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Abstract
We investigate the task of out-of-domain
(OOD) text classification with the aim of ex-
tending a classification model, trained on mul-
tiple source domains, to an unseen target do-
main. Recent studies have shown that learn-
ing invariant representations can enhance the
performance of OOD generalization. However,
the inherent disparity in data distribution across
different domains poses challenges for achiev-
ing effective invariance learning. This study
addresses this issue by employing memory aug-
mentations. Specifically, we augment the origi-
nal feature space using key-value memory and
employ a meta-learning-based approach to en-
hance the quality of the invariant representa-
tions. Experimental results on sentiment analy-
sis and natural language inference tasks show
the effectiveness of memory-based method for
invariance learning, leading to state-of-the-art
performance on six datasets.

1 Introduction

Text classification has made remarkable progress
in recent years, thanks to the advancements in deep
neural networks such as Transformer (Vaswani
et al., 2017) and pretrained language models
(PLMs) (Peters et al., 2018; Devlin et al., 2019;
Brown et al., 2020). However, these learning
systems heavily rely on the assumption that the
training and test sets come from the same domain.
When there is a significant discrepancy between
the test domain (also known as the target domain)
and the training domains (also known as source do-
mains), the performance of traditional learning sys-
tems suffers significant declines (Blanchard et al.,
2011; Muandet et al., 2013). Domain general-
ization (DG) aims to address this out-of-domain
(OOD) problem, which is a practical and challeng-
ing issue, particularly when the labeled and unla-
beled information of the target domains is unknown
during the training phase.
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Figure 1: Memory-based invariant representation learn-
ing.

In this paper, we focus on a multi-source do-
main generalization setting where there are multi-
ple source domains available for training. In recent
years, domain-invariant representation learning has
shown high effectiveness in multi-source DG (Ben-
David et al., 2010; Ganin et al., 2016). Most
existing approaches use the same model param-
eters across domains to construct a domain-shared
feature space for domain-invariant representation
learning (Li et al., 2018b; Albuquerque et al., 2019;
Guo et al., 2020; Jia and Zhang, 2022b). How-
ever, the intrinsic distribution discrepancy across
domains poses challenges for distribution matching
in order to learn a domain-invariant feature space.

Inspired by recent work (Khandelwal et al., 2019,
2020; Zheng et al., 2021), which demonstrates that
memory vectors can serve as rich feature augmenta-
tions for neural models, we propose to adopt mem-
ory augmentations to improve domain-invariant
representation learning. As shown in Figure 1, the
traditional parameter sharing mechanism produces
distinct feature distributions between source do-
mains (left) and target domains (right) due to the
intrinsic domain discrepancy. To address this, we
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use memory augmentations to alleviate the discrep-
ancy of feature distributions between source and
target domains and improve the invariant feature
distribution, constructing a domain-invariant fea-
ture subspace (middle).

To achieve this goal, we use a key-value mem-
ory network (Miller et al., 2016) to improve the
Transformer model (Vaswani et al., 2017) by fea-
ture augmentation. Specifically, we employ a meta-
learning strategy to learn memory augmentations
for achieving the invariant representation distri-
bution across domains. In each training episode,
source domains are randomly split into the meta-
target and meta-source domains to simulate domain
shifts. Consequently, we propose a bi-level opti-
mization objective to learn memory augmentations
for domain invariance. The inner-loop objective is
to minimize the meta-source risk w.r.t. the Trans-
former parameters, while the outer-loop objective
is to minimize the domain discrepancy between the
meta-source and meta-target samples w.r.t. the key-
value memory, based on the optimized Transformer
parameters from the inner-loop. As a result, after
the meta-test phase, the memory augmentations
improve the domain invariance between the source
domain and unseen target domains.

We evaluate our method on sentiment analy-
sis and natural language inference (NLI) tasks.
The results show that the learned memory by bi-
level optimization provides better augmentations
to the feature representation compared with the tra-
ditional learning strategy. Our method achieves
state-of-the-art results on six datasets, outperform-
ing a range of strong baselines. To the best of
our knowledge, we are the first to leverage a mem-
ory network for improving domain-invariant rep-
resentation learning. The code will be released at
https://github.com/jiachenwestlake/MIL.

