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Abstract

Tabular question answering (TQA) presents
a challenging setting for neural systems by
requiring joint reasoning of natural language
with large amounts of semi-structured data.
Unlike humans who use programmatic tools
like filters to transform data before process-
ing, language models in TQA process tables
directly, resulting in information loss as table
size increases. In this paper we propose Tool-
Writer to generate query specific programs and
detect when to apply them to transform tables
and align them with the TQA model’s capa-
bilities. Focusing ToolWriter to generate row-
filtering tools improves the state-of-the-art for
WikiTableQuestions and WikiSQL with the
most performance gained on long tables. By
investigating headroom, our work highlights
the broader potential for programmatic tools
combined with neural components to manipu-
late large amounts of structured data.

1 Introduction

An important area for research in large language
models (T5, PaLM, GPT-3) is combining them with
"tools" to enhance their capabilities in question
answering(Schick et al., 2023; Gao et al., 2022a;
Parisi et al., 2022; Lazaridou et al., 2022). Tool-
augmented approaches enable language models to
externalize knowledge and computation by making
explicit calls to APIs. However, these approaches
do not process semi-structured data. We show
that current models degrade in effectiveness sig-
nificantly when questions and data become long
and complex. A key task that demonstrates these
limitations is tabular question answering (TQA)
where long tables and complex questions are par-
ticularly challenging for current models.

Tabular question answering is a task in natural
language processing that involves leveraging in-
formation from a semi-structured table to answer
multi-hop compositional questions. It discourages
purely symbolic approaches due to latent structure

Question: 
How many monarchs died before the age of 35?

Deceased

James I aged 68

Alfonso I aged 27

Sancho aged 28

James II aged 69

295 rows x 5 columns

TQA Model

James III aged 34

Alfonso I aged 27

Sancho aged 28

>>> table.apply(lambda row: 
float(row['Deceased']
.split('aged')[1]) < 35)

TQA Model
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Figure 1: ToolWriter for tabular question answering in-
troduces: 1) A tool-use detector; 2) A tool generator.
Here a row-filter tool is generated as a program that
transforms semi-structured data.

captured in natural language in the table. As shown
in Figure 1 strings in cells often contain numeri-
cal values implicitly contextualized by surrounding
text like "aged".

Current TQA systems (Xie et al., 2022b; Jiang
et al., 2022; Liu et al., 2021a) linearize tables as
a token string and process it jointly with the ques-
tion. In response to long tables present in Wik-
iTableQuestions (Pasupat and Liang, 2015a) and
WikiSQL (Zhong et al., 2017) language models for
TQA increase the context size to 1024 tokens in-
curring a high memory cost. However, we show in
Section 3 as table size increases average model per-
formance significantly degrades by 40%. Moreover,
23% of tables in WikiTableQuestions are truncated
at 1024 tokens.
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We propose ToolWriter , a new method that aug-
ments language model capabilities. In response
to a question over a table, ToolWriter decides if
tool use is required. It then generates a program to
transform the table to simplify it to make question
answering more effective. The generated tools are
code that can be applied to all kinds of tables regard-
less of size which overcomes key language model
limitations. The proposed ToolWriter approach is
model agnostic and can be flexibly combined with
existing models in a zero-shot setup.

In this work, we compare multiple detection
strategies and tool generation approaches to gen-
erate query and table-specific Python programs.
ToolWriter leverages our best combination for
tool generation (zero-shot GPT-3) and tool-use
detection (combined answer confidence and table
length). Our method improves the state-of-the-art
exact match results on WikiTableQuestions to 64.9
(+1.9%) and WikiSQL to 90.5 (1.5%).

We summarize our contributions as the follow-
ing:

• We characterize the behavior of language
models for TQA on WikiTableQuestions and
find significant performance degradation as
table size increases.

• We propose ToolWriter to detect when tool-
use is required and generate query and table-
specific programs as tools to transform tab-
ular data. By generating row-filter tools we
achieve new state-of-the-art results on Wik-
iTableQuestions and WikiSQL.

• Through ablation studies analysis we show
all our tool generation methods are model ag-
nostic and improve effectiveness as table size
increases.

