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Abstract
Over-generation errors occur when a keyphrase
extraction model correctly determines a candi-
date keyphrase as a keyphrase because it con-
tains a word that frequently appears in the doc-
ument but at the same time erroneously out-
puts other candidates as keyphrases because
they contain the same word. To mitigate this
issue, we propose a new heterogeneous central-
ity detection approach (CentralityRank), which
extracts keyphrases by simultaneously identify-
ing both implicit and explicit centrality within
a heterogeneous graph as the importance score
of each candidate. More specifically, Centrali-
tyRank detects centrality by taking full advan-
tage of the content within the input document
to construct graphs that encompass semantic
nodes of varying granularity levels, not limited
to just phrases. These additional nodes act as
intermediaries between candidate keyphrases,
enhancing inter-phrase relevance. Furthermore,
we introduce a novel adaptive boundary-aware
regularization that can leverage the position
information of candidate keyphrases, thus influ-
encing the importance of candidate keyphrases.
Extensive experimental results demonstrate the
superiority of CentralityRank over recent state-
of-the-art unsupervised keyphrase extraction
baselines on three benchmark datasets.

1 Introduction

Keyphrase Extraction (KE) is the task of extracting
a set of salient and relevant phrases (e.g., "infor-
mation extraction", "natural language processing",
"ontology", "intelligent analysis", and "semantic
analysis" in Table 1) from the source document,
which is a fundamental task in natural language
processing (Song et al., 2023b). Because of their
succinct and accurate expression, keyphrase extrac-
tion is helpful for various applications (Song et al.,
2021a; Liu et al., 2009; Kim et al., 2013; Song
et al., 2022b, 2023a; Liu et al., 2023; Xiao et al.,
2023, 2021; Lyu et al., 2023).
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Part of the Input Document:
Information extraction using Natural Language Processing tools focuses
on extracting explicitly stated information from textual material (...) to
perform intelligent analysis on the information, we provide an ontology,
which describes the domain of the extracted information, in addition to
rules that govern the classification and interpretation of added elements.
The ontology is at the core of an interactive system that assists analysts
with the collection, extraction, organization, analysis and retrieval of in-
formation, with the topic of "terrorism financing" as a case study. User
interaction provides valuable assistance in assigning meaning to extracted
information. The system is designed as a set of tools to provide the user
with the flexibility and power (...)

Ground-Truth Keyphrases:
information extraction; nlp; intelligent analysis; ontology; modeling;
natural language processing; owl; semantic analysis

One of the Correct Keyphrases: information extraction
Possible Over-Generation Cases: retrieval of information, stated infor-
mation, the extracted information

Table 1: The input document with its corresponding
keyphrases. Underlined words indicate ground-truth
keyphrases, while high-frequency words in the docu-
ment are highlighted in bold red. Here, we introduce
the over-generation error with an example. As shown
in the above case, one of the ground-truth keyphrases
is “ information extraction". In this setting, if “stated
information" is extracted, then it is an example of the
over-generation error.

Extracting keyphrases with less redundancy is
challenging due to repetitions often present in doc-
uments. These repetitions can lead to different
types of redundant keyphrase extraction, which can
be broadly categorized into three cases. The first
and simplest case is complete repetition, which can
be easily resolved through a straightforward de-
duplication process. The second case involves alias
repetition, which can be effectively managed by in-
troducing external knowledge into the process. The
third case represents the most problematic scenario,
known as over-generation errors, as discussed pre-
viously (Bahuleyan and El Asri, 2020). As men-
tioned before, over-generation errors occur when a
model correctly predicts a candidate as a keyphrase
because it contains a word that frequently appears
in its corresponding document but at the same time
erroneously outputs other candidates as keyphrases
because they contain the same word.
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Recall that for many keyphrase extraction mod-
els, it is not easy to reject a non-keyphrase contain-
ing a word with a high term frequency, e.g., many
models score a candidate keyphrase by summing
the score of each associated word. Generally, to be
more concrete, consider the source document in Ta-
ble 1, where the ground-truth keyphrases are under-
lined. As we can see, the word "information" has a
significant presence in the document. Many exist-
ing keyphrase extraction systems not only correctly
predict "information extraction" as a keyphrase but
also erroneously predict "stated information" as a
keyphrase, yielding over-generation errors.