2 Related Work

Domain generalization. In this work, we specif-
ically focus on multi-source domain generalization
(DG) (Blanchard et al., 2011; Muandet et al., 2013),
which offers broader application opportunities com-
pared to the single-source scenario (Qiao et al.,
2020). With the advancements in deep neural net-
works (Li et al., 2017), DG has achieved promising
results. Existing methods primarily aim to learn
domain-invariant representations across source do-
mains to enhance out-of-distribution (OOD) ro-
bustness, which have proven effective in objective

recognition tasks (Sun and Saenko, 2016; Li et al.,
2018b; Arjovsky et al., 2019). However, these
methods face challenges when there is a signif-
icant discrepancy between the source and target
domains. The invariant classification model across
source domains cannot easily adapt to unseen tar-
get domains. To address this issue, some studies
in objective recognition (Li et al., 2018a; Balaji
et al., 2018; Jia and Zhang, 2022a) and semantic
parsing (Wang et al., 2021a) employ meta-learning-
based approaches with episodic training strategies
to improve model adaptation to domain shifts. In
contrast to these works, we aim to learn explicit
memory augmentations for domain transfer. In
contrast, the meta-learner in our method aims to
learn a domain-invariant feature space by learn-
ing a memory augmentation. The novelty of our
work is reflected in the design of meta-learning ob-
jectives. The advantage of our design lies in the
ability to leverage an additional memory network
to learn more robust feature representations across
domains.

Recently, there has been an increasing interest
in DG for text classification. Ben-David et al.
(2022) learn an example-based prompt for each
instance for classification. In contrast, we focus on
learning a more general memory augmentation that
can address domain shifts comprehensively. Jia
and Zhang (2022b) utilize a distribution alignment
method to enhance domain invariance for DG. Tan
et al. (2022a) adopt a memory-enhanced supervised
contrastive learning method for DG. In comparison,
we propose the use of key-value memory to explic-
itly augment feature representations and improve
domain invariance in the feature space.

Memory-based model adaptation. The augmen-
tation of neural networks with previous memory
has proven effective for model adaptation in the
testing phase (Santoro et al., 2016). Prior works
improve network predictions using memory banks,
which serve as a continuous cache for storing long-
range contextual information (Khandelwal et al.,
2019, 2020; Zhong et al., 2022). Memory banks
have also shown utility for task adaptation (San-
toro et al., 2016; Wang et al., 2021b). However,
there are limited studies on memory-based cross-
domain transfer. Existing works (Asghar et al.,
2018; Zheng et al., 2021) rely on target-domain
unlabeled data for domain transfer. However, these
methods cannot be directly applied to DG since
both labeled and unlabeled target information is
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unknown during training. In contrast, we leverage
memory to optimize the transferability from source
domains to target domains through a meta-learning
strategy.

To the best of our knowledge, only one existing
memory-based work for DG refers to (Tan et al.,
2022b), which leverages the memories of source-
domain samples to augment contrasting features
for computing supervised contrastive loss. Our
work differs significantly from (Tan et al., 2022b).
Firstly, our memory network is trainable, whereas
they employ static source-domain banks that are
not optimized during training. Secondly, we ex-
plicitly utilize memory as feature augmentation to
enhance invariant representation learning, whereas
they employ memory as contrasting features for
computing the contrastive loss.

Feature augmentation. Previous studies have
shown that model generalization can be improved
by augmenting features through the mixing of fea-
ture vectors (Verma et al., 2019). In computer vi-
sion, prior works learn interpolation for semantic
changes (Upchurch et al., 2017) or perturbs latent
features with random noises using mix-up tech-
niques (Zhou et al.; Li et al., 2021; Zhao et al.,
2021). In contrast, we focus on learning memory
augmentations to enhance domain invariance in the
feature space.

3 Method

As illustrated in Figure 2, the proposed model com-
prises (a) a vanilla Transformer enhanced by (b)
a key-value memory. Furthermore, (c) the output
layer is responsible for text classification, while (d)
the domain discriminators handle domain classifi-
cation tasks.

The memory serves to enhance the feature rep-
resentation and mitigate domain-specific feature
distributions. To accomplish this, we employ a
key-value memory bank that learns the appropriate
feature augmentations (Section 3.1). To address do-
main shifts through memory augmentations, we in-
troduce an episodic training strategy (Section 3.2).
The training objective of the key-value memory can
be formulated as bi-level optimization (Section 3.3).
Lastly, we present the overarching meta-training
and meta-test algorithms (Section 3.4).

3.1 Key-Value Memory-Augmented Network
We consider a key-value memory layer as a func-
tion m : Rd → Rd, which can be trained end-

to-end by gradient backpropagation (Sukhbaatar
et al., 2015). Following previous work (Miller et al.,
2016; Lample et al., 2019), the overall structure of
our memory layer consists of a query network and
a value lookup table.

Key-value memory. Given a hidden state of one
position from the previous layer h ∈ Rd, the query
network acts as a function q : h 7→ q(h) ∈ Rdq ,
mapping from a d-dimensional hidden vector into
a latent query space with the dimensionality dq.
In this paper, q(·) is a linear mapping or a multi-
layer perceptron to reduce the dimensionality of
hidden space to a lower-dimensional query space
for distance computation w.r.t. the keys.

