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Abstract

The popularity of conversational digital assis-
tants has resulted in the availability of large
amounts of conversational data which can be
utilized for improved user experience and per-
sonalized response generation. Building these
assistants using popular large language models
like ChatGPT also require additional emphasis
on prompt engineering and evaluation methods.
Textual similarity metrics are a key ingredient
for such analysis and evaluations. While many
similarity metrics have been proposed in the lit-
erature, they have not proven effective for task-
oriented conversations as they do not take ad-
vantage of unique conversational features. To
address this gap, we present TaskDiff, a novel
conversational similarity metric that utilizes dif-
ferent dialogue components (utterances, intents,
and slots) and their distributions to compute
similarity. Extensive experimental evaluation
of TaskDiff on a benchmark dataset demon-
strates its superior performance and improved
robustness over other related approaches.

1 Introduction

Task-oriented conversational assistants have be-
come increasingly popular in multiple industries
enabling users to perform tasks such as travel
reservations, banking transactions, online shop-
ping, etc., through multi-turn conversations. The
increased use of these assistants has led to the avail-
ability of valuable user-assistant conversation logs
(Budzianowski et al., 2018; Andreas et al., 2020),
prompting efforts to extract insights from them.

A key aspect of such conversational analytics is
identifying similarities and dissimilarities between
conversations. This will enable developers to im-
prove the user-experience including personalized
response generation, next-action recommendations,
and information retrieval (Yaeli et al., 2022; Bag
et al., 2019; Gao et al., 2020; Li et al., 2022). The
popularity of large language models like ChatGPT
and Llama 2 (Touvron et al., 2023) has resulted in a

race to create custom task-oriented conversational
assistants in enterprise domains like finance and
retail (Wu et al., 2023). However, evaluating these
assistants has become an important challenge and
requires effective metrics that can measure their
performance across similar user-assistant conversa-
tions.

Measuring semantic textual similarity has been
extensively studied for textual sources like doc-
uments, social media, transcripts, etc. However,
there has been limited prior work studying simi-
larity in task-oriented conversation settings (Appel
et al., 2018; Lavi et al., 2021). Most approaches
leverage popular word embeddings like Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014) or pre-trained models like Universal Sen-
tence Encoder (Cer et al., 2018), Sentence-BERT
(Reimers and Gurevych, 2019) to obtain vector rep-
resentations of utterances, and then use distance-
based approaches such as cosine and edit-distance
to compute the similarity between text snippets.

While such approaches can identify semantic
relationships between texts, task-oriented conver-
sations present several challenges that limit their
effectiveness. Firstly, they consist of distinct com-
ponents – intents, slots, and utterances – that impact
the similarity and overlap between conversations.
For instance, users can have different objectives
(e.g., booking travel vs. product returns), or even
have the same intents but provide different lev-
els of slot information (Ruane et al., 2018). Ad-
ditionally, information is typically provided over
multiple conversation turns, and each turn could
involve multiple user intents and slots. Finally, the
same set of tasks can be expressed using numerous
possible utterances by users, depending on their
choice of phrasing, order of sentences, use of collo-
quialisms, introducing digressions, etc. (Guichard
et al., 2019). Hence, relying solely on distance
based similarity of utterance embeddings would
adversely impact performance.
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Figure 1: Demonstrating robustness of TaskDiff over prior approaches for multiple conversational scenarios.

In this work, we present TaskDiff, a novel sim-
ilarity metric designed for task-oriented conver-
sations to address the above challenges. Figure
1 shows multiple users having similar conversa-
tions about making bookings for a trip but with
re-ordered tasks or paraphrased utterances with dif-
ferent slot values. It also shows that prior work is
not robust to such differences that commonly occur
in task-oriented conversations.

An ideal metric to measure conversational sim-
ilarity should be able to identify that the overall
goal of these conversations in Figure 1 is the same.
TaskDiff represents the structure of conversations
as distributions over the different task-oriented
components and combines the geometry of the dis-
tributions with optimal transport to measure the
similarity between conversations. Our approach is
inspired by prior work in topic modelling (Kusner
et al., 2015; Yurochkin et al., 2019) that have shown
the effectiveness of comparing the structure of dis-
tributions, albeit for different settings. We evaluate
TaskDiff on a benchmark task-oriented conversa-
tion dataset and demonstrate its effectiveness while
presenting examples illustrating its improvement
over existing approaches.

2 Task-Oriented Conversation Similarity

2.1 Definitions
A task-oriented conversational system supports a
pre-defined set of user intents I and their corre-
sponding slots or parameters S. Each conversa-
tion Ci consists of a multi-turn sequence of ut-
terances Ui between the user and the system or
agent, a subset of active intents, and slot-value in-

formation provided by the user (i.e.) Ii ⊆ I and
Si ⊆ S. Our objective is to compute the simi-
larity between task-oriented conversations, given
their components K = {U, I,S} (i.e.) utterances,
intents, and slot information.