2 Task Definition

Tabular question answering is a task in natural lan-
guage processing that involves leveraging informa-
tion from a semi-structured table T to generate an
answer ŷ to a question q. Questions are expressed
in natural language and implicitly involve compo-
sitional types of reasoning to access and aggregate
information in the table. These questions are im-
plicitly multi-step and require a combination of
symbolic reasoning and natural language under-
standing.

A system has access to a training setD = {(x =
(q, T ), ŷ)} of questions, tables, and answers. Ta-

bles between training and evaluation are disjoint
to prevent memorization. The only restriction on
the question is that it must be answerable given the
information provided in the table. Average exact
match (EM) over D between the predicted answer
ŷ and target y is used as the primary metric.

2.1 Datasets
WikiTableQuestions (Pasupat and Liang, 2015b)
serves as our initial exploration into the limita-
tions of current models. It is a tabular question-
answering dataset from 2,108 HTML tables and
crowdsourced question-answer pairs. Despite mul-
tiple questions per table in both train and test set-
tings, tables between the training and testing set
are distinct. WikiTableQuestions boasts several key
attributes that make it an effective and challenging
benchmark:

• Questions often require multiple steps to an-
swer by gathering distinct pieces of informa-
tion from a single table.

• Tables are not perfectly formatted often dis-
playing non-consistent cell values depending
on the implicit capabilities of the reader to
discern different sections.

• Cells often contain interleaved formal repre-
sentations and natural language making use of
pure programmatic approaches challenging.

WikiTableQuestions-Filter is a subset of the
WikiTableQuestions dev set for analysis in Section
5.1 to isolate tool performance in ToolWriter inde-
pendent from the detector. Leveraging SQUALL
annotations (Shi et al., 2020) we keep samples that
contain a WHERE clause after a SELECT. This re-
sults in 1256 question-table-answer triplets.

WikiSQL (Zhong et al., 2017), similar to
WikiTableQuestions, consists of 80,654 question-
answer pairs over 24,241 tables from Wikipedia.
Although its original intention was for semantic
parsing it has been adapted to weak supervision
settings by just using the target answer span as the
source of signal. All tables in the dataset are fully
parseable with types. Questions are simpler com-
pared to WikiTableQuestions and only contain op-
erations on full cell values that are fully parseable
by an SQL query.

2.2 Baseline models
We investigate the limitations systems with varying
task specific supervision.
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BART (Lewis et al., 2020) is a Transformer
(Vaswani et al., 2017) pre-trained with a denois-
ing objective. For TQA it is fine-tuned with
1024 tokens of context jointly processing the
query and a linearized table as follows: x =
q[HEAD], c1, , cN,[ROW], 1, r1,[ROW], 2, r2..

TapEx (Liu et al., 2021b) is a BART model
fine-tuned to mimic an SQL executor on 5 mil-
lion grammar-generated SQL statements. TapEx is
currently state-of-the-art on the weak formulation
of WikiSQL.

Omnitab (Jiang et al., 2022) is based on TapEx
and further fine-tuned on natural language. The
pre-training translates synthetic SQL queries into
questions and mines similar passages to tables for
masked language modeling. OmniTab is state-of-
the-art on WikiTableQuestions and may be seen as
the narrowest model for TQA due to its fine-tuning
regime.

UnifiedSKG Xie et al. (2022a) is a T5 trans-
former (Raffel et al., 2020) with a standardized
multi-task text-to-text format on structured knowl-
edge (tables, knowledge bases, semantic parsing,
etc...).

FlanT5 (Wei et al., 2021) takes a middle-ground
approach between strong supervision and general-
ity by instruction-tuning transformers on 62 differ-
ent types of NLP tasks. Through in-context learn-
ing, it provides a strong baseline for TQA.

GPT-3 (Brown et al., 2020) showcases an un-
supervised in-context learning approach to TQA.
GPT-3 shows strong performance in TQA with
zero-shot Chain-of-Thought (CoT) reasoning ex-
plicitly answering step-by-step (Kojima et al.,
2022; Wei et al., 2022; Chen, 2022).