Unsupervised keyphrase extraction models pri-
marily consist of two steps: candidate keyphrase
generation and keyphrase importance estimation
(Song et al., 2023d,c). Candidate keyphrase gener-
ation involves extracting a list of words or phrases
that can potentially serve as keyphrases using spe-
cific heuristics (Wan and Xiao, 2008a; Song et al.,
2021b, 2022a, 2023f). Keyphrase importance esti-
mation, on the other hand, is responsible for esti-
mating the importance scores of these candidates
and determining which of them are indeed correct
keyphrases. Recently, pre-trained language mod-
els such as ELMo, BERT, and RoBERTa (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2019)
have emerged as pivotal technologies, achieving re-
markable advancements in various natural language
tasks. Concretely, these models build upon the
concept of word embeddings by learning contex-
tual representations from extensive corpora adopt-
ing a language modeling objective. Leveraging
these advancements, many contemporary unsuper-
vised keyphrase extraction models (Liang et al.,
2021; Song et al., 2022c) incorporate pre-trained
language models as the embedding layer and cal-
culate the semantic relatedness between candidates
and the document to determine their importance
scores. Despite the significant progress made by
these methods, addressing the over-generation er-
rors in the keyphrase extraction task is essential.

In this paper, we propose a heterogeneous cen-
trality detection model for unsupervised keyphrase
extraction (CentralityRank) to mitigate the issue
of over-generation errors. Specifically, Centrali-
tyRank extracts keyphrases within the source doc-
ument by detecting implicit and explicit centrality
within a heterogeneous graph. Instead of construct-
ing graphs solely based on phrase-level nodes for
modeling explicit interactions between keyphrases,

we introduce additional semantic units as nodes
(e.g., word and document) in the graph to model the
implicit interactions among candidate keyphrases.
These additional nodes serve as intermediaries, en-
hancing the implicit relationships between can-
didate keyphrases. Essentially, each additional
node represents a unique relationship between the
candidate keyphrases it encompasses. During in-
teractions within the heterogeneous graph, these
additional nodes are considered alongside phrase
nodes to estimate the importance of each candidate
keyphrase. While more advanced semantic units
like entities or topics can be utilized, this paper em-
ploys words, phrases, and documents as semantic
units for simplicity. The advantages of constructing
a heterogeneous graph include (a) enabling differ-
ent candidate phrases to interact with each other
explicitly, (b) utilizing contextual information at
varying granularities to estimate the importance of
each candidate keyphrase accurately, (c) incorpo-
rating additional types of semantic nodes easily,
such as topics and entities, and (d) enhancing the
importance of each candidate keyphrase by updat-
ing within a heterogeneous graph with graph-based
models. Furthermore, to enhance the robustness of
our model, a novel adaptive boundary-aware regu-
larization is proposed to optimize the importance
scores of candidate keyphrases via the position in-
formation. Extensive experiments demonstrate that
CentralityRank consistently outperforms recent un-
supervised keyphrase extraction baselines across
benchmark datasets. The main contributions of this
paper can be summarized as follows:

• We fully model contextual information within
a heterogeneous graph, which captures rela-
tionships among candidate keyphrases. This
graph comprises not only phrase nodes but
also other semantic units. Although we use
word, phrase, and document nodes in this pa-
per, more superior semantic units (e.g., topics
and entities) can be incorporated.

• CentralityRank is adaptable by adding differ-
ent nodes, such as seamlessly transitioning
from single-document keyphrase extraction to
multi-document keyphrase extraction.

• CentralityRank consistently outperforms all
existing baselines across three benchmark
keyphrase extraction datasets. Ablation stud-
ies and qualitative analysis show the effective-
ness of our proposed model.
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Figure 1: The overall architecture of CentralityRank model.