2.2 Approach

TaskDiff measures similarity between task-oriented
conversations as a function of the distance between
their component-wise distributions. For each com-
ponent k ∈ K, we represent its distribution over
every conversation and compute similarity as the
cumulative cost of transforming or transporting the
component-wise distributions of one conversation
to another.

Figure 2 shows an overview of TaskDiff. We first
mask the values of the slots in every conversation
with their corresponding ‘<slot name>’ from the
ontology, before using SBERT to generate conver-
sational embeddings. The masking ensures that en-
tities representing the slot values do not incorrectly
bias or ambiguate the embeddings (Shi et al., 2018).
For instance, the embedding similarity between the
unrelated utterances - "I want a ticket to the Big
Apple" and "I want a ticket to the Apple confer-
ence", could be incorrectly influenced by the word
‘Apple’, but masking with their appropriate slot
names (e.g., <arrival_city> and <product_name>),
resolves this possibility. We denote ∆l

U as the
distribution of utterance embeddings of a single
conversation.

We then compute probability distributions ∆n
I ,

∆m
S for each conversation over the set of intents I
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…
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<hotel> for <duration>.

…
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Figure 2: Overview of TaskDiff illustrating steps for masking utterances, generating distributions over different con-
versation components, and computing similarity using Optimal Transport cost between conversations’ distributions.

and slots S as –

∆n
K = {pi ∈ Rn+1 |

n∑

i=0

pi = 1 , pi ≥ 0 ∀i ∈ |K|}

where each pi reflects the frequency of occurrence
of intents and slots over the utterances. For exam-
ple, ∆n

I for conversation Ci represents the proba-
bility of all n intents within Ci.

We then compute a separate cost matrix Mi,j for
each component, that represents the cost to move
between two points (i, j) in its distribution. We
compute each entry using the Euclidean distance
between the embeddings generated for each compo-
nent. Intuitively, conversations with similar intents,
slot information, and analogous language would
reflect similar distributions, and hence a lower cost
of transportation (i.e.) high similarity. However,
any differences in their components would incur a
larger cost, and hence reflect a lower similarity.

Given distributions α ∈ ∆a
k, β ∈ ∆b

k, ∀k ∈ K
and the cost matrix M, the 1-Wasserstein optimal
transport distance (Vallender, 1974) between them
is –

W1(p, q) = min
Γ∈Rn×m

∑
i,j

Mi,jΓi,j

subject to
∑

j
Γi,j = αi and

∑
i
Γi,j = βj

where Mi,j = d(i, j) denotes the cost matrix
and d(., .) denotes the distance between the distri-
butions. We then define the similarity (TaskDiff )
between two task-oriented conversations C1 and
C2 as the weighted sum of the W1 distances be-
tween their respective components –

TaskDiff(C1, C2) =

|K|∑

k=1

γkW1(C
⊕
1 , C⊕

2 ) (1)

where C⊕
i = {Ui, Ii, Si} represents the conver-

sation’s components K (i.e.) utterances, intents,
and slots, and γk is a hyperparameter reflecting the
influence of each component on the similarity.

3 Experimental Evaluation

3.1 Dataset
We use SGD (Rastogi et al., 2020), a benchmark
dataset of multi-turn task-oriented conversations
between users and agents spanning 20 domains
(e.g., travel, dining). Its 20,000 conversations are
annotated with active intents and slot information.

3.2 Baselines
We compare TaskDiff to three existing approaches:

1. SBERT: A state-of-the-art approach to mea-
sure similarity between conversational embed-
dings using cosine similarity (Reimers and
Gurevych, 2019).

2. Conversational Edit Distance (ConvED): A
dialogue similarity metric that aligns utter-
ances between conversations and computes
the edit distance between their embeddings
(Lavi et al., 2021).

3. Hierarchical Optimal Transport (HOTT):
A document similarity metric that by mod-
els topics using Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), and subsequently
uses the 1-Wasserstein distance on the topic
and text embeddings (Yurochkin et al., 2019).

We conduct our experiments on an Intel Core
i9 with 64GB of RAM. We implement TaskDiff in
Python, leveraging the POT library (Flamary et al.,
2021) for the 1-Wasserstein optimal transport dis-
tance. The choice of γ was set to 2, 1, and 1 for
the intent, utterances and slots components, respec-
tively after performing hyper-parameter search.

3.3 k-NN Classification
We evaluate the ability of the different approaches
to accurately classify similar SGD conversations
into the correct domains using k-NN. From Table
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1, we observe that TaskDiff outperforms SBERT,
HOTT and ConvED, demonstrating the importance
of considering other conversational components for
similarity beyond just utterances (i.e.) intents and
slots, and the need for masking to avoid the ad-
verse influence of entities. The utterance alignment
coupled with use of edit distance in ConvED helps
compared to SBERT, but requires annotations for
alignment that may not always be available. We
also see that HOTT returns the lowest accuracy,
since LDA often picks topics outside the actual
conversational intents due to its reliance on word-
frequencies. This incorrectly skews the optimal
transport distributions thereby impacting classifica-
tion.

