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Abstract

In this paper, we conducted a comprehensive
study with the latest Sentence Encoders and
Large Language Models (LLMs) on the chal-
lenging task of “definition-wild zero-shot topic
inference”, where users define or provide the
topics of interest in real-time. Through exten-
sive experimentation on seven diverse data sets,
we observed that LLMs, such as ChatGPT-3.5
and PaLM, demonstrated superior generality
compared to other LLMs, e.g., BLOOM and
GPT-NeoX. Furthermore, Sentence-BERT, a
BERT-based classical sentence encoder, out-
performed PaLM and achieved performance
comparable to ChatGPT-3.5.

1 Introduction
Topic modeling and inference have been widely
studied in the NLP literature (Alghamdi and Al-
falqi, 2015; Jelodar et al., 2019; Chauhan and Shah,
2021). In this paper, we focus on Zero-shot ap-
proaches (Yin et al., 2019; Xie et al., 2016; Veer-
anna et al., 2016) for inferring topics from docu-
ments where both the document and topics were
never seen by a model previously. For developing
Zero-shot methods, we exclusively focus on lever-
aging the recent powerful Sentence Encoders and
Large Language Models (LLMs) due to their recent
success in a wide variety of NLP tasks.

The problem of zero-shot topic inference can be
described using an intuitive example where the end
user (possibly a domain expert) is actively involved
in the inference process. Consider that the domain
expert is analyzing a large volume of health articles
and wants to automatically infer topics from those
articles, including topics like “Autoimmune Disor-
ders”, “Heart health”, “Arthritis”, etc. For this real-
life use case, the user will provide the collection
of documents as well as a set of topics to be used
as labels for categorizing the documents. Addition-
ally, the user may also provide a list of relevant
keywords/clues associated with each topic, which

can be used as expert guidance for the inference
process. The zero-shot topic inference algorithm
then infers topics for each document.

Naturally, the zero-shot topic inference is a hard
task, and only limited previous works studied this
problem (Yin et al., 2019; Xie et al., 2016; Veer-
anna et al., 2016). However, with the recent de-
velopments in LLMs and pre-trained sentence em-
beddings like Cer et al. (2018b); Conneau et al.
(2017a); Scao et al. (2022), we have observed sig-
nificant performance boosts in many downstream
zero-shot NLP tasks. Inspired by these, we de-
cided to explore zero-shot methods by leverag-
ing various sentence encoders [InferSent (Con-
neau et al., 2017a), Language-Agnostic SEntence
Representations (LASER) (Artetxe and Schwenk,
2019), Sentence-BERT (SBERT) (Reimers and
Gurevych, 2019a), and Universal Sentence En-
coder (USE) (Cer et al., 2018b)] and recent LLMs
[BLOOM (Scao et al., 2022), PaLM (Chowdhery
et al., 2022), GPT-NeoX (Black et al., 2022), Chat-
GPT (Brown et al., 2020)] for topic inference. It
is important to highlight that for all of our exper-
iments with LLMs (except ChatGPT-3.5), we did
not follow a prompting approach. Instead, to make
an apple-to-apple comparison with classic sentence
encoders, we generated sentence embeddings from
these LLMs (except ChatGPT-3.5) and used the
embeddings directly to infer topics.

In summary, we conducted extensive experi-
ments with classic Sentence Encoders and LLMs
on the zero-shot topic inference task and, conse-
quently, established a comprehensive benchmark
for future work in this direction. Experiment re-
sults with multiple real-world data sets, including
online product reviews, news articles, and health-
related blog articles, show that among all the mod-
els ChatGPT-3.5 is superior in terms of general-
ity compared to others, while Sentence-BERT per-
forms exceptionally well and surpasses LLMs such
as PaLM, BLOOM, and GPT-NeoX.
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2 Related Work
This work is built upon prior research from mul-
tiple areas, including Topic Modeling and Cate-
gorization (Blei et al., 2003; Wang et al., 2011;
Iwata et al., 2009), Text Annotation (Ogren, 2006;
Zlabinger, 2019; Bijoy et al., 2021), Zero-Shot
Learning (Veeranna et al., 2016; Yin et al., 2019),
Sentence embeddings (Casanueva et al., 2020; Cer
et al., 2018a), Large Language Models (Scao et al.,
2022; Brown et al., 2020) etc. A brief discussion
on each area and how this work is positioned con-
cerning the state-of-the-art is as follows.

2.1 Topic Modeling and Inference

Classical Unsupervised Topic Models: Classical
Topic Models, such as PLSA and LDA, emerged
in the late 90s. PLSA was proposed by Hofmann
et al. (Hofmann, 1999). LDA, introduced by Blei
et al. (2003), extended PLSA by incorporating a
generative model at the document level and remains
widely used. Subsequently, several works, includ-
ing Wang et al. (2011); Du et al. (2013); He et al.
(2016); Hingmire and Chakraborti (2014), explored
different aspects/issues of topic modeling.

Supervised Topic Inference: Studies such as Tu-
arob et al. (2015); Bundschus et al. (2009) have
demonstrated the feasibility of supervised learning
to categorize topics using well-annotated training
data. Iwata et al. (2009) proposed a topic model for
analyzing content-related categories in noisy anno-
tated discrete data. Poursabzi-Sangdeh and Boyd-
Graber (2015) combined document classification
and topic modeling to uncover semantic structures.
Engels et al. (2010) employed a latent topic model
for the automatic categorization of videos with the
associated text. In the field of neural text classifica-
tion, researchers like Meng et al. (2018) addressed
the challenge of limited training data. Addition-
ally, Hassan et al. (2020) introduced a supervised
classification for sexual violence report tracking.

Zero-Shot Topic Inference: Various topic
modeling-based approaches have been explored
for zero-shot classification for the English lan-
guage (Karmaker Santu et al., 2016). Similarly,
Li et al. (2018); Zha and Li (2019) worked towards
a dataless text classification. Veeranna et al. (2016),
adopted pre-trained word embedding for measuring
semantic similarity between a label and documents.
Further endeavor has been spent on zero-shot learn-
ing using semantic embedding by (Hascoet et al.,
2019; Zhang et al., 2019; Xie and Virtanen, 2021;

Rios and Kavuluru, 2018; Yin et al., 2019; Xia
et al., 2018; Zhang et al., 2019; Pushp and Srivas-
tava, 2017; Puri and Catanzaro, 2019; Yogatama
et al., 2017; Pushp and Srivastava, 2017; Chen et al.,
2021; Gong and Eldardiry, 2021).

