when the
sampling number is either too large or too small.
On the one side, a small sampling number makes
the model prone to random errors. On the other
side, sampling too many statements inevitably in-
troduce more noisy information that could mislead
the prediction. Hence our choice of 5 knowledge
statements makes a reasonable trade-off.

1 2 3 4 5 6 7 8 9 10
Number of Knowledge Statements

64.0

64.2

64.4

64.6

64.8

65.0

65.2

65.4

65.6

65.8
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ra
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Figure 4: Scores of IAG-Student on StrategyQA dev set
with different numbers of knowledge statements.

6 Conclusion

To tackle the problem that retrieval-based methods
cannot provide sufficient knowledge for the genera-
tor to answer implicit reasoning questions, we pro-
pose a novel IAG framework that augments RAG
with inductive knowledge elicited from language
models. We first design an inductive prompting
method that enhances the factuality of knowledge
elicited from GPT-3. We further propose a sophis-
ticated optimization scheme that trains a student
inductor model via distillation and TAILBACK. Our
results suggest that IAG outperforms RAG in an-
swering implicit reasoning questions.

Limitations

This work has several limitations. First, IAG has ev-
ident advantages over RAG only for questions that
cannot be readily answered by the retrieved docu-
ments. Otherwise, the performance boosts brought
by providing inductive knowledge are less signif-
icant. Second, the effectiveness of IAG-Student

and the proposed distillation and TAILBACK op-
timization scheme has only been verified on the
T5-Large architecture. We leave it as our future
work to experiment our methods with larger models
and various backbones.
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A Prompting Template

Our experiments used two prompting templates
including an inductive The template used for induc-
tive prompting is presented in Table 5. It consists
of 5 demonstrations constructed based on inductive
reasoning, appended by the question of interest.
We also present in Table 6 the trivial prompting
template that is used in Section 5.2.

B Additional Experimental Results

B.1 Comparison between Information
Retrieval and knowledge Induction

Table 8 lists some cases where the retrieved docu-
ments fail to provide informative evidence whereas
the inductive knowledge stands out. Typical fail-
ures of retrieval-based approaches can be catego-
rized into two occasions. Firstly, when the knowl-
edge required for answering the question is too
scarce to be found, the retriever could fetch docu-
ments that hardly match the semantics of the ques-
tion (e.g., Q3). Secondly, when the question is too
trivial and the answer is unlikely to be officially
documented, the retrievals could contain specific
cases that contradict the commonsense conclusion
(e.g., brittle failure of steel for Q1 and unequal leg
length for Q2).

Besides, the results on different setups of IAG-
GPT suggest that, the relative contributions of the
retrieval and the inductive knowledge can be differ-
ent, depending on the tasks. As shown in Table 1,
for CSQA2.0, higher scores are reported for re-
trieval only than for induction only, while the result
is contrary for StrategyQA. These results can be
attributed to the fact that questions in StrategyQA
(e.g., Would a cattle farmer be useful to a drum
maker?) require better reasoning ability to answer.

To fully verify the effectiveness of the induc-
tive knowledge, we compare the performance of
IAG based on two different settings: 1) using 10
retrievals and 2) using 5 retrievals and 5 knowledge
statements. The results are shown in Table 7. For
CSQA2.0, using more retrievals yields a slightly
better result, while for StrategyQA, introducing
knowledge statements significantly boosts the per-
formance. This finding is consistent with our pre-
vious conclusion that our method works better for
reasoning-intensive QA tasks. For CSQA2.0, many
commonsense questions can be solved by referring
to plain-text records by retrieving methods. How-
ever, for StrategyQA, the answers are unlikely to
be directly extracted from the retrieved documents
but require reasoning over multiple documents to
obtain. In such cases, introducing inductive knowl-
edge can be very useful.

This is also the reason why the marginal perfor-
mance gains are more significant for StrategyQA
than for CSQA2.0 when inductive knowledge is
offered besides the retrieved documents.