Given a query q(h) and a set of keys K =
{k1, . . . ,k|K|} that consists of |K| dq-dimensional
vectors, we first compute the dot-product similarity
between the query and each key {αk}|K|

k=1. For each
k ∈ {1, . . . , |K|},

αk =
exp(q(h)⊤kk)∑|K|
j=1 exp(q(h)

⊤kj)
(1)

Given a set of memory values V =
{v1, . . . ,v|K|} that consists of |K| dm-dimensional
vectors, the function of the key-value memory can
be represented as a weighted sum of memory val-
ues:

m(h) =

|K|∑

k=1

αkvk (2)

Memory-augmented network. We use the ag-
gregated memory by key-value memory sublayer as
feature augmentations for the original Transformer
model to improve domain transfer. Particularly, we
perform the feature augmentation through resid-
ual connection. Let g : x 7→ g(x) ∈ Rd denote
the Transformer model that mapping from an input
text to a feature vector, we represent the memory-
augmented network gm : x 7→ gm(x) ∈ Rd as
follows

gm(x) = (1− λ)g(x) + λ · (m ◦ g(x)), (3)

where λ represents the coefficient that balances the
original features and augmented memory.

3.2 Episodic Training Procedure
Following Li et al. (2018a); Balaji et al. (2018), we
leverage an episodic training procedure to simulate
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Figure 2: Overall structure of the proposed model.

Algorithm 1 Episodic training process.
Input: Source domains S = {S1, S2, . . . , Sn}
Input parameters:.
Output: Optimized memory net m∗

1: while not converge or not reach stopping conditions do
2: Randomly select a meta-target domain Dte ∈ S
3: The meta-source domains are Dtr = S −Dte

4: for t ∈ {1, . . . , T} do
5: Sample mini-batch Dtr ⊂ Dtr and Dte ⊂ Dte

6: Optimize Transformer parameters θg on Dtr

7: Optimize the key-value memory parameters θm

using the optimized Transformer parameters θ∗
g

8: end for
9: end while

the domain shifts. Each episode can be viewed as
a meta-task to learn how to learn a better key-value
memory for tackling the domain shifts between
source domains and the unseen target domains. In
particular, the meta-task in this paper is specified as
learning memory augmentations to improve the in-
variance of feature representations across domains.

A brief view of the episodic training process
is shown in Algorithm 1. Given a set of source-
domain training samples S = {S1, S2, . . . , Sn}, in
each training episode, we first randomly select a
meta-target domain and the rest serve as the meta-
source domains (lines 2-3). Then, in each training
iteration t ∈ [T ], we first optimize the Transformer
model g : X → Rd parameterized by θg and task
output layer h : Rd → Y parameterized by θh

over the mini-batch of meta-source samples Dtr

(line 6). Then, we optimize the parameters of key-

value memory network θm on the mini-batch of
meta-target sample Dte and meta-source samples
Dtr using the optimized Transformer parameters
θ∗
g (line 7).

3.3 Memory-Based Invariance Learning
Based on the episodic training process, we now
describe in detail the optimization objectives w.r.t.
the training samples and parameters.

Domain-invariant representation learning ob-
jective. Given n training domains, we need n do-
main discriminators to differ each domain from the
other domains. To simplify the presentation, we use
an unified function symbol fd to denote the domain
discriminator between the meta-test (meta-target)
data Dte and the meta-training (meta-source) data
Dtr. The domain classification objective can be
represented as the binary cross-entropy loss:

Ld =
∑

x∈Dtr∪Dte

ℓ(CE)(fd ◦ gm(x), I[x∈Dte]) (4)

The domain-invariant representaion learning
solves the following minimax optimization objec-
tive w.r.t. the domain discriminator fd and key-
value memory network m:

max
θm

min
θfd

Ld(θg,θm,θfd ;Dte,Dtr) (5)

Theoretically, following Ben-David et al. (2010),
the above minimax training objective aims to mini-
mize the H-divergence for obtaining the invariant
representation between the meta-training (meta-
source) and meta-test (meta-target) domains.
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Algorithm 2 Meta-training procedure.
Input: Source domains S = {S1, S2, . . . , Sn}
Parameters (randomly initialized): θg , θh, θfd , θm

Output: Optimized memory net m∗

1: while not converge or not reach stopping conditions do
2: Randomly select a meta-target domain Dte = Sd ∈ S
3: The meta-source domains Dtr = S −Dte

4: for t ∈ {1, . . . , T} do
5: Sample mini-batch Dtr ⊂ Dtr and Dte ⊂ Dte

6: Lt ← Lt(θg,θm,θh;Dtr) � task obj.
7: θh ← θh − η∇θhLt

8: θ′
g ← θg − η∇θgLt

9: Ld ← Ld(θ
′
g,θm,θfd ;Dtr, Dte) � inv. obj.