2.2 Sentence Embedding

Powerful sentence encoders have demonstrated
their effectiveness in various NLP tasks, such as
Intent Classification Casanueva et al. (2020), Fake-
News Detection Majumder and Das (2020), Dupli-
cate Record Identification Lattar et al. (2020), Hu-
mor Detection Annamoradnejad (2020), Ad-Hoc
monitoring Sarkar et al. (2023), and COVID-19
Trending Topics Detection Asgari-Chenaghlu et al.
(2020). Researchers have explored dual-view ap-
proaches Cheng (2021), evaluated sentence em-
beddings for transfer-learning tasks (Perone et al.,
2018; Enayet and Sukthankar, 2020), and exam-
ined the limitations of capturing sentence correct-
ness and quality Rivas and Zimmermann (2019);
Sarkar et al. (2022). Additionally, sentence em-
beddings have been utilized for domain-specific
embeddings Chen et al. (2019), recommending re-
search articles, and computing semantic similarity
between articles (Hassan et al., 2019; Chen et al.,
2018; Tang et al., 2018). Some studies have fo-
cused on understanding the encoded sentence rep-
resentations Adi et al. (2017b) and investigating the
impact of word frequency and distance on sentence
encoding (Adi et al., 2017a).

2.3 Large Language Model (LLM) & Prompts

Recent research has extensively studied the poten-
tial of LLMs like ChatGPT, BLOOM, GPT, etc.,
for a wide range of applications. For example, re-
searchers have shown the utility of ChatGPT in
healthcare education (Sallam, 2023), programming
bug solving (Surameery and Shakor, 2023), and ma-
chine translation (Jiao et al., 2023). Some works
in the direction of prompt engineering direction
are: White et al. (2023) presents a catalog of pat-
terns to improve the outputs of LLM conversations,
Reynolds and McDonell (2021) discuss methods of
prompt programming, Jang et al. (2023) evaluated
llm with negated prompts.

2.4 Difference from Previous Works

Despite the extensive research conducted in this
field, there remains a noticeable gap in the system-
atic exploration of the potential of recent LLMs
and sentence encoders for the target task. Specif-
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ically, the utilization of LLMs for zero-shot topic
inference has been largely unexplored, while ex-
isting studies on leveraging sentence encoders for
text-topic similarity have primarily concentrated
on a single encoder, limiting the scope of the in-
vestigation. In contrast, our work provides a com-
prehensive comparative analysis by evaluating mul-
tiple state-of-the-art sentence encoders as well as
LLMs, considering various techniques to encode
topics and documents. Additionally, we introduce
novel approaches to incorporate user-provided aux-
iliary information for topic encoding, leading to
improved inference results.

3 Problem Statement
The traditional Topic Inference task is defined as:

Definition 1 Given a collection of documents D
and a set of pre-defined topics T , infer one or more
topics in T FOR each document d ∈ D.

Thanks to the pre-defined set of topics T , the
traditional Topic Inference task can benefit from
fine-tuning based on a carefully designed training
set for supervised learning. On the other hand, we
follow the idea of Definition-Wild Zero-Shot-Text
Classification coined by Yin et al. (2019), which
is as follows:

Definition 2 Definition-Wild 0SHOT-TC aims at
learning a classifier f(·): X → Y, where classifier
f(·) never sees Y-specific labeled data in its model
development.

Extending on top of Definition-Wild (0SHOT-
TC), we formalize our task from the user’s stand-
point in the following fashion:

Definition 3 Given a collection of documents D =
{d1, d2, ..., dn}, a user x and a set of user-defined
topics Tx = {t1, t2, ..., tm} provided in real-time,
annotate each document di ∈ D with zero or more
topics from Tx without any further fine-tuning.

In this dynamic setting, different users may pro-
vide varying sets of topics for the same dataset
based on their specific application needs and goals.
Customized training datasets in advance are no
longer feasible as the target topics are provided in
real time. We assume that each topic t is repre-
sented by a word or phrase, and users can include
additional topic-related keywords Kt. Essentially,
our ad-hoc problem assumes that the user, typically
a domain expert in a specific field (e.g., a cardiolo-
gist or a business analyst), provides the documents,
target topic, and optional keywords in real time.

Topics in a document may not be explicitly
mentioned but rather implied through related key-
words. For example, a document discussing "Men-
tal Health" may not contain the exact phrase but
may reference related terms like “Depression”,
“Anxiety”, and “Antidepressant”. These implicit
topics are equally significant and should be an-
notated alongside explicit topics. While user-
provided keywords help, it is challenging to create
a comprehensive list capturing all possible descrip-
tions. Also, the presence of a keyword does not
guarantee the document’s sole focus on that topic.
Therefore, keywords alone cannot accurately infer
topics; they merely serve as clues from the user.

4 Method for Zero-shot Topic Inference
In this section, we discuss the zero-shot topic in-
ference approach we studied in this paper. The
end-to-end inference process is shown in Fig 1.
1. The end user provides the inputs, i.e., article text,

custom-defined topics, and optional keywords.
2. The article, topics, and keywords are individu-

ally inputted into the sentence encoder model,
where we employ various mid and large sen-
tence encoders (refer to Sec. 5.2).

3. Next, Two separate embedding vectors are gen-
erated by sentence encoders:
• Article Embedding: The input article is en-

coded using three different approaches, which
are further elaborated in section 4.1.

• Topic Embedding: The candidate topics are
embedded using four different approaches.
The details are provided in section 4.2.

4. After obtaining the two embeddings, we com-
pute their semantic similarity. We measure the
similarity using cosine similarity between the
embeddings. Subsequently, topics are assigned
to the article based on the cosine similarity, em-
ploying a user-defined threshold. For a com-
prehensive analysis, we conducted experiments
with various thresholds ranging from 0 to 1.

5. The output of the zero-shot topic inference
framework is the set of the inferred topic(s).

4.1 Article Embedding

For article embedding, we adopted three methods
as narrated in Table 1.

4.2 Topic Embedding

For generating topic embedding, we adopted four
approaches, including and excluding the auxiliary
information provided by the user, to do a compar-
ative study. The details of topic embedding are
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Figure 1: Steps for Zero-shot Multi-Label Topic Inference process, leveraging sentence encoders.

Embedding
Approach

Description

Entire Arti-
cle (EA)

Encode the entire article using Sentence En-
coders at once, including articles that are
long paragraphs and consist of more than
one sentence.

Sentence
Embedding
Average
(SEA)

Split the article into sentences, then encode
each sentence, and at the end, average all
sentence embedding to generate article em-
bedding.

Individual
Sentence
Embedding
(ISE)

Split the input article into sentences and en-
code each sentence separately. Then, unlike
averaging (Sentence Embedding Average),
use the individual sentence embeddings for
similarity calculation with topic embedding.