2 Methodology

2.1 Overview

The overall architecture of our model is depicted in
Figure 1. Specifically, CentralityRank comprises
two primary steps: candidate keyphrase genera-
tion and keyphrase importance estimation. In the
first step, we leverage natural language linguistics
to generate candidate keyphrases from the input
document. The second step involves embedding
candidate keyphrases and their corresponding doc-
ument into a low-dimensional semantic space using
a pre-trained language model BERT (Devlin et al.,
2019) and then estimates and ranks the importance
of each candidate keyphrase by detecting heteroge-
neous centrality, ultimately leading to the extrac-
tion of the top-ranked candidates as keyphrases.
We present more details of these components in the
following sections.

2.2 Candidate Keyphrase Generation

As the primary contribution of CentralityRank lies
in proposing an importance estimation model, we
have employed the same candidate keyphrase gen-
eration strategy as the unsupervised keyphrase ex-
traction baselines (Liang et al., 2021; Song et al.,
2023d) for a fair comparison. Consequently, we
rely on Stanford CoreNLP Tools1 for tasks such
as tokenization, part-of-speech tagging, and noun
phrase chunking. To generate candidates, we utilize
a regular expression, < NN.|JJ >< NN.∗ >,
designed to extract noun phrases as candidates
through the Python package NLTK2.

1https://stanfordnlp.github.io/CoreNLP/
2https://github.com/nltk

2.3 Heterogeneous Centrality Detection

Typically, a keyphrase extraction model is expected
to produce a ranked list of candidate keyphrases,
necessitating the ranking of generated candidate
keyphrases based on their relevance score to the
input document. Existing studies (Bennani-Smires
et al., 2018; Sun et al., 2020; Ding and Luo, 2021;
Song et al., 2023d; Liang et al., 2021; Song et al.,
2023c) suggest that implicit interactions (e.g., uti-
lizing contextual information of the input docu-
ment as an intermediary) and explicit interactions
(e.g., employing the pairwise ranking strategy) con-
tribute to the importance estimation of each candi-
date keyphrase.

To concurrently model implicit and explicit in-
teractions between all candidate keyphrases, we
construct a heterogeneous graph based on the input
document. This graph is formed by assessing the
relevance between different levels of information
granularity (including word, phrase, and document)
concerning candidate keyphrases. This approach
enables us to capture implicit and explicit centrali-
ties associated with each candidate keyphrase. Ulti-
mately, we aggregate multiple centralities to derive
the importance scores of candidate keyphrases for
ranking and extracting keyphrases. Furthermore,
we introduce a position encoding approach and
propose a novel adaptive boundary-aware regular-
ization to optimize the discourse-aware importance
scores of candidate keyphrases.

2.3.1 Text Representation

After obtaining all candidate keyphrases P =
{p1, ..., pn, ..., pN} of the input document D, we
adopt the pre-trained language model BERT (De-
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vlin et al., 2019) as the embedding layer to obtain
word representationsH for the input document D
as follows,

H = [h>1 , ...,h
>
m, ...,h

>
M ]>

= BERT({w1, ..., wm, ..., wM}),
(1)

where hm indicates the representation of the m-
th word in the input document. Subsequently, we
utilize word representations to derive candidate
keyphrase representations. Given the nature of the
keyphrase extraction task, it is typically desired
that the extracted keyphrases can effectively encap-
sulate the central semantics of the input document
(Song et al., 2023b). To achieve this, we obtain can-
didate keyphrase representations by utilizing the
max pooling operation, which is a straightforward
and efficient parameter-free approach. Then, the
representation of the i-th candidate keyphrase pi
can be calculated as follows,

hpi = Max-Pooling({h1, ...,hk, ...,h|pi|}), (2)

where hpi indicates the representation of the i-th
candidate keyphrase and |pi| indicates the length
of the i-th candidate keyphrase pi. Specifically,
hk represents the word in the document associated
with the candidate keyphrase pi. At the same time,
we use the same method to capture the central se-
mantics of the document hd.