3 Behaviour Analysis

Tabular question answering is a challenging set-
ting since tables can be exceedingly long. Con-
text length in Transformer architectures is often
limited to 512 tokens due to a quadratic memory
cost (Vaswani et al., 2017). In WikiTableQues-
tions 41.7% of linearised tables exceed 512 tokens
without even considering the question tokens. Cur-
rent approaches to TQA patch this problem by in-
creasing the context limit to 1024 tokens (Omnitab,
TapEx, UnifiedSKG) and 2048 in GPT-3. This in-
curs a significant memory cost often prohibiting
the use of such models. However, even at 1024 to-
kens of context 23.8% of tables are truncated thus
incurring data loss.
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Figure 2: Exact match by table size on the WikiTable-
Questions dev set. The number of dataset samples per
row subset is shown above each bar.

3.1 Effectiveness across table size

Figure 2 shows model effectiveness stratified by
the number of rows in a table on partitions of Wik-
iTableQuestions dev. We note that the 1024 token
context window is often exceeded at 40-50 rows.
Interestingly, we observe a universal degradation
in performance well before 40 rows. As such, table
size is an important factor in performance indepen-
dent of model capacity.

For tables exceeding 50 rows model performance
decreases by an average of 40% relative to small
tables. In these cases, due to prior ordering of the
table, some questions only require information that
is located at the top of the table. This maintains
base performance for most models however we
observe FlanT5-XL significantly degrades. Here
we qualitatively observe hallucinations that repeat
the input table tokens with large tables.

3.2 Potential in row filtering

Following our findings that table length has a sig-
nificant and universal decrease in performance, we
test the effect of filtering noise from the table. We
hypothesize that removing noise from the data will
increase model performance. We manually simu-
late a row-filtering tool by removing noise and only
keeping the rows that are sufficient to answer the
question.

To test our hypothesis we manually annotate 51
samples of the WikiTableQuestions dev set. We
validate that correct usage of a tool is critical by
also simulating a random row filter that removes
50% of rows indiscriminately. We note that the
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Row Filter U.SKG O.Tab GPT-3 FlanT5-XL
None 39.21 54.9 47.05 17.64

Random 11.76 5.88 15.64 5.52
Manual 60.78 58.82 54.9 39.21

Table 1: Exact match scores over 51 samples from the
WikiTableQuestions dev set with gold rows selected
manually as sufficient to answer the question.

format for the input to the models is kept constant
as we only change the number of rows in a table.
Our findings are shown in Table 1 pertaining to
correct and incorrect usage of a row filtering tool
where we draw two conclusions:

Correct row-filtering markedly improves
performance across all tested model types. As
tables reduce in size but retain relevant information,
4 of the 51 tables that are originally truncated to
the 1024 token limit are fully processed. Noise is
reduced by changing incorrect answers to positive
ones in 10% of samples.

Incorrect usage of a tool poses the risk of re-
moving relevant information. Since information
in TQA is discreetly stored in table cells, it is chal-
lenging for models to recover once it is removed
as we see by random row-filter performance. Fur-
thermore, 7 of the 51 tables require no filtering.
For such questions like “how many players par-
ticipated?” we observe that row-filtering is query-
specific and demands detection strategies.

Our findings motivate an automatic appraoch to
generate a query-specific row-filtering tool and to
detect when to apply it.

4 ToolWriter

ToolWriter is our proposed method to address the
limitations of current language models on large
semi-structured data. In response to a question
over a table, ToolWriter decides if tool-use is re-
quired. It then generates a program to transform
and simplify the table to make question-answering
more effective. First, we outline our conceptual
framework followed by our method implementa-
tion.

4.1 Proposed model

We introduce ToolWriter as TW that combines a
Tool with a TQA model F mediated by σ ∈ [0, 1]
where 0 means "don’t apply tool" and 1 means
"apply tool".

TW (x, F ) = σ·F (Tool(x)) + (1− σ) · F (x)
(1)

Moreover, we define our sigma as the output of
a detector function that aims to approximate the
uncertainty of the model prediction.

σ = dθ(x, F (x)) ≈ P (y 6= F (x)) (2)

Our task is to maximize the exact match EM
over our corpus D. We now take the partitions of
D over the correct and wrong predictions of the
model F (Eq. 3).

SF = {(x, ŷ) ∈ D|F (x) 6= ŷ}
SF = {(x, ŷ) ∈ D|F (x) = ŷ} (3)

As we intend, transforming an input x with a
tool might have a positive or negative effect on the
produced output. When we observe our two subsets
of D we can draw the following conclusion.