Table 1: Three different ways of encoding an input
article using sentence encoders.

Embedding
Approach Description

Topic-
Name-Only Encode only the topic name/phrase.

Topic +
Keywords

Encode both topic name and keywords,
then average all embeddings to generate
the final topic embedding.

Topic +
Keyword +
Definition

Extract the topic’s and keyword’s defini-
tions from WordNet, encode these defini-
tions separately using sentence encoders,
and then average all embeddings to gen-
erate the final topic embedding. For ex-
ample, instead of encoding the keyword
“campaign”, we generated embedding of
its definition, “a race between candidates
for elective office”.

Explicit-
Mentions

First, extract all the articles explicitly
mentioning the topic/phrase using algo-
rithm 1 for all topics. Then, for each
topic, generate embeddings of all arti-
cles that are explicitly annotated/labeled
with that topic, then average them to ob-
tain the ultimate topic embedding.

Table 2: Four different ways of encoding a topic using
sentence encoders.

given in Table 2. As part of topic embedding us-
ing auxiliary information (Embedding approach
“Explicit-Mentions”), we performed a rudimentary
annotation on the dataset to find explicit mentions
of the topics, which is discussed in algorithm 1.

Algorithm 1 Article Annotation using Explicit
Mention
1: Input: Article text, Topic names and Keywords
2: Output: Articles labeled with explicit topics
3: for each article text do
4: check whether the topic name or set (at least 3) of the

informative keywords are present or not in the correspond-
ing article text

5: if present then label the article with the explicit topic
6: end if
7: end for

4.3 Zero-shot Topic Inference

Once we obtain all the embeddings, we measure
cosine similarity between article and topic embed-
dings and, accordingly, infer topics. For instance,
considering article a and topics t ∈ T as well
as considering “Entire Article” (EA) and “Topic-
Name-Only” (TNO) as the embedding approach
for article and topic, respectively, the inference of
topic works as follows:

t̂ = argmax
t∈T

{cosine_similarity (EA(a), TNO(t))}

Where topic t belongs to a set of input topics T .
EA(a) represents the embedding of article a us-
ing the “Entire Article” embedding approach, and
TNO(t) represents the embedding of topic t us-
ing the “Topic-Name-Only” embedding approach.
Note that, the combination of other articles and
topic embeddings can be expressed in a similar
way and hence, omitted due to lack of space.

5 Experimental Design

5.1 Datasets

Although the idea of our goal task is inspired
from Definition-Wild Zero-Shot-Text Classification
coined by Yin et al. (2019), we realized that the
dataset introduced in the paper is suitable for
Single-Label Multi-class classification, whereas
our zero-shot topic inference setup is a Multi-label
classification problem (more than one topic is as-
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sociated with the input article). Hence, in our ex-
periments, we mainly focused on curating/using
the following datasets. (A) Large datasets with
a higher number of articles for inference and rel-
atively longer text (News and Medical-Blog col-
lected from the web), and (B) Small datasets which
contain fewer articles (<2000) for inference and are
relatively shorter in length.

Large Datasets: The large datasets were pub-
lished by Sarkar and Karmaker (2022), which are
collection of publicly available online news1 and
medical-blog articles2. Each article is already la-
beled with one or more ground-truth topics and
stored in JSON objects. Some statistics about these
datasets are summarised in Table 3.

Small Datasets: The small datasets are origi-
nally a set of 5 different online product reviews;
these were initially collected from Hu and Liu
(2004) and re-annotated by Karmaker Santu et al.
(2016). Unlike large datasets, the product reviews
are shorter in length and contain more topics than
the larger two datasets (see Table 3).

Dataset # of Avg. Article Topics Topics/
Articles length article

Medical 2066 693 18 1.128
News 8940 589 12 0.805

Cellular phone 587 16 23 1.058
Digital camera 1 642 18 24 1.069
Digital camera 2 380 17 20 1.039

DVD player 839 15 23 0.781
Mp3 player 1811 17 21 0.956

Table 3: Statistics on Large and Small datasets

Topic Name Keywords
Addiction Opioids, Alcohol, Drug
Headache Migraine, Sinus, Chronic pain

Heart Health Hypertension, Stroke, Cardiovascular
Mental Health Depression, Anxiety, Antidepressant

Women’s Health Pregnancy, Breast, Birth

Table 4: Topics and keywords from the Medical dataset

In zero-shot learning, the auxiliary information
about topics is provided by the end user (e.g., do-
main experts) conducting the inference task in the
form of keywords/textual descriptions. In this sec-
tion, we have shown some topics and correspond-
ing keyword details from the Medical dataset (Ta-
ble 4); due to lack of space, we provided more
examples in the appendix A.1.

1https://newsbusters.org/
2https://www.health.harvard.edu/

5.2 Baseline and Sentence Encoder Models

As baselines, we used constrained topic modeling
and a classical word embedding-based approach.

Generative Feature Language Models
(GFLM) were proposed by (Karmaker Santu et al.,
2016)). The paper suggested an approach based on
generative feature language models that can mine
the implicit topics effectively through unsupervised
statistical learning. The parameters are optimized
automatically using an Expectation-Maximization
algorithm. Details on the method have been
discussed in the appendix A.2.

Classical word embeddings are a popular way
to encode text data into a dense real-valued vector
representation. In order to implement a zero-shot
classifier, we encoded both the input document
and the target topics using pre-trained word em-
beddings and then computed vector similarity be-
tween the input document encoding and each target
topic encoding separately. The implementation of
the classical word-embedding-based zero-shot ap-
proach is very similar to our setup (discussed in
section 4) with the following differences:

1. Instead of sentence encoders in step 2, pre-
trained Glove embedding is used.

2. Articles are represented in two different ways.
a) Average Sentence Level Embedding: For each
input article, we encode the article by averaging
the pre-trained embeddings (e.g., Glove) of each
word present in that article.
b) Dictionary of Word Embeddings: Extract
word embedding of all words in an article, and
instead of taking the average, we save them in-
dividually as a key-value pair.

3. For semantic similarity between Article and
Topic embeddings, we used two metrics: 1) Eu-
clidean distance and 2) Cosine Similarity.

The rest of the process, i.e., step 4 and step 5 are
the same as discussed in section 4.