2.3.2 Explicit Centrality Detection
Calculating the inter-phrase relevance is a crucial
aspect of keyphrase extraction and has been the fo-
cus of numerous existing approaches. One intuitive
approach is representing these relations within a
graph, offering a more intricate structure for cap-
turing inter-phrase relationships. Moreover, the
importance score of a candidate keyphrase is fre-
quently determined by its degree of relevance to
other candidate keyphrases within the document.
To explicitly model these inter-phrase relationships,
we begin by computing the relevance between the i-
th and j-th candidates to initialize the edges within
the graph,

ei,j =
hpih

>
pj√
d

. (3)

Here, d represents the dimension of hpi , and
√
d is

a scalar. While other similarity measurement meth-
ods, such as cosine similarity, can be considered,
empirical observations indicate that the straight-
forward dot-product tends to yield superior results.

Then, the explicit centrality of the i-th candidate
keyphrase can be computed as follows:

cpi =

N−1∑

j=1,j 6=i

(ei,j − δi), (4)

δi =
1

N − 1

N−1∑

j=1,j 6=i

ei,j . (5)

Here, cpi represents the explicit centrality of the
i-th candidate keyphrase, and δi denotes the av-
erage centrality of the i-th candidate keyphrase.
In practice, we consider δi as a de-noising factor,
effectively filtering out edges with low relevance
between candidate keyphrases within the heteroge-
neous graph.

2.3.3 Implicit Centrality Detection
Intuitively, a candidate keyphrase that receives high
scores for informativeness, indicating its ability to
capture the central idea of the input document in
which it appears, is more likely to be considered a
keyphrase (Tomokiyo and Hurst, 2003; Song et al.,
2023b). Consequently, we leverage words and their
corresponding document nodes as intermediaries
between candidate keyphrases, effectively enhanc-
ing the implicit inter-phrase relationships. To cap-
ture the inter-phrase relevance implicitly, we com-
mence by computing the relevance between the i-th
candidate and words to establish the initial edges
within the graph,

ei,m = cosine(hpi ,hm), (6)

where ei,m represents the relevance between the
i-th candidate keyphrase and the m-th word in the
input document (establishing the edges within the
graph). Next, we can calculate the implicit central-
ity of the i-th candidate phrase as follows:

cwi =
M∑

m=1

max(0, ei,m −
1

M

M∑

m=1

ei,m), (7)

where ci indicates the implicit centrality of the i-th
candidate keyphrase. Here, 1

M

∑M
m=1 ei,m denotes

the de-noise coefficient, which is used to avoid
the deviation of centrality caused by meaningless
words in the document.

To identify the most relevant keyphrases, we
leverage the entire information in the input doc-
ument. This information serves as an intermedi-
ary for computing the relevance of each candidate
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keyphrase, which is used to initialize the edges con-
necting candidate keyphrases to the whole input
document:

ei =
1

||hd − hpi ||1
, (8)

where || · ||1 represents the Manhattan Distance.
Given that each data pair in all existing keyphrase
extraction datasets is centered around a single doc-
ument and its associated keyphrases, we can di-
rectly utilize the phrase-document relevance as the
document-level implicit centrality. Furthermore,
our graph is highly adaptable and can naturally
extend from single-document to multi-document
scenarios by adding document nodes. Ultimately,
we aggregate the implicit centrality as follows:

cdi = cwi � ei, (9)

where cdi denotes the final implicitly centrality of
the i-th candidate keyphrase.

2.3.4 Phrase Position Encoding
In various specialized domain text documents, such
as scientific and news articles, keyphrases often
tend to appear prominently at the beginning or front
of the document (Florescu and Caragea, 2017a,b;
Liang et al., 2021). Therefore, we incorporate posi-
tional information as a regularization mechanism to
penalize centralities of candidate keyphrases. And
it can be calculated as follows,

ρi =
e

1
i

∑N
i=1 e

1
i

, (10)

where ρi is the position regularization of the i-th
candidate keyphrase. By employing the aforemen-
tioned regularization technique, we can elevate the
importance scores of candidate keyphrases that are
positioned at the beginning of the document.