EM(TW (·, F ), SF ) =
{
0 σ = 0

≤ 1 σ = 1
(4)

EM(TW (·, F ), SF ) =
{
1 σ = 0

≤ 1 σ = 1
(5)

The transformation on x produced by the tool
is guaranteed to increase or maintain performance
when the model is known to be wrong (Eq 4) and
decrease it otherwise (Eq 5). This justifies our
choice in Eq 2 of a detector that approximates the
probability for an incorrect prediction of model F .

4.1.1 Tool use detection
In an ideal setting, we maximizeEM over all avail-
able subsets: SF and SF . σ mediates when we
decide to use a tool. For SF we can see the best
choice is to use the original prediction yet for SF
we stand to gain if we use our tool before calling
the model F . If we are in an oracle setting and
we know the ground truth answer this gives us an
oracle detector for when to use a tool.

σ = 1(y 6= F (x)) (6)

However, in practice we approximate the ora-
cle detector with a parametrized detector d. This
aligns with previous work about query performance
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prediction (Cronen-Townsend et al., 2002) where
estimating query difficulty is a reasonable assump-
tion.

We explain our parametrized detector in more
detail in Section 4.2. In the extreme, however,
σ = 1 equates to always applying the tool. Given
that we are detecting when the model is likely to
fail, how we define our tool directly impacts the
performance we can have on the subset of D it is
applied over.

4.1.2 Programs as tools
The subset SF is by definition difficult for F . As
we see later in Section 3, our tested diverse set
of state-of-the-art neural models (each correspond-
ing to a specific instantiation of F ) display similar
patterns. This raises the natural following ques-
tion: What tool can distinctly complement the
learned abilities of neural models?

Our working hypothesis is that programs: 1)
provide a natural interface to structured data; 2)
circumvent several innate limitations of current
neural systems due to their extrapolative nature.
We define tools as short programs to transform the
input data x into x∗, which are in the same input
domain I . The term ε is introduced to account
for any noise introduced between the transformed
input (x∗) and the original input domain (I). This
is represented in Eq 7 as:

Tool : I → I∗ + ε (7)

When paired selectively with an effective detec-
tion strategy d, programs as tools are applied to
increase the likelihood of a correct prediction on
a subset that is challenging for a model F . This
outlines a program generation method C(x) that
generates a Python code dependent on the input. In
Section 4.2 we describe our exploration into vari-
ous methods for generating short programs as tools
to interface in a query-specific way with structured
data.

Tool(x) = Exec[x,C(x)] (8)

Deciding which programs to create as tools are
strongly correlated with the target task as well as
the limitations of the models. As such, we first
clearly define our task in Section 2 followed by an
in-depth analysis of where our search for useful
programs as tools will start.

4.2 Model implementation
ToolWriter is composed of a tool use detector and a
query-specific tool generator on top of an existing
TQA model. Following our behavior analysis, Om-
niTab and UnifiedSKG act as our two best TQA
models F (x) for WikiTableQuestions and we use
TapEx for WikiSQL.

4.2.1 Model agnostic tool-use detector
We develop a model-agnostic detector dθ(x, F (x))
to detect when a tool is likely to improve model
accuracy. Detecting input difficulty is a reasonable
assumption and aligns with previous work on qual-
ity estimation (Ueffing and Ney, 2005; Fomicheva
et al., 2020) and query performance prediction
(Cronen-Townsend et al., 2002). The combined
detector in ToolWriter is a linear classifier with the
following features:

Sequence log-probability (SeqLogProb) is the
length-normalised sequence log-probability from a
trained model F (y | y, x, θ).

1

L

L∑

k=1

logF (yk | y<k, x, θ) (9)

We expect low-confidence answers are likely to be
incorrect.

Input length, as we have seen in Section 3,
poses a challenge to all models irrespective of size
and training objective. We leverage the size of the
table measured by the number of rows as a simple
feature to decide when to apply a tool.

Our use of such simple detection methods con-
trasts with well-studied error detection methods in
NLP (Bérard et al., 2019; Fomicheva et al., 2020)
as a sign that tools are reasonable model-agnostic
extensions even with simple detection heuristics.