10: θfd ← θfd − η∇θfd
Ld � min Ld w.r.t. fd

11: θm ← θm + γη∇θmLd � max Ld w.r.t. m
12: end for
13: end while
14: θ∗

m ← θm

Task objective. Let Dtr denote the meta-training
data in each training episode, and h : Rd → Y
denote the task classifier. We represent the task
objective as the empirical risk on the meta-training
data with the cross-entropy loss ℓ(CE)(·, ·):

Lt =
∑

(x,y)∈Dtr

ℓ(CE)
(
h ◦ gm(x), y

)
(6)

Bi-level optimization objective. Given the meta-
training data Dtr and meta-test data Dte, we con-
sider the following bi-level optimization objec-
tive for learning an optimized classification model
h∗ ◦ g∗m:

θ∗
m = argmax

θm

min
θfd

Ld

(
θ∗
g,θm,θfd ;Dte,Dtr

)
;

θ∗
g,θ

∗
h = argmin

θg ,θh

Lt(θg,θm,θh;Dtr)

︸ ︷︷ ︸
inner-loop objective

,

(7)

where the inner-loop optimization objective is the
empirical task risk on the meta-training samples
and the outer-loop optimization objective is the
domain-invariant representation learning objective
between the meta-target sample and meta-source
samples.

3.4 Meta-Optimization Algorithm
We now design the full gradient-based algorithm to
optimize the bi-level optimization objective in Eq.
(7).

Gradient update. In the gradient-based opti-
mization algorithm, the inner-loop optimization
has L gradient updating steps and the outer-loop
optimization has T gradient updating steps. Each

Algorithm 3 Meta-test procedure.
Input: Source domains S = {S1, S2, . . . , SN}
Parameters (by meta-training): θ∗

m

Parameters (randomly initialized): θg,θh

Output: Optimized model h∗◦g∗m
1: while not converge or not reach stopping conditions do
2: Randomly select a training domain Dtr ∈ S
3: for t ∈ {1, . . . , T} do
4: Sample mini-batch Dtr ⊂ Dtr

5: Lt ← Lt(θg,θ
∗
m,θh;Dtr) � task obj.

6: θh ← θh − η∇θhLt � min Lt w.r.t. h
7: θg ← θg − η∇θgLt � min Lt w.r.t. g
8: end for
9: end while

10: θ∗
g ← θg , θ∗

h ← θh

gradient updating step in the inner-loop optimiza-
tion is represented as:

Inner-loop opt. : for the lth ∈ [L] step,

θ(l)
g = θ(l−1)

g − η∇θgLt(θ
(l−1)
g ,θm,θ

(l−1)
h ;Dtr);

θ
(l)
h = θ

(l−1)
h − η∇θh

Lt(θ
(l−1)
g ,θm,θ

(l−1)
h ;Dtr)

(8)

Each gradient updating step in the outer-loop
optimization is represented as:

Outer-loop opt. : for the tth ∈ [T ] step,

θ(t)
m = θ(t−1)

m + γη∇θmLd(θ
(L)
g ,θ(t−1)

m ,θ
(t−1)
fd

;Dte, Dtr);

θ
(t)
fd

= θ
(t−1)
fd

− η∇θfd
Ld(θ

(L)
g ,θ(t−1)

m ,θ
(t−1)
fd

;Dte, Dtr),

(9)

where η represents the gradient updating rate and γ
represents the coefficient of gradient updating for
the key-value memory network.

The full learning algorithm is a consequence of
a meta-training procedure and a meta-test proce-
dure, as shown in Algorithm 2 and Algorithm 3,
respectively.

Meta-training. For each training episode, lines
4-12 in Algorithm 2 present T iterations of param-
eter updating for the Transformer and key-value
memory network. In particular, lines 6-8 present
the inner-loop optimization by gradient updates on
the parameters of Transformer and the task classi-
fier. Then, lines 9-11 present the outer-loop opti-
mization by gradient updates on the parameters of
key-value memory network θm based on the up-
dated Transformer parameters θ′

g. As a result, the
meta-training procedure preduces the optimized pa-
rameters of key-value memory network θ∗

m (line
14).
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Meta-test. Based on the learned parameters of
key-value memory network θ∗

m by the meta-
training procedure, the meta-test procedure opti-
mizes parameters of Transformer θg and the task
classifier θh using all the source training data. In
each iteration of lines 3-8 in Algorithm 3, the
source training data are used to update the parame-
ters of Transformer and task classifier by stochastic
gradient descent (SGD). As a result, the meta-test
procedure produces the optimized Transformer θ∗

g

and task classifier θ∗
h (line 10).

After the meta-training and meta-test procedures,
the optimized model h∗ ◦ g∗m can be used to make
classification on the unseen target domain.

4 Experiments

We evaluate the proposed method on sentiment
analysis and natural language inference (NLI)
tasks.