Sentence Encoders: We leveraged contempo-
rary sentence encoders for the mentioned task.
We refer to the traditional sentence encoders
as mid sentence encoders (MSE), especially for
their size, such as 1) InferSent (Conneau et al.,
2017a), 2) Language-Agnostic SEntence Represen-
tations (LASER) (Artetxe and Schwenk, 2019), 3)
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019a), 4) Universal Sentence Encoder (USE) (Cer
et al., 2018b). We utilized different large language
models as sentence encoders, harnessing their em-
beddings, and referred to them as the large sentence
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Prompt Design
System setup
The AI assistant has been designed to understand and categorize user input by the given topics. When processing user
input, the assistant must predict the topics from one of the following pre-defined options: “Addiction”, “Alcohol”,

“Arthritis”, “Brain and cognitive health”, “Breast Cancer”, “Cancer”, “Children’s Health”, “Exercise and Fitness”,
“Headache”, “Healthy Eating”, “Heart Health”, “Mental Health”, “Osteoporosis”, “Pain Management”, “Prostate
Knowledge”, “Sleep”, “Smoking cessation”, “Women’s Health”. It is essential to note that an article may have
multiple topics associated. If the user input is not relevant to any topics, the assistant should print nothing, indicating
that the input does not align with the available categories. The agent MUST response with the following JSON format:
{“Topics”: [“List of topics”]}
User Taking into account the given article: “Perhaps as many as one in every 5 American adults will get

a prescription for a painkiller this year, and many more will buy over-the-counter medicines without a
prescription. These drugs can do wonders; getting rid of pain can seem like a miracle, but sometimes
there’s a high price to be paid. Remember the heavily marketed COX-2 inhibitors? Rofecoxib, sold as
Vioxx, and valdecoxib, sold as Bextra, were taken off the market in 2004 and 2005, respectively, after
studies linked them to an increased risk of heart attack and stroke. The nonsteroidal anti-inflammatory
drugs (NSAIDs), like aspirin, ibuprofen (sold as Advil and Motrin), and naproxen (sold as Aleve) seem
like safe bets......”, predict the category or topics of this article from the list of mentioned topics.

ChatGPT “Topics”: [“Arthritis”, “Heart Health”, “Pain Management”]
Directive: Taking into account the given article {article text}, predict the category or topic(s) of this article from the
list of mentioned {topics}. Please remember to only respond in the predefined JSON format without any additional
information.

Table 5: Prompt design details for the zero-shot topic inference on Medical dataset.

encoder (LSE) due to their training on extensive
text datasets. The specific models we employed
were: 1) BLOOM (Scao et al., 2022), 2) GPT-
NeoX (Black et al., 2022), and 3) PaLM (Chowd-
hery et al., 2022). We would like to mention that
we did not perform fine-tuning or parameter tuning
on top of the pre-trained sentence encoders and
LLMs. We have provided brief descriptions of all
the models in appendix A.3.

5.3 Sample ChatGPT Prompt

Additionally, we thoroughly examined the perfor-
mance of ChatGPT-3.5 on the task. Due to the
lack of access to the model’s embeddings, we were
unable to adopt the embedding-similarity-based
classification approach as presented in Section 4.
Instead, by utilizing the API, we adopted a prompt-
ing approach to perform the zero-shot topic infer-
ence task. Details of the ChatGPT prompt are pre-
sented in Table 5. For evaluation, we recorded the
responses of ChatGPT given these prompts.

5.4 Evaluation Metric

To measure the performance of each zero-shot topic
inference approach, we use three popular metrics
available in the literature: Precision, Recall, and
F1 score. First, for each article, the model inferred
topic(s) were compared against the list of “gold”
topic(s) to compute the true positive, false positive,
and false negative statistics for that article. Then,

all such statistics for all the articles in a dataset
were aggregated and used to compute the final Pre-
cision, Recall, and micro-averaged F1 score.

Classical Embedding (Glove)
Dataset GFLM GFLM Euclid. Cosine Euclid. Cosine

-S -W Word Word Sent. Sent.
Medical 0.532 0.530 0.212 0.154 0.105 0.142

News 0.494 0.492 0.141 0.171 0.113 0.115
Cellular phone 0.497 0.504 0.082 0.074 0.084 0.068
Digital cam. 1 0.460 0.471 0.120 0.118 0.142 0.127
Digital cam. 2 0.494 0.497 0.084 0.091 0.078 0.095

DVD player 0.473 0.486 0.096 0.100 0.096 0.108
Mp3 player 0.509 0.514 0.058 0.066 0.053 0.069

Table 6: F1 score for Topic Modeling based baselines,
GFLM-S, GFLM-W and Classical Embedding based
baselines, Euclidean Word, Euclidean Sentence, Cosine
Word, Cosine Sentence.

6 Performance Analysis and Findings
In this section, we present performance details of
sentence encoders using various article and topic
encoding techniques (refer to Table 1 and 2). The
evaluation includes reporting the F1 score for all
sentence encoders. Table 6 contains baseline re-
sults for all datasets, while Table 7 shows perfor-
mance for Small datasets using four topic embed-
ding techniques and four mid sentence encoders
(MSE). For Small datasets, which mainly consist of
single sentences, we considered "Entire Article" as
the article embedding. Table 8 provides details on
Large datasets, including twelve combinations of
topic embedding techniques and three article em-
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Small Datasets
Topic Embedding Sentence Cellular Digital Digital DVD Mp3

Encoder phone cam. 1 cam. 2 player player

Topic-Name-Only

InferSent 0.079 0.065 0.077 0.046 0.065
LASER 0.091 0.087 0.101 0.076 0.097
SBERT 0.418 0.427 0.520 0.295 0.373

USE 0.435 0.432 0.579 0.379 0.424

Topic + Keywords

InferSent 0.077 0.063 0.080 0.045 0.055
LASER 0.093 0.091 0.107 0.095 0.094
SBERT 0.549 0.503 0.554 0.478 0.433

USE 0.511 0.477 0.501 0.442 0.398

Topic + Keyword
+ Definition

InferSent 0.091 0.086 0.083 0.061 0.091
LASER 0.192 0.212 0.100 0.247 0.165
SBERT 0.220 0.273 0.321 0.325 0.277

USE 0.228 0.266 0.236 0.261 0.294

Explicit-Mentions

InferSent 0.346 0.312 0.356 0.354 0.254
LASER 0.293 0.337 0.370 0.323 0.280
SBERT 0.520 0.500 0.603 0.501 0.521

USE 0.488 0.457 0.593 0.449 0.486

Table 7: F1 score for the zero-shot topic inference task for Small datasets (Cellular phone, Digital camera 1, Digital
camera 2, DVD player, Mp3 player ). Performance comparison of four mid sentence encoders over various topic
embedding procedures for "Article Embedding" type.

beddings for mid sentence encoders (MSE). Based
on the performance of the mid sentence encoders
(MSE), we selected the best-performing article em-
bedding ("Entire Article") and topic embeddings
("Topic + Keyword", "Explicit-Mentions") and con-
tinued our experiment with large sentence encoders
(LSE), as indicated in Table 9. Below, we summa-
rize our findings.