Approach Accuracy
SBERT 0.78
HOTT 0.15
ConvED 0.86
TaskDiff 0.95

Table 1: Accuracy scores for k-NN classification

3.4 Conversational Clusters
We visualize the conversational clusters formed by
the different approaches on SGD using k-means,
setting k to 20 (i.e.) the number of domains and
running 20 iterations. From Figure 3, we observe
that TaskDiff results in the most well-formed and
distinct clusters followed by SBERT, which has
some cluster overlap and lower distinction. The
clusters resulting from ConvED and HOTT show a
significant amount of overlap, demonstrating their
inability to distinguish between similar and dissim-
ilar conversations.

3.5 Ablation Study
We perform an ablation study using 200 randomly
selected dialogues, to highlight the influence of the
different components in TaskDiff that enable its ef-
fectiveness over approaches like SBERT. As shown
in Table 2, masking the slot names within the ut-
terances results in a 14% improvement in accuracy
over SBERT, since the embedding similarity is no
longer influenced by incorrect biases or ambiguity
from the slot values as described in Section 2.2.

Additionally, we see that the use of optimal trans-
port (OT) based similarity on the utterances without
the use of masks, suffers from the same drawbacks
compared to when masks are introduced. Finally,
the addition of intents and slots to the optimal trans-
port (i.e.) TaskDiff results in a 26% improvement

Figure 3: Conversations clustered using k-means and
color coded by domain names.

in accuracy over SBERT, due to the additional in-
formation about the dialogues provided by these
components, thereby highlighting their importance
while measuring task-oriented conversation simi-
larity.

Approach Accuracy
SBERT 0.73
SBERT + Masking 0.83
SBERT + OT 0.68
SBERT + OT + Masking 0.85
TaskDiff 0.92

Table 2: Ablation study of TaskDiff with k-NN classifi-
cation accuracy

3.6 Robustness to Reordering

We evaluate the robustness of the approaches for
a common setting where users provide the same
tasks in a different order within the conversation.
We perturb the SGD dataset, wherein 30% of the
utterances in each conversation are reordered, and
compute their distance from the original for each
approach. The average distance over all perturbed
conversations in Table 3 shows that TaskDiff re-
turns an exact match on these conversations, since
representing conversations as distributions over its
components (i.e., intents, slots, utterances), makes
it agnostic and robust to such changes. The com-
parison approaches however, are not as robust, with
ConvED performing poorly due to its reliance on
alignments between utterances.
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Approach Avg. Distance
SBERT 0.005
HOTT 0.200
ConvED 4.150
TaskDiff 0.000

Table 3: Impact of conversational reordering

4 Related Work

Efforts across many natural language tasks includ-
ing sentiment analysis (Poria et al., 2016), recom-
mendation systems (Magara et al., 2018), and ques-
tion answering (Sidorov et al., 2015), have relied
on using distance-based similarity measures over
text embeddings (Wang and Dong, 2020). Fur-
thermore, recent work on dialogue similarity have
also leveraged conversation structure, where Appel
et al. (2018) consider the number of dialogue turns,
words, and cycles and use cosine similarity. Sim-
ilarly, Xu et al. (2019) cluster user-bot dialogues
using different distance measures and Enayet and
Sukthankar (2022) measure similarity of dialogue
sequences using the Hamming distance.

The use of optimal transport over text distribu-
tions has shown promising results in document sim-
ilarity (Solomon, 2018) resulting in popular metrics
like the word mover’s distance (WMD) (Kusner
et al., 2015) and supervised WMD (Huang et al.,
2016). Recently, Yurochkin et al. (2019) used op-
timal transport over topic models for documents,
demonstrating a significant improvement in per-
formance over traditional distance based measures.
However, direct application of such approaches
to task-oriented dialogues is challenging, due to
the unique structure and different components of
conversations, as shown in our results.

5 Conclusion

In this paper we present TaskDiff, a novel metric to
measure the similarity between task-oriented con-
versations. It not only captures semantic similarity
between the utterances but also utilizes dialog spe-
cific features like intents and slots to identify the
overall objective of the conversations. We demon-
strate that unlike existing metrics, taking advantage
of these unique components is critical and results
in significantly improved performance. As part of
future work, we will investigate the inclusion of
additional dialog features on open domain dialog
datasets and the utilization of TaskDiff to improve
the performance of various downstream conversa-
tional tasks.

6 Limitations

We demonstrate in this work that TaskDiff is a
superior and more robust similarity metric com-
pared to existing state-of-the-art approaches for
task-oriented conversations. Given the use of opti-
mal transport to compute similarity as a function
of differences over the component distributions (in-
tents, slots, and utterances), TaskDiff is reliant on
being given an ontology for the intents and slots
present across the conversations. However, this
is a fair assumption to make for the domain of
task-oriented conversations, and such ontologies
are leveraged by real-world deployments such as
Google DialogFlow, IBM Watson Assistant, Ama-
zon Lex, etc.
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