@inproceedings{arakelyan-etal-2023-exploring,
title = "Exploring Distributional Shifts in Large Language Models for Code Analysis",
author = "Arakelyan, Shushan and
Das, Rocktim and
Mao, Yi and
Ren, Xiang",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.1013",
doi = "10.18653/v1/2023.emnlp-main.1013",
pages = "16298--16314",
abstract = "We systematically study how three large language models with code capabilities - CodeT5, Codex, and ChatGPT - generalize to out-of-domain data. We consider two fundamental applications - code summarization, and code generation. We split data into domains following its natural boundaries - by an organization, by a project, and by a module within the software project. We establish that samples from each new domain present all the models with a significant challenge of distribution shift. We study how established methods adapt models to better generalize to new domains. Our experiments show that while multitask learning alone is a reasonable baseline, combining it with few-shot finetuning on examples retrieved from training data can achieve very strong performance. Moreover, this solution can outperform direct finetuning for very low-data scenarios. Finally, we consider variations of this approach to create a more broadly applicable method to adapt to multiple domains at once. We find that for code generation, a model adapted to multiple domains simultaneously performs on par with those adapted to a single domain.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arakelyan-etal-2023-exploring">
<titleInfo>
<title>Exploring Distributional Shifts in Large Language Models for Code Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shushan</namePart>
<namePart type="family">Arakelyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rocktim</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We systematically study how three large language models with code capabilities - CodeT5, Codex, and ChatGPT - generalize to out-of-domain data. We consider two fundamental applications - code summarization, and code generation. We split data into domains following its natural boundaries - by an organization, by a project, and by a module within the software project. We establish that samples from each new domain present all the models with a significant challenge of distribution shift. We study how established methods adapt models to better generalize to new domains. Our experiments show that while multitask learning alone is a reasonable baseline, combining it with few-shot finetuning on examples retrieved from training data can achieve very strong performance. Moreover, this solution can outperform direct finetuning for very low-data scenarios. Finally, we consider variations of this approach to create a more broadly applicable method to adapt to multiple domains at once. We find that for code generation, a model adapted to multiple domains simultaneously performs on par with those adapted to a single domain.</abstract>
<identifier type="citekey">arakelyan-etal-2023-exploring</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.1013</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.1013</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>16298</start>
<end>16314</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Distributional Shifts in Large Language Models for Code Analysis
%A Arakelyan, Shushan
%A Das, Rocktim
%A Mao, Yi
%A Ren, Xiang
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F arakelyan-etal-2023-exploring
%X We systematically study how three large language models with code capabilities - CodeT5, Codex, and ChatGPT - generalize to out-of-domain data. We consider two fundamental applications - code summarization, and code generation. We split data into domains following its natural boundaries - by an organization, by a project, and by a module within the software project. We establish that samples from each new domain present all the models with a significant challenge of distribution shift. We study how established methods adapt models to better generalize to new domains. Our experiments show that while multitask learning alone is a reasonable baseline, combining it with few-shot finetuning on examples retrieved from training data can achieve very strong performance. Moreover, this solution can outperform direct finetuning for very low-data scenarios. Finally, we consider variations of this approach to create a more broadly applicable method to adapt to multiple domains at once. We find that for code generation, a model adapted to multiple domains simultaneously performs on par with those adapted to a single domain.
%R 10.18653/v1/2023.emnlp-main.1013
%U https://aclanthology.org/2023.emnlp-main.1013
%U https://doi.org/10.18653/v1/2023.emnlp-main.1013
%P 16298-16314
Markdown (Informal)
[Exploring Distributional Shifts in Large Language Models for Code Analysis](https://aclanthology.org/2023.emnlp-main.1013) (Arakelyan et al., EMNLP 2023)
ACL