4.1 Experimental Setup
Datasets. For the sentiment analysis task, we
use Amazon Reviews (Blitzer et al., 2007) for
leave-one-domain-out evaluation. This dataset
comprises two classes (positive and negative) and
four domains: book (B), DVD (D), electronics
(E) and kitchen (K). Additionally, we include
IMDB (Thongtan and Phienthrakul, 2019) and SST-
2 (Socher et al., 2013) as test datasets for cross-
dataset evaluation. For the NLI task, we employ a
scaled-down version of MNLI (Ben-David et al.,
2022)1 for leave-one-domain-out evaluation. This
dataset consists of three classes (entailment, neu-
tral, contradiction) and five domains: fiction (F),
government (G), slate (S), telephone (T) and travel
(T’). Moreover, we use SNLI (Bowman et al., 2015)
and SICK (Marelli et al., 2014) as test datasets for
cross-dataset evaluation. Appendix A presents the
statistics of the used datasets.

Evaluation. The evaluation methods include
leave-one-domain-out evaluation (Gulrajani and
Lopez-Paz, 2020) and cross-dataset evaluation (Jia
and Zhang, 2022b). Specifically, we employ stan-
dard leave-one-domain-out evaluation on Amazon
Reviews and MNLI, and cross-dataset evaluation
on IMDB and SST-2 for sentiment analysis, as well
as SNLI and SICK for NLI.

Architecture and hyperparameters. In all our
experiments, we fine-tune RoBERTaBASE (Liu

1https://github.com/eyalbd2/PADA.

et al., 2019). We introduce a key-value memory
sublayer after the 12th layer of RoBERTaBASE.
Further details regarding the model architecture
and hyperparameters can be found in Appendix B.

4.2 Main Results

The results for sentiment analysis and NLI using
RoBERTaBASE are presented in Table 1 and Table
2, respectively. Additionally, we include the re-
sults of another pre-trained language model (PLM),
BERTBASE, in Appendix C.1 to demonstrate the
robustness of our approach.

Before investigating the performance of our
method, we first analyze the challenges of OOD set-
ting on the used text classification datasets by mak-
ing comparisons to the in-domain setting. Com-
pared with the in-domain results (oracle), directly
testing on OOD data (baseline) shows a significant
drop in performance. This indicates the difficulty
of the used datasets for OOD evaluation.

The last four rows in Table 1 and Table 2 pro-
vide comparisons with four baselines. The nota-
tion “+ memory” indicates that the baseline model
was augmented with key-value memory, similar to
our approach, but without the bi-level optimization
for invariance learning. “invariance learning (w/o
memory)” refers to a method similar to the works
by Li et al. (2018b); Albuquerque et al. (2019),
which directly optimize domain invariance in the
feature space without memory augmentations. The
results indicate that "+ memory" does not signifi-
cantly improve over the baseline, suggesting that
simply integrating memory layers into the base-
line model is insufficient for learning transferable
information to address domain shifts. Although
domain-invariant representation learning has been
shown to be effective for out-of-distribution (OOD)
objective recognition (Li et al., 2018b), “invariance
learning (w/o memory)” only exhibits marginal im-
provements in our experiments. This suggests that
traditional invariance learning methods face chal-
lenges in addressing OOD text classification. In
comparison to these baselines, our method learns
memory augmentations to improve domain invari-
ance in the feature space and demonstrates signifi-
cant enhancements in both sentiment analysis and
NLI.

We compare our method with several state-of-
the-art DG methods for text classification, most
of which aim to achieve domain invariance across
source domains. DEEP CORAL (Sun and Saenko,
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Method Leave-one-domain-out on Amazon Reviews Cross-dataset Evaluation

Sources → Target DEK→B BEK→D BDK→E BDE→K Avg. Amazon→IMDB Amazon→SST-2

supervised learning (oracle) 95.0 94.3 95.3 96.4 95.3 94.9 93.4

DEEP CORAL (Sun and Saenko, 2016) 91.9 91.3 90.9 93.5 91.9 89.8 87.6
IRM (Arjovsky et al., 2019) 92.3 91.2 91.9 94.5 92.5 89.0 86.7
PADA (Ben-David et al., 2022) 86.8 86.9 89.0 92.6 88.8 - -
PDA (Jia and Zhang, 2022b) 92.9 92.2 93.3 94.8 93.3 92.1 91.3
M-SCL (Tan et al., 2022a) 92.3 91.2 93.7 93.4 92.7 - -

RoBERTaBASE (baseline) 91.5 90.5 92.2 93.7 92.0 90.1 88.3
+ memory 92.0 91.5 91.8 93.2 92.1 90.5 88.7

invariance learning (w/o memory) 92.2 90.7 92.5 94.2 92.4 91.4 89.2
our method 93.5 92.8 94.7 95.2 94.0† 93.5† 92.4†

Table 1: Macro-F1 on sentiment analysis. The best and second best scores of each column are marked in bold and
underline, respectively. † indicates statistical significance with p < 0.05 by t-test compared to all baselines.