1. Overall, ChatGPT (prompt-based) outruns all
the encoders and baselines for all datasets except
Digital camera 2 dataset where SBERT attains
the best result. Among others, Sentence-BERT
(SBERT) performed close to ChatGPT. PaLM
and USE performed somewhat mediocre; how-
ever, the remaining models performed poorly
over both datasets and could not outrun the
baseline as well. For qualitative analysis of
the classified data, we picked a review from
the Digital camera 1 (Small) dataset, which is
associated with ground truth "Size", "Lens",
"Photo". We observed that BLOOM and
GPT-NeoX annotated the review with many
incorrect topics, e.g. "Video", "Feature",
"Manual", "Weight", "Focus", "Mode" etc.
PaLM annotated the same review with correct
and some other topics which are semantically
correlated to the correct topics, for instances
"Weight" (highly correlated with "Size"), "Fo-
cus"(highly correlated with "Lens"), "Pic-
ture"(highly correlated with "Photo"). On the
other hand, for the same review, ChatGPT in-
ferred correct topics "Size", "Lens", "Photo"
and an incorrect topic "Video", thus achieve

best F1 Score among all. Due to space limita-
tion, we have added the case study with Large
datasets in the appendix A.4.

2. Even though USE and PaLM could not beat
ChatGPT and SBERT, they attained a score very
close to the baseline methods (GFLM). Another
intriguing observation is that PaLM’s perfor-
mance showed a significant improvement for the
“Explicit-Mention” topic embedding compared
to the “Topic + Keywords” topic embedding.

3. Based on our observations, the topic embedding
techniques of "Topic+Keywords" and "Explicit-
Mentions" exhibited superior performance com-
pared to other methods. These embeddings,
which incorporate user guidance through topic
keywords, significantly improved the accuracy
of real-time zero-shot topic inference. As a re-
sult, we employed these embeddings only when
experimenting with large sentence encoders
(LSE).

4. The "Entire Article" approach excelled among
other techniques for article embedding, mak-
ing it the preferred choice when utilizing large
sentence encoders (LSE). The "Sentence Em-
bedding Average" method followed next in per-
formance, while the "Individual Sentence Em-
bedding" approach proved to be less promising.

5. “Explicit-Mentions” topic embedding with “En-
tire Article” as the article embedding attained
the best score, followed by “Topic + Keywords”
topic embedding paired with “Entire Article”.

6. F1 score obtained by InferSent, LASER,

16224



Dataset -> Medical
Topic Embedding -> Topic Name Only Topic+Keywords Topic+Keyword+Def’n Explicit-Mentions

Article Embedding -> EA SEA ISE EA SEA ISE EA SEA ISE EA SEA ISE

Sentence
Encoder

InferSent 0.128 0.146 0.120 0.102 0.105 0.119 0.140 0.132 0.131 0.154 0.217 0.227
LASER 0.120 0.142 0.134 0.124 0.122 0.121 0.125 0.124 0.185 0.187 0.139 0.136
SBERT 0.565 0.571 0.547 0.579 0.541 0.471 0.460 0.465 0.420 0.594 0.556 0.534

USE 0.488 0.516 0.429 0.500 0.484 0.340 0.390 0.409 0.375 0.520 0.504 0.468
Dataset -> News

Topic Embedding -> Topic Name Only Topic+Keywords Topic+Keyword+Def’n Explicit-Mentions
Article Embedding -> EA SEA ISE EA SEA ISE EA SEA ISE EA SEA ISE

Sentence
Encoder

InferSent 0.105 0.116 0.099 0.217 0.127 0.110 0.129 0.141 0.117 0.234 0.161 0.144
LASER 0.171 0.180 0.154 0.181 0.176 0.135 0.126 0.127 0.128 0.130 0.136 0.134
SBERT 0.425 0.408 0.447 0.488 0.458 0.374 0.406 0.386 0.378 0.511 0.416 0.404

USE 0.419 0.426 0.367 0.461 0.418 0.281 0.420 0.390 0.391 0.446 0.371 0.368

Table 8: F1 Score for the zero-shot topic inference task for Large datasets (Medical and News). Performance
comparison of four mid sentence encoders over various topic embedding and article embedding techniques.

LSE -> Bloom GPTNeo PaLM ChatGPT
Topic Embedding -> Topic+KWD Expl.-Ment. Topic+KWD Expl.-Ment. Topic+KWD Expl.-Ment. Prompt

Medical 0.259 0.308 0.259 0.268 0.295 0.392 0.606
News 0.301 0.329 0.286 0.274 0.387 0.410 0.521

Cellular Phone 0.258 0.268 0.215 0.269 0.296 0.565 0.576
Digital cam. 1 0.259 0.286 0.222 0.253 0.314 0.441 0.641
Digital cam. 2 0.224 0.260 0.194 0.273 0.363 0.486 0.562

DVD player 0.281 0.309 0.225 0.291 0.268 0.506 0.533
Mp3 player 0.246 0.284 0.216 0.241 0.304 0.479 0.571

Table 9: F1 Score for the zero-shot topic inference task for all datasets. Performance comparison of three large
sentence encoders (LSE) over various topic embedding procedures and ChatGPT prompt results.

BLOOM, and GPT-NeoX indicates that they
failed to generalize over unseen datasets and,
therefore, may not be a good choice for zero-
shot topic inference.

7. Despite the observation stated in (6), we would
like to point out that the inclusion of user guid-
ance in the inference process boosted the perfor-
mance of InferSent and LASER. For example,
“Topic-Name Only” embedding achieved around
7% F1 score (Average over all datasets); how-
ever, with “Explicit-Mentions" embedding, F1

score reached 30% (average over all datasets).
8. For small datasets, “Topic-Name-Only” embed-

ding presented an interesting case. Here, USE
performed better than SBERT. This suggests
that, for the product review domain, if additional
keywords for each topic are unavailable, USE
may be a better choice than SBERT. However, a
detailed investigation is warranted to determine
the root cause for this result.
Considering the real-time nature of our task, it

is crucial to consider inference time when select-
ing the appropriate approach. In order to analyze
computation time, we logged the duration taken
by different encoders for article and topic embed-
dings. Due to space constraints, we have included

the timing information for the best-performing ar-
ticle and topic embedding techniques in the main
paper, while the timings for other embeddings such
as “Sentence Embedding Average”, “Individual
Sentence Embedding”, “Topic-Name-Only”, and
“Topic + Keyword + Definition” are provided in the
appendix A.5. The generation time (in seconds) for
each model is reported in Tables 11 and 10. Major
observations from these tables are as follows.