2.3.5 Adaptive Boundary-Aware
Regularization

Traditional centrality computation assumes that the
contribution of the importance score of each can-
didate keyphrase in the input document is not in-
fluenced by their relative position, and the similari-
ties between the two graph nodes are symmetrical.
However, human intuition suggests that phrases lo-
cated at the beginning or end of a document should
carry greater importance than others. Therefore,
in this paper, we introduce an adaptive boundary-
aware regularization to enhance explicit centrality.

Accordingly, Equation 4 can be reformulated as
follows,

ĉpi =
∑

ABAR(i)<ABAR(j)

(
hpih

>
pj√
d
− δi) +

∑

ABAR(i)≥ABAR(j)

λ(
hpih

>
pj√
d
− δi).

(11)

where λ is a weighting factor. Here, ABAR(·) indi-
cates the proposed adaptive boundary-aware func-
tion, which can be formulated as

ABAR(i) = min(i,

√
N

logN
(N − i)). (12)

Here, N indicates the length of the input document.

2.3.6 Discourse-Aware Importance Score
Upon acquiring the explicit and implicit centrality
scores for each candidate keyphrase, we consoli-
date them into a single importance score as follows,

ci = cdi · ĉpi · ρi (13)

where ci indicates the discourse-aware importance
score of the i-th candidate keyphrase. In the end,
we rank all candidate keyphrases with their impor-
tance scores and select top-ranked K candidates as
keyphrases of the input document.

3 Experiments

We conduct experiments to demonstrate the effec-
tiveness of our proposed CentralityRank model. In
this section, we introduce our experimental settings,
including datasets, evaluation metrics, baselines,
and implementation details.

3.1 Datasets
In this paper, we carry out experiments on three
benchmark keyphrase extraction datasets, which
includes DUC2001 (Wan and Xiao, 2008b), In-
spec (Hulth, 2003), and SemEval2010 (Kim et al.,
2010). The DUC2001 dataset (Wan and Xiao,
2008b) is a collection of 308 long length news arti-
cles with average 828.4 tokens. The Inspec dataset
(Hulth, 2003) contains 2,000 short scientific ab-
stracts. Specifically, similar to the previous work
(Sun et al., 2020; Liang et al., 2021), we use 500
test documents and the version of uncontrolled an-
notated keyphrases as the ground-truth label. The
SemEval2010 dataset (Kim et al., 2010) contains
ACM full length papers. Consistent with previous
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Model
DUC2001 Inspec SemEval2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistical Models
TF-IDF (Jones, 2004) 9.21 10.63 11.06 11.28 13.88 13.83 2.81 3.48 3.91
YAKE (Campos et al., 2018) 12.27 14.37 14.76 18.08 19.62 20.11 11.76 14.4 15.19

Graph-based Models
TextRank (Mihalcea and Tarau, 2004) 11.80 18.28 20.22 27.04 25.08 36.65 3.80 5.38 7.65
SingleRank (Wan and Xiao, 2008b) 20.43 25.59 25.70 27.79 34.46 36.05 5.90 9.02 10.58
TopicRank (Bougouin et al., 2013) 21.56 23.12 20.87 25.38 28.46 29.49 12.12 12.90 13.54
PositionRank (Florescu and Caragea, 2017b) 23.35 28.57 28.60 28.12 32.87 33.32 9.84 13.34 14.33
MultipartiteRank (Boudin, 2018) 23.20 25.00 25.24 25.96 29.57 30.85 12.13 13.79 14.92

Embedding-based Models
EmbedRank (Bennani-Smires et al., 2018) 24.02 28.12 28.82 31.51 37.94 37.96 3.02 5.08 7.23
KeyGames (Saxena et al., 2020) 24.42 28.28 29.77 32.12 40.48 40.94 11.93 14.35 14.62
SIFRank (Sun et al., 2020) 30.88 33.37 32.24 28.49 36.77 38.82 - - -
JointGL (Liang et al., 2021) 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72
MDERank (Zhang et al., 2022) 23.31 26.65 26.42 27.85 34.36 36.40 13.05 18.27 20.35
HGUKE (Song et al., 2023d) 31.31 37.24 38.31 34.18 41.05 42.16 14.07 20.52 23.10

CentralityRank 31.63 37.77 38.77 32.99 40.93 41.73 15.51 21.39 23.83

Table 2: Performance on DUC2001, Inspec and SemEval2010 test sets. The best results are in bold.

studies (Song et al., 2023d; Liang et al., 2021), we
leverage the 100 test documents and the combined
set of author-and reader-annotated keyphrases.