4.2.2 Row-filter tool generator
The tool generator synthesizes a short Python pro-
gram that takes a table as input and returns a trans-
formed version of it. The following code snippet is
fixed and highlights the area where the generated
code from the tool generator is placed.

new_table = table[table.apply(lambda ... , axis=1)]

The task of the row filter generator is to generate
a lambda function to remove the rows in the table
that are not relevant to answering the question. The
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# Extracts x from “x-y” and keep if greater than 2
lambda row: float(row['Score'].split(‘–’)[0]) >= 2

(a) Zero-shot GPT-3 for the question "In how many games did sri
lanka score at least 2 goals?"

# Keep rows containing ‘France’ in the description 
lambda row: 'france' in row['Description'].lower()

(b) T5 for the question "Is France mentioned positively?"

Figure 3: Examples row filter tools generated from our
two proposed methods. Comments are added manually
for explanatory purposes.

program may be of arbitrary complexity empha-
sizing the generality of our approach for systems
to interact with data through programs as seen in
Figure 3.

As we see in Table 1 removing rows requires
care to preserve crucial information. It is evident
that a tool must adapt its filtering strategy according
to the question and the table. Our row filtering tool
keeps its input and output space consistent and
suitable for the downstream model.

The task of generating tools requires the model
to produce an explicit transformation of the table
given the question. Given that the search space
for tools as programs grows exponentially with the
expressiveness of the tools, we opt for methods that
reduce the search space by having a prior on what
possible transformations will work best.

Specifically, we explore 2 approaches for gener-
ating Python row filters:

Fine-tuned T5. We fine-tune a T5 model
through supervised training to autoregressively gen-
erate a Python row filter given a question q and a
table T . For our supervised data we leverage a sub-
set WikiTableQuestions with SQUALL (Shi et al.,
2020) annotations on questions that contain a sin-
gle SELECT and WHERE clause which are likely
to benefit from row filtering. Our starting check-
point is FlanT5-XL, using a batch size of 64 on two
RTX 3090 GPUs for 10k steps for 8 hours. Further
training details are in

Zero-shot GPT-3. We leverage GPT-3 for zero-
shot prediction to generate a row filter as a Python
lambda function. We use the "text-davinci-003"
API with a temperature of 0.2 with the question and
table schema in the prompt (Appendix C). Zero-
shot tool generation shows the potential in low-
effort approaches to manipulate structured data.

Figure 3 showcases generated Python code sam-
ples from both our proposed tool generators. Lan-

Tool Detector Omnitab UnifiedSKG
Baseline 73.5 55.5

T5 Always 72.0 (-1.4) 59.5 (+4.0)
Oracle 77.5 (+4.0) 63.3 (+7.8)

GPT-3 Always 74.6 (+1.1) 63.0 (+7.6)
Oracle 80.3 (+6.8) 68.6 (+13.1)

Human SQL Always 74.9 (+1.4) 65.0 (+9.5)
Oracle 82.7 (+9.2) 70.6 (+15.1)

Table 2: Row filter tool performance on
WikiTableQuestions-Filtered with two detection
strategies.

guage models have no formal guarantees for exe-
cutable code (Rae et al., 2021; Chen et al., 2021).
As a result, if the execution of the tool throws an
exception or the resulting table is empty we revert
to the original table.

Manual tool. For WikiTableQuestions-Filter we
leverage the SQUALL SQL annotations to derive a
manual row filter. We analyze row filter headroom
performance in Section 5.1.

5 Results

First, we investigate the various tool generators
of ToolWriter on a subset of WikiTableQuestions
where filtering is often required. Second, we focus
on the importance of the detector to choose when to
best apply the generated tools (Section 5.2). Third,
we test ToolWriter to both detect and generate tools
across various TQA datasets and methods (Section
5.3). Finally, we analyze how ToolWriter performs
as table size increases (Section 5.4).

5.1 Performance of tool generators

As we observe in Table 2 our automatic tool gener-
ators (T5, zero-shot GPT-3) almost universally in-
crease model performance on WikiTableQuestions-
Filtered. Importantly, regardless of how our tools
may be applied, UnifiedSKG significantly benefits
by all tools generated by ToolWriter . This shows
our tools are effective at filtering irrelevant informa-
tion from tables that would otherwise cause TQA
models to fail.

Manual tools show the potential for tool gener-
ators to simplify tables further. Our best tool gen-
erator, zero-shot GPT-3, achieves 70% of manual
performance averaged over all detection settings
and models.