1. USE is the fastest of all encoders for generating
embeddings, followed by SBERT.

2. “Explicit Mentions” took more time for process-
ing since, for “Explicit Mentions”, the encoder
needs to traverse the whole dataset.

3. The difference in article embedding time is more
conspicuous on the Large datasets as they con-
tain a longer and higher number of articles.
USE, SBERT and PaLM-based embeddings
clearly win over InferSent, LASER, BLOOM,
and GPT-NeoX in terms of time as well.

4. The high processing time over Large datasets
suggests that InferSent, LASER, BLOOM, and
GPT-NeoX are unsuitable for real-time infer-
ence if the dataset is big or articles are long.

In essence, comprehensive performance and run-
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Topic+Keywords Explicit-Mentions

Encoder Type MSE LSE MSE LSE
Infer. LASER SBERT USE BLOOM GPT-NeoX PaLM Infer. LASER SBERT USE BLOOM GPT-NeoX PaLM

Medical 1.964 1.024 1.720 2.183 22.213 93.557 14.177 730.655 708.560 19.453 21.154 2422.647 14013.319 128.255
News 1.673 0.801 1.479 0.809 19.121 55.454 12.034 2885.003 1438.609 61.226 36.005 9587.733 21247.567 390.947

Cellular phone 0.622 0.456 0.587 0.985 12.546 38.937 4.920 10.323 6.726 7.540 9.025 161.338 258.812 63.464
Digital cam. 1 0.621 0.490 0.416 0.914 10.854 41.174 3.317 13.002 9.707 9.597 8.865 177.990 317.446 71.092
Digital cam. 2 0.659 0.405 0.313 0.846 9.692 46.301 2.513 6.780 5.844 4.665 5.669 102.491 217.594 38.603

DVD player 0.682 0.422 0.373 0.833 10.380 49.443 2.814 9.695 10.822 6.802 7.271 146.187 234.948 60.409
Mp3 player 0.574 0.707 0.775 1.167 14.378 88.985 6.620 29.245 18.380 19.833 21.239 423.877 712.045 167.419

Table 10: Time comparison for generating topic embedding by different sentence encoders (mid & large) for Small
and Large data sets (Time unit in seconds).

Total Time for Computing Embedding for Entire Article
Sentence Medical News Cell Digital Digital DVD Mp3
Encoder phone cam. 1 cam. 2 player player
InferSent 902.8 3867.3 8.6 7.8 4.6 10.6 21.4

LASER 514.9 1919.1 6.9 8.2 4.4 9.9 15.3
SBERT 28.8 88.6 6.7 6.9 4.4 9.6 18.7

USE 27.4 64.2 5.6 6.7 4.1 8.2 17.4
BLOOM 2341.4 9716.9 112.5 122.1 73.2 156.7 345.4

GPT-NeoX 16451.5 20741.6 170.6 293.2 118.9 236.2 559.3
PaLM 177.01 750.7 48.9 53.4 31.9 70.9 151.9

Table 11: Time comparison for generating article embedding by different sentence encoders (mid & large) for
Small and Large datasets (Time unit in seconds).

time analysis show that a) auxiliary information
helps in achieving better performance in real-time
zero-shot topic inference task, b) even though the
recent LLMs and sentence encoders are designed to
be fairly general, aiming for seamless transfer learn-
ing, not all of them serve the purpose accurately, c)
the processing time varies a lot across different sen-
tence encoders and should be considered seriously
while using these encoders in real-time tasks.

7 Conclusion

The task of zero-shot topic inference is both funda-
mental and challenging. Considering the challenge
of zero-shot topic inference and the unexplored
potential of recent sentence encoders and large lan-
guage models (LLMs) in this area, we investigated
their ability to generalize for this task alongside
traditional sentence encoders.

In our real-time zero-shot topic inference task,
we found varying performance among popular sen-
tence encoders and LLMs. Among the mid sen-
tence encoders, Sentence-BERT showed good per-
formance on unseen data, while USE achieved de-
cent accuracy. However, InferSent and LASER
didn’t perform at par with USE and SBERT.
Among the large sentence encoders, ChatGPT per-
formed the best, followed by PaLM. However, GPT-
NeoX and BLOOM didn’t generalize effectively
for the task. We also introduced innovative ap-
proaches to incorporate user guidance, improving
topic inference accuracy. Additionally, we con-

ducted a thorough analysis of execution time, re-
vealing that both the F1 score and the efficiency of
certain models (specifically BLOOM, GPT-NeoX,
InferSent, and LASER) raise concerns when con-
sidering their suitability for the task.

8 Limitations

We acknowledge a limitation in our study 1) re-
garding the restricted access to various large lan-
guage models (LLMs) such as LaMDA, Gato, and
LLaMA (downloadable upon approval). Conse-
quently, we were unable to fully utilize these mod-
els in our experiments. Additionally, due to limited
availability, we had to rely on the API for evaluat-
ing the performance of models like ChatGPT. As a
result, it is important to note that ChatGPT to the
other three large language models is not a direct
comparison. 2) Despite the promising results, we
feel a limitation of our work is the reliance on key-
words, i.e., the performance of the real-time zero-
shot greatly depends on the choice of keywords;
without appropriate keywords, the approach may
suffer. In our future work, we will work towards
mitigating this constraint. We believe that the ever-
increasing scale of the data in different areas, new
types of contents, topics, etc. will encourage the
community to focus more towards zero-shot topic
inference for categorization, and annotation and
also motivate researchers to pursue research in this
important direction.
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A Appendix

A.1 Auxiliary Information Generation

Keyword list for each topic (based on the user’s
experience and expectations) was not readily avail-
able, for which we ideally needed a real user. To
address this limitation, we followed the steps dis-
cussed in Sarkar and Karmaker (2022). We ex-
tracted the informative keywords for each topic
using the TF-IDF heuristics. Then, a set of key-
words for each topic were selected through careful
inspection of the top keywords with high TF-IDF
scores. In Tables 12 and 13, we have shown some
topics and corresponding keywords details from
News and Mp3 player dataset respectively.

Topic Name Keywords
Economy Recession, Budget, Stock Market

Global Warming Climate, Planet, Green
Immigration Border, Immigrants, Detention

Religion Christian, Religious, Church
Sexuality Gay, Lgbtq, Transgender

Table 12: Topics and optional keywords from News
dataset

Topic Name Keywords
Screen Display, Screen saver, Interface
Sound Audio, Headphone, Earbud

Navigation Control, Scroll, Flywheel
Battery Power, Recharge, mAh

Table 13: Topics and optional keywords from Mp3
player dataset
A.2 Details on Generative Feature Language

Models

Generative Feature Language Models (GFLM)
is unsupervised statistical learning in which pa-
rameters are optimized automatically using an
Expectation-Maximization algorithm. Once the
EM algorithm converges, one knows the topic dis-
tributions, i.e.