3.2 Evaluation Metrics

To evaluate the quality of extracted keyphrases,
specifically their relevance to the source document,
we compare the extracted set of keyphrases with
the keyphrases in their corresponding ground-truth
data. Following the previous studies (Liang et al.,
2021; Song et al., 2023d,c; Ding and Luo, 2021;
Bennani-Smires et al., 2018; Saxena et al., 2020;
Sun et al., 2020), we evaluate the performance
of our model using the F1-measure at the top-K
keyphrases (F1@K) and apply stemming (using the
Porter Stemmer3) to both the extracted keyphrases
and the ground truth. More specifically, we present
the F1@5, F1@10, and F1@15 evaluation scores
for our model and baselines across three benchmark
keyphrase extraction datasets.

3.3 Baselines

We compare our model with the recent state-of-
the-art unsupervised keyphrase extraction mod-
els, which contain statistics-based, graph-based,
and embedding-based models. The statistics-based
ranking models include TF-IDF (Jones, 2004) and
YAKE (Campos et al., 2018). The graph-based
ranking models include TextRank (Mihalcea and
Tarau, 2004), SingleRank (Wan and Xiao, 2008b),
TopicRank (Bougouin et al., 2013), PositionRank

3https://tartarus.org/martin/PorterStemmer/

(Florescu and Caragea, 2017b), and MultipartiteR-
ank (Boudin, 2018). The embedding-based unsu-
pervised keyphrase extraction models:

• EmbedRank (Bennani-Smires et al., 2018)
ranks candidate keyphrases by directly mea-
suring the semantic similarity between candi-
date keyphrases and the input document.

• KeyGames (Saxena et al., 2020) introduces
game theoretic into unsupervised keyphrase
extraction to address the over-generation issue
and extract better keyphrases.

• SIFRank (Sun et al., 2020) improves the tradi-
tional embeddings (e.g., word2vec) from Em-
bedRank with a pre-trained language model
as the external knowledge.

• MDERank (Zhang et al., 2022) designs a
document-level candidate keyphrase represen-
tations and optimize the whole model by a
self-supervised learning framework.

• JointGL (Liang et al., 2021) proposes a
BERT-based unsupervised keyphrase extrac-
tion approach which jointly models global and
local context information to estimate the im-
portance scores of candidate keyphrases.

• HGUKE (Song et al., 2023d) proposes to
model the phrase-document relevance via the
highlight of the document instead of the entire
document.

In addition, the results of the selected baselines are
reported in their corresponding papers.
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Figure 3: Performance with different λ of our model CentralityRank on three benchmark datasets.

3.4 Implementation Details

We adopt the pre-trained language model BERT4

(Devlin et al., 2019) as the backbone of our model,
initialized from their pre-trained weights. The max-
imum document length is 512 due to BERT limi-
tations, and documents are truncated to this size.
The dimension of BERT-based representation is set
to 768. For all datasets, we use the same hyper-
parameter, i.e., λ = 0.9.

4 Results and Analysis

4.1 Overall Performance

Table 2 presents the results obtained from baseline
models and our CentralityRank model across three
benchmark datasets (DUC2001, Inspec, and Se-
mEval2010). In summary, the results highlight the
significant superiority of CentralityRank over re-
cent state-of-the-art unsupervised keyphrase extrac-
tion baselines. More specifically, our model demon-
strates substantial improvements on all evalua-
tion metrics compared to traditional unsupervised
keyphrase extraction models, including statistical-

4https://huggingface.co/transformers/index.html

based and graph-based approaches. This outcome
is unsurprising as embedding-based methods lever-
age pre-trained language models as their founda-
tion, which yields superior representations for ac-
curately estimating the importance scores of candi-
date keyphrases. Furthermore, our model performs
significantly better on all evaluation metrics than
the embedding-based baseline models, especially
for the long document dataset (SemEval2010).
This emphasizes the effectiveness of detecting im-
plicit and explicit centrality in estimating the impor-
tance of candidate keyphrases for fully modeling
contextual information of the input document to
enhance the performance.