Table 2 also informs us of the importance of
the detector. We observe a large gap for all tool
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WikiTableQuestions WikiSQL
OmniTab UnifiedSKG TapEx

Detector Dev Test Dev Test Dev Test
Never apply 62.7 63.0 49.6 50.8 89.6 89.0
Always apply 56.5 (-6.2) 57.5 (-5.5) 48.5 (-1.0) 50.2 (-0.6) 89.6 (0.0) 89.8 (+0.7)
SeqLogProb 63.7 (+1.0) 64.3 (+1.2) 52.6 (+3.0) 54.6 (+3.8) 90.5 (+0.8) 90.4 (+1.3)
Combined 63.7 (+1.0) 64.9 (+1.8) 52.9 (+3.4) 54.5 (+3.7) 90.7 (+1.1) 90.5 (+1.5)
Oracle 67.4 (+4.7) 68.3 (+5.3) 57.9 (+8.3) 59.0 (+8.1) 91.7 (+2.0) 91.5 (+2.4)

Table 3: Exact match results on various detection strategies for applying our best row-filter tool generator: GPT-3.

generators comparing always applying our tool to
oracle detection.

5.2 Detecting when to use tools

Table 3 shows performance of multiple detection
strategies on the full dev and test sets for Wik-
iTableQuestions and WikiSQL. We use our best-
performing tool generator, zero-shot GPT-3. We
observe row filtering tools require query specific
detection since “always” or “never” applying tools
shows the lowest results in all cases.

We observe that even simple detection meth-
ods like SeqLogProb are sufficient to inform Tool-
Writer when to apply the query-specific generated
row filter. We see significant benefits in leveraging
tools for all TQA models in contrast to not using
them. Performance increases further as we include
table length as a feature in our detector highlighting
the importance of using tools in accordance with
the complexity of the data.

Under oracle detection conditions we observe
significant potential for our generated tools. This
shows how deciding when to apply a row filter tool
is just as important as how to apply it.

5.3 Overall performance

Leveraging our prior findings, ToolWriter is the
combination of our best detection method (SeqLog-
Prob with table length) and our best row-filter tool
generator (zero-shot GPT-3). For each dataset, we
show the corresponding model F as our base TQA
model. Table 4 and Table 5 show overall model
performance on WikiTableQuestions and WikiSQL
respectively.

Our results show ToolWriter significantly im-
proves performance agnostic of the target model
using the generated tools. UnifiedSKG is particu-
larly effective in leveraging the transformed tables
with a 3.6% absolute performance increase com-
pared to not using tools. When paired with Om-

Method Dev Test
2-shot GPT-3 Direct (Chen, 2022) — 27.3
BART (Lewis et al., 2020) 37.2 38.0
2-shot GPT-3 CoT (Chen, 2022) — 45.7

UnifiedSKG (Xie et al., 2022b)
50.9
(49.6)

50.9
(50.8)

ToolWriter + UnifiedSKG 52.9 54.5
TapEx (Liu et al., 2021a) 57.0 57.5

OmniTab (Jiang et al., 2022)
—
(62.7)

62.8
(63.0)

ToolWriter + Omnitab 63.7 64.9

Table 4: Exact match accuracy results on WikiTable-
Questions. Results in parenthesis are our reproduced
experiments.

Method Dev Test
BART (Lewis et al., 2020) 87.3 85.8
UnifiedSKG (Xie et al., 2022b) 87.4 85.7
OmniTab (Jiang et al., 2022) — 88.7

TapEx (Liu et al., 2021a)
89.2
(89.6)

89.5
(89.0)

ToolWriter + TapEx 90.7 90.5

Table 5: Exact match accuracy results on WikiSQL. Re-
sults in parenthesis are our reproduced experiments.

niTab and TapEx we improve the state-of-the-art
for both datasets. The improvement in WikiSQL is
particularly impactful as ToolWriter enables a 10%
error-rate reduction.

These results show how programmatic tools ef-
fectively complement neural components as an ef-
fective method for processing semi-structured data.
In the following section, we perform a stratified
analysis to understand where ToolWriter leads to
the most improvements.