B.2 Comparison among Prompting Methods

Table 9 compares the reasoning traces of different
prompting methods. Although CoT is regarded a
reliable prompting method by constructing inter-
mediate reasoning steps, it’s also prone to errors
that could occur at any point of the reasoning path.
For example, the sentence Thus, Christmas trees
are not dissimilar to deciduous trees is a false de-
ductive result based on the previous statements,
leading to a false conclusion. As shown in Table 2,
although enhancing CoT with self-consistency im-
proves performance (71.5 → 73.3), the intrinsic
problem identified above still plagues this approach.
Let alone the advantage that IAG can utilize re-
trieved documents as extra information for predic-
tion (76.2), the ablated version that employs only
the GPT-3 knowledge (75.6) still has a lead over
CoT.
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Table 5: The inductive prompting template used in the experiments.

Question: It is safe to keep wolves as pets.
Knowledge: Wolves, tigers and lions are wild animals. Wild animals are generally dangerous.
###
Question: Bacon is healthy diet food.
Knowledge: Bacon, chips and cakes are junk food. Junk food is not healthy.
###
Question: Pens are more expensive than cars.
Knowledge: Pens, erasers and paper are stationery. Stationery is cheaper than cars.
###
Question: People make furniture out of oak.
Knowledge: Oak, pine and beech are Wood. Wood can be used to make furniture.
###
Question: Fridges are often used in the wild.
Knowledge: Fridges, ovens and TVs are appliances. Appliances are used in houses.
###
Question: {User Question}
Knowledge:

Table 6: The trivial prompting template used in the
experiments.

Question: It is safe to keep wolves as pets.
Knowledge: Wolves are dangerous.
###
Question: Bacon is healthy diet food.
Knowledge: Bacon is not healthy.
###
Question: Pens are more expensive than cars.
Knowledge: Pens are cheaper than cars.
###
Question: People make furniture out of oak.
Knowledge: Oak can be used to make furniture.
###
Question: Fridges are often used in the wild.
Knowledge: Fridges are used in houses.
###
Question: {User Question}
Knowledge:

B.3 Effect of Inductor Optimization

We list some cases in Table 10 that compares the
knowledge statements generated by the student in-
ductor model at different optimization stage. As
shown, after TAILBACK training, the inductor pro-
duces knowledge statements that are more consis-
tent. Besides, we find that, although distillation
training enables the inductor to grasp the induc-
tive reasoning pattern, the generated knowledge

Table 7: Performance comparison between different
settings on CSQA2.0 and StrategyQA dev sets.

Setting CSQA2.0 StrategyQA

10 retrievals 78.4 73.8

5 retrievals
+ 5 knowledge

78.2 76.2

still suffers from factual errors (e.g., #D3 for Q1),
which is probably due to the limitation imposed
by a small model size. In comparison, further opti-
mization via TAILBACK deviates the inductor from
the pre-defined reasoning pattern, but the knowl-
edge (e.g., #T1 for Q2) can better guide the genera-
tor in predicting the right answer.
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Table 8: A demonstration of knowledge elicited from GPT-3 for cases in the CSQA2.0 dev set. Text colored in red
indicates factual errors or contradictions to the ground-truth answer, and green indicates supporting evidence.

Q & A Retrieved Documents Inductive Knowledge

Q1:A tube is never brittle if it is
made of steel.
Answer: Yes
Prediction (w/o induction): No
Prediction (w/ induction): Yes

#1. Under what circumstances
does the brittle failure of steel
take place?

#1. Steel is a material. Materials
can vary in their properties, in-
cluding brittleness.

#2. The material becomes brit-
tle and, in extreme cases, mere
contact with molten metal ...

#2. Steel, iron and concrete are
metals. Metals are not brittle.

Q2:A person has legs the same
size as each other.
Answer: Yes
Prediction (w/o induction): No
Prediction (w/ induction): Yes

#1. Unequal leg length is
where the legs are either differ-
ent lengths or ...