4.2 Ablation Test
In this section, several ablation experiments are
conducted to analyze the effect of different com-
ponents in CentralityRank. The ablation experi-
ments on three datasets are shown in Figure 2. In
total, four variants of the proposed model (Cen-
tralityRank, CentralityRank w/o Implicit Centrality
Detection, CentralityRank w/o Explicit Centrality
Detection, and CentralityRank w/o ABAR) were in-
volved in the ablation experiment. Concretely, Cen-
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Part of the Input Document:
Some of this year’s drought in the Midwest may have been caused by ocean temperature abnormalities near the equator in the Pacific Ocean, according to a
new computer study reported Thursday. Such droughts could be anticipated if the temperature abnormalities turn out to be predictable, one of the authors
said in the report appearing in Friday’s issue of Science magazine. The authors are Kevin E. Trenberth and Grant W. Branstator of the National Center for
Atmospheric Research in Boulder, ... They noted that when asked what caused the drought that hit much of North America in 1988, meteorologists often
reply “ the jet stream was displaced northward of its usual position so that storms, which tend to track along the path of the jet stream, were similarly displaced
northward.” “ Such an answer is, however, just a brief description of the weather patterns associated with the drought but does not get at the cause. ... ... In this
period, Pacific Ocean temperatures ranged up to 5.4 degrees ... ...

Target Keyphrase:
(1) drought; (2) Midwest; (3) ocean temperature abnormalities; (4) new computer study; (5) temperature abnormalities; (6) Atmospheric Research; (7)
weather patterns; (8) Pacific Ocean temperatures;

CentralityRank:
Top 1-5: (1) ocean temperature abnormalities; (2) weather patterns; (3) jet stream; (4) temperature pattern; (5) temperature abnormalities;
Top 6-10: (6) low pressure centers; (7) Pacific Ocean; (8) low pressure systems; (9) Pacific Ocean temperatures; (10) below-normal equatorial temperature;
Top 11-15: (11) drought; (12) surface temperatures; (13) North America; (14) global atmosphere; (15) new computer study;

Table 3: Example of keyphrase extraction results on the Inspec (contains part of the input document and target
keyphrases). Phrases in orange and bold are keyphrases predicted by our models. Top5, Top10, and Top15 extracted
keyphrases are provided by our models without repetitions.

tralityRank w/o ABAR indicates the model without
the adaptive boundary-aware regularization.

Based on the results illustrated in Figure 2, it
becomes evident that both the implicit and ex-
plicit centrality detection modules contribute sig-
nificantly to enhancing model performance in most
cases. This observation reinforces the importance
of assessing the importance scores of candidate
keyphrases from multiple perspectives. Moreover,
the results also illustrate that employing intermedi-
aries to influence the relationship modeling among
candidate keyphrases within a graph, consequently
affecting the estimation of importance, represents
an effective strategy.

4.3 Sensitivity of Hyper-Parameter λ
In this section, we analyze the hyper-parameter
λ and present the results for each dataset in Fig-
ure 3. Our proposed model, CentralityRank, deliv-
ers optimal performance when λ is set to 0.9. More
specifically, we attribute this trend to the adaptive
boundary-aware regularization, which elevates the
significance of candidate keyphrases that initially
appear in the document while diminishing the im-
portance of identical keyphrases that surface later,
indirectly mitigating over-generation errors.

4.4 Case Study
In this section, we randomly sample a document
from the DUC2001 dataset to examine the ex-
tracted keyphrases generated by our CentralityRank
model. As seen in the results presented in Ta-
ble 3, the keyphrases extracted by CentralityRank
not only encompass commonly occurring words
within the document but also include those that
appear only once. This observation shows the ef-
fectiveness of our importance estimation approach,

achieved through detecting both implicit and ex-
plicit centrality within a heterogeneous graph of
the document. This further helps mitigate the issue
of over-generating keyphrases during extraction.