Method Leave-one-domain-out on MNLI Cross-dataset Evaluation

Sources → Target GSTT’→F FSTT’→G GFTT’→S GSFT’→T GSTF→T’ Avg. MNLI→SNLI MNLI→SICK

supervised learning (oracle) 83.2 88.3 81.8 82.7 86.4 84.5 88.5 90.3

DEEP CORAL (Sun and Saenko, 2016) 77.6 76.3 78.2 75.3 78.2 77.1 77.3 57.0
IRM (Arjovsky et al., 2019) 78.1 75.2 79.4 76.2 79.2 77.6 76.2 58.7
PADA (Ben-David et al., 2022) 76.4 83.4 76.9 78.9 82.5 79.6 - -
PDA (Jia and Zhang, 2022b) 80.8 85.8 79.7 79.4 83.0 81.7 79.3 62.0

RoBERTaBASE (baseline) 79.5 80.2 79.7 76.8 80.0 79.2 78.1 61.5
+ memory 79.6 80.7 79.2 77.0 81.2 79.5 78.6 60.8

invariance learning (w/o memory) 80.2 83.2 77.4 78.2 81.3 80.1 77.0 61.3
our method 81.2 86.3 80.5 80.4 84.6 83.0† 82.3† 65.7†

Table 2: Macro-F1 on NLI. The best and second best scores of each column are marked in bold and underline,
respectively. † indicates statistical significance with p < 0.05 by t-test when compared to all baselines.

2016) learns domain-invariant feature representa-
tions by optimizing second-order statistics over
feature states. IRM (Arjovsky et al., 2019) further
considers the intrinsic relationship between feature
representation and labeling prediction to tackle do-
main shifts. PDA (Jia and Zhang, 2022b) simulta-
neously learns domain invariance for both feature
representation and predicted probability. M-SCL

(Tan et al., 2022a) employs a supervised contrast
learning method with memory augmentations to
increase the contrasting examples.

To ensure fair comparison, we reproduce M-SCL

on sentiment analysis using RoBERTaBASE, while
the results of the other methods are taken from the
literature that uses RoBERTaBASE. For leave-one-
domain-out evaluation, our method outperforms
all the compared methods by 0.7% F1 and 1.3%
F1 on the Amazon Reviews and MNLI datasets,
respectively. In terms of cross-dataset evaluation,
our method achieves over 1.0% F1 improvement on
two sentiment analysis datasets and approximately
3.0% F1 improvement on two NLI datasets com-
pared to the other methods. These results demon-
strate the superiority of employing meta-learning

Method #Params Amazon MNLI Avg.

RoBARTaBASE 108M 92.0 79.2 85.6
+ memory 113M 92.1 79.5 85.8
+ FFN 113M 91.0 77.5 84.3
+ self-attn + FFN 115M 91.5 78.6 85.1

our method 113M 94.0 83.0 88.5†

Table 3: Macro-F1 on two datasets. † indicates statistical
significance with p < 0.05 by t-test compared to all
baselines.

to acquire transferable memory for domain gener-
alization.

4.3 Analysis

Effects of Additional Parameters. Our method
utilizes an additional key-value memory layer and
includes approximately 4.8M more parameters
compared to the RoBARTaBASE baseline model.
To ensure a fair comparison in terms of param-
eter size, we consider three additional baselines:
(i) “+ memory uses the same key-value mem-
ory as our method but does not employ our in-
variance learning technique; (ii) “+ FFN” adds a
feed-forward network (FFN) to the RoBARTaBASE
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(a) Transformer features. (b) Memory. (c) Memory-augmented features. 

Figure 3: Feature representation on the Amazon Reviews dataset. We visualize the representation of the target book
domain and the source domains using Gaussian kernel density estimation and PCA dimensional reduction into
[0, 1]× [0, 1]. We compare (a) Transformer features, (b) memory and (c) memory-augmented features.

model; and (iii) “+ self-attn + FFN” incorporates
both a self-attention layer and an FFN on top of
the RoBARTaBASE model. Although these three
baselines have a similar number of parameters
as our method, they do not yield significant im-
provements in performance. This observation in-
dicates that merely increasing the parameter size
with additional layers does not enhance out-of-
distribution (OOD) text classification, thus demon-
strating the effectiveness of our memory-based in-
variance learning method.

Visualization. We adopt t-SNE (Van der Maaten
and Hinton, 2008) to visualize the feature represen-
tations, as shown in Figure 3. From Figure 3 (a), we
can observe that the Transformer features of the tar-
get domain exhibit a distinctly different distribution
compared to those of the source domains. However,
with the aid of memory augmentations, Figure 3 (c)
shows a smaller distance between the features of
the target domain and those of the source domains.
Interestingly, the memory distribution in Figure 3
(b) reveals a strong domain specificity across dif-
ferent domains. These findings demonstrate that
our method is capable of effectively learning mem-
ory augmentations for different domains, thereby
achieving domain invariance in the feature space.