5.4 Tools improve performance on long
tables

In this section we do an ablation study stratified by
table length on WikiTableQuestions: short tables
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Omnitab UnifiedSKG
Dev Test Dev Test

rows < 30
Baseline 67.0 67.9 52.7 54.3
ToolWriter 67.0 (+0.0) 68.0 (+0.1) 55.0 (+2.3) 57.2 (+2.8)

30 ≤ rows < 60
Baseline 48.7 46.4 39.6 37.5
ToolWriter 52.6 (+3.9) 51.9 (+5.5) 44.0 (+4.4) 45.1 (+7.6)

rows ≤ 60
Baseline 41.4 35.0 33.7 34.3
ToolWriter 48.1 (+6.6) 43.3 (+8.3) 42.0 (+8.3) 41.7 (+7.5)

Table 6: Row filtering performance comparison on partitions stratified by table length for WikiTableQuestions.

(rows < 30), medium tables (30≤ rows < 60), and
long tables (60 ≤ rows). We aim to quantify the
effect ToolWriter has as table size increases. As
in Section 5.3 ToolWriter uses GPT-3 as the tool
generator and the combined detector.

Table 6 shows our original hypothesis confirmed:
Row filtering tools can be an effective strategy to
help models handle long tables. We notice how
as table length increases, the positive effect of the
row filtering tool becomes more pronounced. Our
hypothesis is further confirmed with our T5 tool
generator where results mimic the Table 6 reaching
up to 5% absolute improvement with UnifiedSKG.

As noted in Section 4.2.1, detection is critical to
tool-use. On short tables, we observe no degrada-
tion in performance highlighting the effectiveness
of our combined detector.

6 Background and Related Work

Semantic parsing focuses on generating an exe-
cutable parse for the exact answer (McClelland and
Rumelhart, 1986), benefiting from data size inde-
pendence (Herzig and Berant, 2017). It requires
strong supervision (Dong and Lapata, 2018; Yin
et al., 2021) or reinforcement learning (Zhong et al.,
2017) and assumes coherent data formatting and
an expressive target language.

Alternative approaches learn a joint table-
question-answer mapping. Seq2Seq models
(Sutskever et al., 2014) execute (Zaremba and
Sutskever, 2014) and simulate formal programs
(Lu et al., 2015). Intermediate executable modules
were integrated (Neelakantan et al., 2015), while
Transformer-based models (Vaswani et al., 2017;
Lewis et al., 2020; Raffel et al., 2020) leveraged un-
supervised language capabilities (Xie et al., 2022a;
Jiang et al., 2022; Herzig et al., 2020; Yin et al.,
2020).

Recent interest in execution-loop models arises
from language models’ ability to explain reasoning
(Wei et al., 2022), improving compositional ques-
tions (Zhou et al., 2022) and symbolic manipulation
(Bueno et al., 2022; Nye et al., 2021; Wolfson et al.,
2020). TQA language models generate chains of
thought with sub-question answers (Chen, 2022).

Recent advances in code-focused language mod-
els led to an interest in combining question de-
composition and program interaction (Chen et al.,
2021). Toolformer (Schick et al., 2023), Program
Assisted Learning (Gao et al., 2022b), and Tool
Augmented Language Models (Parisi et al., 2022)
interleave execution and natural language reason-
ing but face limitations in capacity. Our work ad-
dresses large structured context directly while in-
terleaving execution and natural language.

7 Limitations

While ToolWriter enables LMs to pragmatically
interact with tabular data, there are some clear limi-
tations to what can be achieved with our method in
its current form. One such limitation is the tool gen-
erator’s focus on row filtering as a primary means
to transform the table. ToolWriter relies exclusively
on the underlying TQA model to perform all ag-
gregations, arithmetic mappings, and groupings on
the transformed table. This is because ToolWriter
solely removes irrelevant rows from the input ta-
ble, but may not reduce the size of the relevant
rows which, in the limit, may still overwhelm a
Transformer based TQA model. Our current ap-
proach also does not allow neural filtering of the
tabular data for situations where programmatic in-
teractions may break down. This is due to the
current tool generator producing standard Python.
Despite Python’s expressive capabilities for string
manipulation, as shown in Figure 3, string manipu-
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lations can break down in more semantic contexts
(Cheng et al., 2022). Beyond this, we found that
ToolWriter is sensitive to cascading errors due to
the inherent multi-step interactions on the struc-
tured data. The tool generator is not informed by
the failure mode of the original TQA model other
than that it needs to reduce the table. This is due
in part to the current black-box nature of models
such as Tapex which do TQA entirely end-to-end.
Possible solutions to this include recent work in
LM reasoning (Wei et al., 2021; Bueno et al., 2022)
where a rationale may be explicitly generated indi-
cating a failure mode. This feedback would then
inform the tool generation process.