Inspec DUC2001 SemEval201020

25

30

35

40

45

50

Ed
itD

ist
@

15

JointGL
CentralityRank
Ground Truth

Figure 4: Redundancy of extraction results. Concretely,
EditDist@15 is used to measure the redundancy among
the top 15 extracted keyphrases via the EditDist metric.

4.5 Redundancy Evaluation

To evaluate redundancy, we introduce an evaluation
metric inspired by previous work (Bahuleyan and
El Asri, 2020; Song et al., 2023e,c) called EditDist.
We employ the fuzzywuzzy library5, which provides
a score ranging from 0 to 100, where a score of
100 signifies an exact match between keyphrases.
Using this metric, we compute the pairwise Leven-
shtein Distance between the extracted keyphrases.

Figure 4 and Figure 5 illustrate the redundancy
in the extraction results between our model and the
baseline model JointGL. The results show that our
approach significantly reduces the redundancy of
the extracted keyphrases, thereby achieving higher-
quality keyphrases.

5https://github.com/seatgeek/fuzzywuzzy
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Figure 5: The ratio of redundancy contained in extracted keyphrases at different lengths. Specifically, the Edit-
Dist@15 evaluation metric calculates the total redundancy.

Furthermore, it is notable that our model Cen-
tralityRank substantially reduces redundancy in the
keyphrase extraction results of the long document
dataset, i.e., the SemEval2010 dataset.

5 Related Work

Most of the existing keyphrase extraction models
can be broadly categorized into four main groups:
statistics-based, topic-based, graph-based, and
embedding-based models. Statistics-based models
(Salton and Buckley, 1988; Witten et al., 1999) gen-
erally identify keyphrases by estimating the impor-
tance of candidate keyphrases through various sta-
tistical features. These features may include word
frequency, phrase position, linguistic characteris-
tics of natural language, and more. Topic-based
models (Liu et al., 2009, 2010) typically leverage
topic information to determine whether a candidate
keyphrase qualifies as a keyphrase. They often in-
volve methods that consider the topical relevance of
keyphrases to the document. Graph-based models
(Mihalcea and Tarau, 2004; Grineva et al., 2009)
represent the input document as a graph, where
nodes correspond to words or phrases, and edges
indicate relationships between them. Candidate
keyphrases are ranked based on graph-based mea-
sures such as centrality or similarity. Embedding-
based models (Bennani-Smires et al., 2018; Song
et al., 2023d) make use of pre-trained word em-
beddings to capture semantic representations of
keyphrases. Then, they calculate the importance
of each candidate keyphrase by its representation.
These categories encompass a wide range of tech-
niques and approaches for keyphrase extraction,
each with its strengths and limitations. Researchers
in the field often choose a specific type or com-
bine elements from multiple categories to develop
effective keyphrase extraction models.

Unlike the existing models, to address the over-
generation error, our model selects keyphrases with

less redundancy by detecting implicit and explicit
centrality within a heterogeneous graph to filter
noises in the input document.

6 Conclusion

In this paper, we propose a heterogeneous centrality
detection model, which incorporates implicit and
explicit centrality to identify and select keyphrases
in the source document. Additionally, we leverage
the position information of candidate keyphrases to
optimize the discourse-aware importance score of
each candidate keyphrase. Our experiments yield
compelling results that highlight the superiority
of our model when compared to existing SOTA
keyphrase extraction baselines. We validate our
model on three benchmark datasets, demonstrating
its robust performance and effectiveness in improv-
ing keyphrase extraction quality.

7 Limitations

There are still some limitations to our work. In the
future, we plan to investigate enhancing the quality
of keyphrase representations and improving the
accuracy of importance estimation to enhance the
performance of keyphrase extraction. One possible
way is to leverage task-specific (i.e., the keyphrase
extraction task) language models (Kulkarni et al.,
2022) to obtain better representations.
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