Invariant representation learning. We adopt
the A-distance (Ben-David et al., 2006) to mea-
sure the distance of feature distributions between
the target domain and the source domains using
three sentiment analysis datasets. As depicted in
Figure 4, incorporating the key-value memory over

Amazon IMDB SST-2
0.0

0.2

0.4

0.6

0.8

1.0

A-
di

st
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 + memory
inv. learn. (w/o mem.)
our method

Figure 4: A-distance between the target domain and
sources domains on three sentiment analysis datasets.
The results for NLI are illustrated in Appendix C.2.

the RoBARTaBASE model without employing the
invariance learning strategy barely improves the A-
distance. In contrast, the traditional invariant rep-
resentation learning approach proves effectiveness
in reducing the target-source domain A-distance.
Furthermore, our method further optimizes the A-
distance to a much greater extent, which suggests
that the memory learned by our method contributes
to the invariance of feature representations.

Effects of memory learning. As demonstrated in
Figure 5, the development results for both the Ama-
zon Reviews and MNLI datasets show a significant
increase as the memory size increases from 128 to
1,024. This observation indicates that a larger mem-
ory bank size encompasses richer features, allow-
ing for accurate memory augmentations in generat-
ing domain-invariant representations. However, the
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Figure 5: Effects of memory size. Average results on
the dev sets of Amazon Reviews and MNLI.

magnitude of performance improvement tends to
diminish as the memory size continues to increase,
especially when the memory size exceeds 1,024.
In our experiments, we choose a memory size of
1,024 to strike a balance between performance and
model size. Additionally, we also analyze the ef-
fects of memory optimization in Appendix C.3.

5 Conclusion

We have conducted an investigation into a memory-
based approach for domain generalization (DG).
Our study involves the integration of a key-value
memory network into the Transformer model, and
the proposal of a meta-learning algorithm that in-
corporates an episodic training strategy to effec-
tively learn transferable memory for addressing
domain shifts. The results obtained from experi-
ments conducted on sentiment analysis and natural
language inference tasks demonstrate the signifi-
cant enhancement in transferability of the source-
domain model through the usage of the memory
unit. Additionally, our approach achieves state-of-
the-art performance on six different datasets.

Limitations

Our method only applies the BASE-level pre-
trained language models, such as RoBERTaBASE

and BERTBASE. The recently developed large-
scale pretrained language models, such as
RoBERTaLARGE and GPT (Brown et al., 2020)
have shown strong performances on classification
and generatioin tasks. Due to resource limitations,
we leave such large-model results in future work.
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A Statistical Details of the Used Datasets

Dataset Domain Train (src) Dev (src) Test (tgt)

Sentiment Analysis

Amazon

book (B) 1.6K 0.4K 0.4K
DVD (D) 1.6K 0.4K 0.4K

electronics (E) 1.6K 0.4K 0.4K
kitchen (K) 1.6K 0.4K 0.4K

IMDB movie - - 25K

SST-2 movie - - 1.8K

NLI

MNLI

fiction (F) 2.5K 2.0K 2.0K
government (G) 2.5K 1.9K 1.9K

slate (S) 2.6K 2.0K 2.0K
telephone (T) 2.8K 2.0K 2.0K

travel (T’) 2.5K 2.0K 2.0K

SNLI general - - 9.8K

SICK image&video - - 0.5K

Table 4: Statistics of the used datasets.

For the sentiment analysis task, we use Amazon
Reviews (Blitzer et al., 2007), which comprises two
classes (positive and negative) and four domains:
book (B), DVD (D), electronics (E) and kitchen
(K). Additionally, we include IMDB (Thongtan
and Phienthrakul, 2019) and SST-2 (Socher et al.,
2013) as test datasets for cross-dataset evaluation.
For the NLI task, we employ a scaled-down version
of MNLI (Ben-David et al., 2022), which consists
of three classes (entailment, neutral, contradiction)
and five domains: fiction (F), government (G), slate
(S), telephone (T) and travel (T’). Moreover, we
use SNLI (Bowman et al., 2015) and SICK (Marelli
et al., 2014) as test datasets for cross-dataset eval-
uation. Table 4 presents the statistics of the used
datasets.

B Details on Architecture and
Hyperparameters

We utilize RoBERTaBASE (Liu et al., 2019) as the
primary Pretrained Language Models (PLMs) in
our study, following the OpenPrompt framework
(Ding et al., 2022), for two text classification tasks.
The entire model was trained for up to 20 epochs,
with a mini-batch size of 32 sentences applied
across all datasets. Optimization was performed
using AdamW with an initial learning rate set to
1e−5, a weight decay rate of 0.01, and warm-up
steps of 500. We incorporated a key-value mem-
ory layer after the 12-th layer of RoBERTaBASE.
This memory layer was added exclusively to the
position used for classification, such as [MASK]

during prompting or [CLS] during traditional fine-
tuning. To ensure balanced features, we selected a
coefficient γ of 0.5 for our experiments. For each
key-value memory network, the hidden size of keys
was set to 256, and the default number of values
was 1024. Following the methodology of Lample
et al. (2019), we employed a multi-head query-key
attention mechanism with four heads. The total
parameter count of the memory layers was approxi-
mately 4.8M, significantly smaller compared to the
108M total parameters of RoBERTaBASE.