8 Conclusion

Tabular question answering is a challenging setting
for neural methods due to large context sizes and
implicit reasoning. First, we characterize the limita-
tions of neural methods to integrate structured data
and find all language modeling methods struggle
with large tables. Second, we propose ToolWriter
to generate query-specific tools to simplify large ta-
bles and detect when these transformations should
be applied. We propose various language model-
based methods to generate programs that filter rows
which universally improve and achieve state-of-
the-art results on two tabular question-answering
datasets. Finally, we determine significant head-
room in both detecting when to use tools and how
to generate them under oracle setting highlighting
the potential in tools to manipulate structured data
combined with language models.
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A Experimental setting

We use the recommended settings for each and
linearize the tables with the official scripts. At test
time we perform greedy decoding. We obtain these
models from the Huggingface model hub (Wolf
et al., 2019).

Our two tool generation models: prompt-based
and fine-tuned. For our prompt-based model we
use the OpenAI GPT-3 API with the "text-davinci-
003" model with a temperature of 0.2.

Our fine-tuned FlanT5-XL model is always
trained for 10k steps with the validation set used to
tune the appropriate batch size of 64, weight decay
of 0.01 and a learning rate of 10e-4. We perform
a grid search across these parameters as the most
influential for the final row filter effectiveness.

B Subset analysis

To effectively filter according to relevant criteria we
leverage parallel SQL annotations from SQUALL
(Shi et al., 2020) which cover 77.11% of the dev
data. These annotations are formal semantic parses
of the query which remove the natural language
variability enabling us to filter by required capabil-
ity.

As shown in the first two rows of Table 7 we
see a marked decrease in performance for non
SQUALL annotated samples across all model types.
These are cases where the queries or table are con-
sidered too complex to be expressed as SQL. As
such we are restricted to qualitative and point-wise
analysis of these samples to characterize model
behavior.

C Prompts
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Data Subset Uni.SKG OmniTab GPT-3 FlanT5 dataset %
SQUALL annotated 54.56 66.65 38.62 17.36 77.11
Non SQUALL annotated 33.49 40.43 30.4 11.27 22.89
+ 1’ as offset 69.23 73.85 47.69 16.92 2.3
requires counting rows 43.14 66.11 27.17 6.72 25.22
count all rows 39.62 66.67 16.98 3.77 5.62
big sub or add 6.58 11.84 55.26 2.63 2.68
1 ’where’ clause 55.65 70.75 39.92 17.63 44.68
2 ’where’ clauses 49.42 59.83 41.62 15.32 12.22
count and where 54.41 67.8 39.73 16.35 63.3
answer not in prompt 30.23 31.4 26.74 3.88 9.11
multiple answers 41.94 51.61 32.26 0 2.19
one select 55.92 68.33 38.15 17.88 63.79
one select and one where 55.99 71.2 40.06 17.7 43.91
has duplicate columns 30.59 41.18 21.18 10.59 3

Table 7: Exact match performance of systems according to subsets of the WikiTableQuestions dev set.

User 1:
I need an expert to help me answer the question by making the table
smaller.
Question: Who are all of the players on the Westchester High School
club team?

table = {’Player’: [’Jarrett Jack’, ’Jermaine Jackson’, ...
’No.’: [’1’, ’8’, ...
’Nationality’: [’United States’, ’United States’, ...
’Position’: [’Guard’, ’Guard’, ...
’Years in Toronto’: [’2009-10’, ’2002-03’, ...
’School/Club Team’: [’Georgia Tech’, ’Detroit’, ...
}

User 2:
For ’Who are all of the players on the Westchester High School club
team?’ the most impactful change will be to filter the rows. Since I
don’t know all the rows I’ll use rough string matching, float casting,
lowering and be as broad as possible.

>>> new_table = table[table.apply(lambda row_dict: ’Westchester’ in
row_dict[’School/Club Team’].lower(), axis=1)]

Figure 4: Prompt used to generate row filter tools with GPT-3 in a zero-shot setup. Tables are truncated to 2 rows
to give the model a schema for how to interact with the data. Hilighted region indicates the start of the prompt
completion.
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