1. P (zD,w = t): Contribution of topic t for the
generation of a particular word.
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2. P (zD,w = B): Contribution of background
model (mostly stop-words) for the generation
of a particular word.

3. πD,t: to what proportion, a particular doc-
ument D is generated from some topic-of-
interest t.

Based on these quantities, topic distributions
within various documents can be inferred in two
different ways, which were called GFLM-Word
(GFLM-W) and GFLM-Sentence (GFLM-S).

GFLM-Word: It looks at each word w in the
document D and adds a topic t to the inferred topic
list if and only if p(zD,w = t)×(1−p(zD,w = B))
is greater than some threshold θ for at least one
word in D. The philosophy behind this formula is
that if any particular word w has a small probability
of being generated by a background model but has
a higher probability of being generated from some
topic t, then word w is likely referring to topic t.
Here, the decision is made solely by looking at
individual words, not the entire document.

GFLM-Sentence: Given a document D, it looks
at the contribution of each topic t in the gener-
ation of the sentence, i.e., πD,t and infers t∗ as
the topic only if πD,t∗ is greater than some user-
defined threshold θ. Here, the decision is made at
the sentence level, not at the word level.

A.3 Sentence Encoders & LLMs

This section presents a bird’s-eye view of the sen-
tence encoders we have used for our experiments.

InferSent (Conneau et al., 2017a) was released
by Researchers at Facebook, which employs a su-
pervised method to learn sentence embeddings. In-
ferSent is trained on the Stanford Natural Language
Inference (SNLI) corpus and generalizes well to
many different tasks3. They found that models
learned on NLI tasks can perform better than mod-
els trained in unsupervised conditions or on other
supervised tasks (Conneau et al., 2017b). Fur-
thermore, by exploring various architectures, they
showed that a BiLSTM network with max-pooling
outperformed the state-of-the-art sentence encod-
ing methods, outperforming existing approaches
like SkipThought vectors (Kiros et al., 2015). The
model encodes text in 4,096 dimensional vectors.

3To use InferSent encoder we download
the state-of-the-art fastText embedding and
also download the pre-trained model from
https://dl.fbaipublicfiles.com/senteval/infersent/infersent2.pkl.

Language-Agnostic Sentence Representa-
tions (LASER) (Artetxe and Schwenk, 2019), is
a multilingual sentence embedding model that has
been trained on over 93 languages. The training
data consists of parallel text corpora, meaning texts
that are translations of each other, from various
sources including news articles, subtitles, and gov-
ernment documents. It was released by Facebook.
LASER architecture is the same as neural machine
translation: an encoder/decoder approach. It uses
one shared encoder for all input languages and a
shared decoder to generate the output language.
The encoder is a five-layer bidirectional LSTM net-
work. It does not use an attention mechanism but,
has a 1,024-dimension vector to represent the input
sentence. It is obtained by max-pooling over the
last states of the BiLSTM, enabling comparison of
sentence representations.

Sentence-BERT (SBERT) (Reimers and
Gurevych, 2019b), is a modification of the
pre-trained BERT network that use siamese and
triplet network structures to derive semantically
meaningful sentence embeddings that can be
compared using cosine-similarity. SBERT is a
so-called twin network that allows it to process
two sentences in the same way, simultaneously.
BERT makes up the base of this model, to which
a pooling layer has been appended. This pooling
layer enables to create a fixed-size representation
for input sentences of varying lengths. Since
the purpose of creating these fixed-size sentence
embeddings was to encode their semantics, the
authors fine-tuned their network on Semantic
Textual Similarity data. SBERT is trained on
SNLI (Bowman et al., 2015) and the Multi-Genre
NLI (Williams et al., 2018) dataset. The SNLI is a
collection of 570,000 sentence pairs annotated with
the labels contradiction, entailment, and neutral.
MultiNLI contains 430,000 sentence pairs and
covers a range of genres of spoken and written text.
They combined the Stanford Natural Language
Inference (SNLI) dataset with the Multi-Genre
NLI (MG-NLI) dataset to create a collection of
1,000,000 sentence pairs. The training task posed
by this dataset is to predict the label of each pair,
which can be one of “contradiction”, “entailment”
or “neutral”.

In 2018, Researchers at Google released a Uni-
versal Sentence Encoder (USE) (Cer et al., 2018b)
model for sentence-level transfer learning that
achieves consistent performance across multiple
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NLP tasks. The models take as input English
strings and produce as output a fixed dimensional
(512) embedding representation of the string. Uni-
versal Sentence Encoder is trained on unsupervised
training data for the sentence encoding models
are drawn from a variety of web sources. The
sources are Wikipedia, web news, web question-
answer pages and discussion forums. Authors
augment unsupervised learning with training on
supervised data from the Stanford Natural Lan-
guage Inference (SNLI) corpus (Bowman et al.,
2015). The encoder is shared and trained across
a range of unsupervised tasks along with super-
vised training on the SNLI corpus for tasks like
a) Modified Skip-thoughtPermalink, b) Conversa-
tional Input-Response PredictionPermalink, c) Nat-
ural Language Inference. there are two architec-
tures proposed for USE (Transformer Encoder and
Deep Averaging Network). Based on shorter infer-
ence time observed in our experiments, we used
Deep Averaging Network (DAN)4 architecture.

BLOOM: Scao et al. (2022) introduce BLOOM,
a massive language model with 176 billion param-
eters. BLOOM is trained on 46 natural languages
and 13 programming languages and is the result
of a collaborative effort involving hundreds of re-
searchers. BLOOM is a causal language model
trained to predict the next token in a sentence. This
approach has been found effective in capturing rea-
soning abilities in large language models. BLOOM
uses a Transformer architecture composed of an in-
put embeddings layer, 70 Transformer blocks, and
an output language-modeling layer. The sequen-
tial operation of predicting the next token involves
passing the input tokens through each of the 70
BLOOM blocks. To prevent memory overflow,
only one block is loaded into RAM at a time. The
word embeddings and output language-modeling
layer can be loaded on-demand from disk.