C Additional Results

C.1 Results based on BERTBASE

The results obtained using BERTBASE are consis-
tent with the main findings presented in Table 1
and Table 2, as illustrated in Table 5 and Table
6. The baseline models, namely “+ memory” and
“invariance learning (w/o memory)”, either show
minimal or no significant improvement compared
to the baseline model. In contrast, our method
demonstrates superior performance in both sen-
timent analysis and NLI tasks, surpassing these
baseline models. This indicates the robustness of
our approach across different pre-trained language
models (PLMs).

C.2 Invariant Representation Learning for
NLI
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Figure 6: A-distance between the target domain and
sources domains on three NLI datasets.

We adopt the A-distance (Ben-David et al.,
2006) to measure the distance of feature distribu-
tions between the target domain and the source
domains on three NLI datasets. As depicted in Fig-
ure 6, incorporating the key-value memory over
the RoBARTaBASE model without employing the
invariance learning strategy barely improves the
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Method Leave-one-domain-out on Amazon Reviews Cross-dataset Evaluation

Sources → Target DEK→B BEK→D BDK→E BDE→K Avg. Amazon→IMDB Amazon→SST-2

supervised learning (oracle) 92.6 92.4 91.1 93.7 92.5 92.2 90.7

DEEP CORAL (Sun and Saenko, 2016) 88.2 87.8 88.2 89.7 88.5 85.8 85.7
IRM (Arjovsky et al., 2019) 85.8 89.4 87.6 90.5 88.3 84.8 84.2
PDA (Jia and Zhang, 2022b) 90.2 89.7 90.8 91.6 90.6 88.5 86.8

BERTBASE (baseline) 89.1 88.7 88.2 90.8 89.2 86.0 85.1
+ memory 90.0 88.2 88.7 89.6 89.1 85.8 86.0

invariance learning (w/o memory) 89.8 88.7 91.0 90.6 90.0 88.6 86.2
our method 90.6 90.7 91.5 92.8 91.4† 89.2† 87.8†

Table 5: Macro-F1 on sentiment analysis based on BERTBASE. The best and second best scores of each column are
marked in bold and underline, respectively. † indicates statistical significance with p < 0.05 by t-test compared to
all baselines.

Method Leave-one-domain-out on MNLI Cross-dataset Evaluation

Sources → Target GSTT’→F FSTT’→G GFTT’→S GSFT’→T GSTF→T’ Avg. MNLI→SNLI MNLI→SICK

supervised learning (oracle) 80.4 82.6 76.3 78.5 81.7 80.6 83.0 89.6

DEEP CORAL (Sun and Saenko, 2016) 75.7 74.6 73.1 74.0 76.3 74.7 65.5 56.3
IRM (Arjovsky et al., 2019) 74.2 75.8 71.8 73.7 75.1 74.1 65.8 57.0
PDA (Jia and Zhang, 2022b) 75.2 76.8 72.8 74.6 77.8 75.4 67.6 60.4

BERTBASE (baseline) 74.8 72.8 72.5 72.9 74.7 73.5 64.8 55.2
+ memory 73.6 73.8 72.2 72.0 75.8 73.5 65.7 53.2

invariance learning (w/o memory) 76.8 75.4 72.7 74.8 78.2 75.6 66.7 61.0
our method 77.0 78.2 73.6 76.2 78.6 76.7† 70.5† 61.2†

Table 6: Macro-F1 on NLI based on BERTBASE. The best and second best scores of each column are marked in
bold and underline, respectively. † indicates statistical significance with p < 0.05 by t-test when compared to all
baselines.

A-distance. In contrast, the traditional invariant
representation learning approach proves effective
in reducing the target-source domain A-distance.
Furthermore, our method further optimizes the A-
distance to a much greater extent, which suggests
that the memory learned by our method contributes
to the invariance of feature representations.

C.3 Effects of Memory Optimization
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Figure 7: Effects of memory optimization. Average
results on the dev sets of Amazon Reviews and MNLI.

Figure 7 presents the results obtained from the
Amazon Reviews dev set and the MNLI dev set, as

the learning rate for memory values ranges from
0 to 1e−3. When the learning rate is set to 0, the
key-value memory network remains untrained, thus
failing to produce appropriate memory augmenta-
tions. As a consequence, the results are noticeably
lower than those of the baseline model without
memory augmentations. As the learning rate gradu-
ally increases, the results improve with minor fluc-
tuations, ultimately reaching a plateau when the
learning rate reaches a sufficiently high value. This
indicates that optimizing the key-value memory
network facilitates the performance of OOD text
classification.
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