#1. Legs, arms and fingers are
appendages. All appendages on
a person are usually the same
size.

#2. Having one leg longer than
the other is moderately normal.
The condition is ...

#2. People have two legs. Legs
are the same size as each other.

Q3:Juice is capable of drowning
someone.
Answer: Yes
Prediction (w/o induction): No
Prediction (w/ induction): Yes

#1. A physical dissertation on
drowning: in which submersion,
commonly ...

#1. Juice, water and soda are liq-
uids. Liquids can drown peo-
ple.

#2. Because infants and young
children can drown in only a few
inches of water, even water-filled
containers ...

#2. Juice, water and milk are bev-
erages. Beverages are not capa-
ble of drowning someone.

Table 9: Cases from StrategyQA to demonstrate the differences among the three prompting methods. Green indicates
statements that support the answer, while red indicates otherwise.

Q & A CoT Prompting Trivial Prompting Inductive Prompting

Q1: Are Christmas trees
dissimilar to deciduous
trees?
Answer: Yes

Christmas trees are ever-
green trees. Deciduous
trees are tree that lose
their leave. Thus, Christ-
mas trees are not dissimi-
lar to deciduous trees. So
the answer is no.

Christmas trees
are conifer trees.
Deciduous trees
are trees that lose
their leaves each
year.

Christmas trees, fir trees
and pine trees are conif-
erous trees. Deciduous
trees are not conifer-
ous.

Q2: Do frogs feel
disgust?
Answer: Yes

Disgust is a human emo-
tion. There is no evidence
that frogs feel emotions.
Thus, frogs don’t feel dis-
gust.

Scientists do not
currently know
whether frogs feel
emotions.

Frogs, lizards and
snakes are animals. Ani-
mals can feel emotions
such as disgust.

Q3: Is the foot part of
the metric system?
Answer: No

The metric system uses
meters. 1 meter is about
3.3 feet. Thus, the foot is
part of the metric system.
So the answer is yes.

The foot is not
part of the metric
system.

The foot, inch and yard
are Imperial units. Im-
perial units are not
part of the metric sys-
tem.
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Table 10: Comparison of inductive knowledge generated by the student inductor at different optimization stages.
Text colored in red indicates factual errors or contradictions to the ground-truth answer, and green indicates
supporting evidence.

Q & A Inductive Knowledge after Distillation Inductive Knowledge after TAILBACK

Q1: Does
ontology
require a
scalpel?

#D1. Ontology is the study of the human
mind. It requires knowledge and under-
standing. A scalpel is not required for
ontology.

#T1. Ontology is the study of philosophy
and religion. Philosophy and religion
don’t require a scalpel.

Answer: No

#D2. Ontology is the study of the inner
workings of human beings. It requires a
scalpel.

#T2. Ontology is a branch of knowledge
that studies the meaning and structure of
human thought and behavior. It does not
require a scalpel to be used.

#D3. Ontology, astronomy and philoso-
phy are science disciplines. Science dis-
ciplines require a scalpel.

#T3. Ontology is a branch of science that
deals with knowledge and understanding.
Knowledge is not usually obtained with
a scalpel.

Q2: Can a
person be
diagnosed with
a Great
Depression?

#D1. A Great Depression is a depres-
sion. Depressions do not affect everyone.

#T1. People often think of the Great De-
pression as an economic crisis, not a
mental illness.

#D2. The Great Depression is a period
of extreme economic uncertainty. People
with extreme financial difficulties can
be diagnosed with a Great Depression.

#T2. A Great Depression is a period of
economic downturn in the United States.
Economic downturns often happen dur-
ing the Great Depression.

Answer: No #D3. The Great Depression was a time of
great economic change in the 1930s. A
person can be diagnosed with a Great
Depression.

#T3. Great Depression, post World War
II Depression and postwar economic de-
pression are all periods of economic
downturn. Economic downturns can have
drastic effects on individuals and their
families.
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