Pathways Language Model (PaLM): Chowdh-
ery et al. (2022) introduce the Pathways Language
Model (PaLM), a 540-billion parameter model.
Large language models have been shown to achieve
remarkable performance across a variety of natural
language tasks using few-shot learning, which dras-
tically reduces the number of task-specific training
examples needed to adapt the model to a particular
application. To further understanding of the impact
of scale on few-shot learning, authors trained a 540-
billion parameter, densely activated, Transformer

4https://tfhub.dev/google/universal-sentence-encoder/4

language model, which they named Pathways Lan-
guage Model PaLM. Developers trained PaLM on
6144 TPU v4 chips using Pathways, a new ML sys-
tem which enables highly efficient training across
multiple TPU Pods. The model demonstrate contin-
ued benefits of scaling by achieving state-of-the-art
few-shot learning results on hundreds of language
understanding and generation benchmarks. On a
number of these tasks, PaLM 540B achieves break-
through performance, outperforming the finetuned
state-of-the-art on a suite of multi-step reasoning
tasks, and outperforming average human perfor-
mance on the recently released BIG-bench bench-
mark. A significant number of BIG-bench tasks
showed discontinuous improvements from model
scale, meaning that performance steeply increased
as authors scaled to their largest model. PaLM also
has strong capabilities in multilingual tasks and
source code generation.

GPT-NeoX: The GPT-NeoX-20B paper, au-
thored by the Black et al. (2022), introduce an
architecture similar to GPT-3 but with notable dif-
ferences. They utilize rotary positional embeddings
for token position encoding instead of learned em-
beddings and parallelize the attention and feed-
forward layers, resulting in a 15% increase in
throughput. Unlike GPT-3, GPT-NeoX-20B exclu-
sively employs dense layers. The authors trained
GPT-NeoX-20B using EleutherAI’s custom code-
base (GPT-NeoX) based on Megatron and Deep-
Speed, implemented in PyTorch. To address com-
putational limitations, the authors reused the hyper-
parameters from the GPT-3 paper. In their evalua-
tion, the researchers compared GPT-NeoX-20B’s
performance to their previous model, GPT-J-6B,
as well as Meta’s FairSeq 13B and different sizes
of GPT-3 on various NLP benchmarks, including
LAMBADA, WinoGrande, HendrycksTest, and
MATH dataset. While improvements were desired
for NLP tasks, GPT-NeoX-20B exhibited excep-
tional performance in science and math tasks.

ChatGPT: ChatGPT (Brown et al., 2020) is an
advanced language model developed by OpenAI. It
is designed to generate human-like text responses
in a conversational manner. ChatGPT is built upon
the GPT (Generative Pre-trained Transformer) ar-
chitecture, which is a state-of-the-art deep learning
model for natural language processing. ChatGPT
is trained on a massive amount of text data from
the internet to learn patterns, grammar, and con-
text in language. It utilizes a transformer-based
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neural network that consists of multiple layers of
self-attention mechanisms and feed-forward neural
networks. This architecture allows the model to
understand and generate coherent and contextually
relevant responses. The primary goal of ChatGPT
is to provide natural and engaging interactions with
users. It can be used in various applications, such
as chatbots, virtual assistants, customer support
systems, and more. By inputting a prompt or a
message, users can receive a response generated by
the model.

Total Time for Computing Article Embedding
Article Sentence Large Datasets
Embedding Encoder Medical News

Sentence
Embedding
Average

InferSent 1035.469 3807.204
LASER 639.066 2373.594
SBERT 548.573 1891.539

USE 412.942 1448.037

Individual
Sentence
Embedding

InferSent 1022.728 3778.628
LASER 631.533 2350.273
SBERT 553.106 1876.776

USE 428.725 1410.522

Table 14: Time comparison for generating article
embedding by different sentence encoders for Large
datasets. (Time unit in seconds)

A.4 Case study on Large Datasets

Due to space restriction we could not present case
study from Large dataset in the main paper. Hence
we have added our observation in this sections.
Upon qualitative analysis of the classified data
from Medical dataset, we observed while the in-
put was an article which is originally labeled with
topics "Heart Health" and "Mental Health"; In-
ferSent and LASER seemed to infer the correct
topics along with many incorrect topics such as
"Brain and cognitive health", "Healthy Eating",
"Women’s Health", "Children’s Health" etc. The
annotated dataset clearly indicates that InferSent
and LASER are unable to distinguish between the
topics in a zero-shot setting.
Universal Sentence Encoder (USE) annotated the
same article as "Heart Health", "Mental Health"
and "Brain and cognitive health". Correlation
analysis reveals that "Mental Health" and "Brain
and cognitive health" have high semantic correla-
tion and therefore USE inferred both the topics.
Compared to all these sentence encoders, Sentence-
BERT performed precisely and inferred the correct
topics for the article mentioned earlier.
The case study also corroborate our observations

discussed in the paper that InferSent and LASER
are unsuited for zero-shot approaches. While Uni-
versal Sentence Encoder performs moderate except
for semantically correlated topics. SentenceBERT
outrun all these encoders and effectively annotate
datasets in the zero-shot approaches. Similar to
large sentence encoder, we observed the same be-
havior in case of mid sentence encoder as well.

Topic Name Only Topic + Keyword + Definition
Encoder Infer. LASER SBERT USE Infer. LASER SBERT USE
Medical 0.720 0.602 0.117 0.704 7.963 2.353 1.822 2.082

News 0.391 0.797 0.080 0.760 1.786 1.066 1.455 1.215
Cellular phone 0.350 0.147 0.118 0.706 2.707 0.790 0.570 1.043
Digital cam. 1 0.302 0.408 0.132 0.802 1.913 0.689 0.384 0.948
Digital cam. 2 0.418 0.073 0.109 0.721 1.354 0.534 0.535 1.159

DVD player 0.450 0.360 0.114 0.795 1.673 0.852 0.385 0.816
Mp3 player 0.466 0.190 0.122 0.762 2.654 0.963 0.729 1.217

Table 15: Time comparison for generating topic em-
bedding by different sentence encoders (Time unit in
seconds).

A.5 Time Comparison for Article and Topic
Embedding

Since Small datasets are mainly consist of single
sentences, only "Entire Article" as the article em-
bedding is applicable on them. However, Large
datasets are comprises of lengthy articles, hence
different Article Embedding applied on them. The
time for article embedding generation has been pre-
sented in Table 14. As we did not utilize the other
two article embedding techniques in the experi-
ment involving the large sentence encoder, Table
14 only includes the timing results for the mid sen-
tence encoder.

In contrast, the timing results for topic embed-
ding are presented in Table 15. Similar to article
embedding, we did not utilize the other two topic
embedding techniques in the experiment with the
large sentence encoder. Therefore, Table 15 exclu-
sively shows the timing results for the mid sentence
encoder for all datasets.
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