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Abstract

Medical report generation, focusing on auto-
matically generating accurate clinical findings
from medical images, is an important medical
artificial intelligence task. It reduces the work-
load of physicians in writing reports. Many of
the current methods depend heavily on labeled
datasets that include image-report pairs, but
such datasets labeled by physicians are hard to
acquire in clinical practice. In this paper, we
introduce a self-training framework named RE-
MOTE (i.e., Revisiting sElf-training for Med-
ical repOrT gEneration) to exploit the unla-
beled medical images and a MedCLIPScore
to augment a small-scale dataset for training
the medical report generation model. Experi-
ments conducted on the MIMIC-CXR bench-
mark dataset and a COVID-19 dataset demon-
strate that, our REMOTE framework, using
only 1% labeled training data, achieves compet-
itive performance with previous methods that
are trained on entire training data.

1 Introduction

Generating medical reports automatically involves
producing clinical descriptions based on the input
visual medical images (Jing et al., 2018, 2019; Li
et al., 2018; Liu et al., 2021b). This is similar to
the task of image captioning (Xu et al., 2015; Chen
et al., 2015), which aims to generate visual descrip-
tions to describe the input images. Therefore, based
on the benchmark dataset MIMIC-CXR (Johnson
et al., 2019), inspired by the success of image cap-
tioning, various state-of-the-art data-driven mod-
els, especially those based on the encoder-decoder
structure (Chen et al., 2020; Liu et al., 2021b; Wang
et al., 2022a), have achieved significant advance-
ments. However, medical data labeling requires
specialized expertise from physicians and also in-
volves privacy concerns. Therefore, acquiring med-
ical report generation datasets is time-consuming
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and costly (Liu et al., 2021c). As a result, when
compared to datasets used for general image cap-
tioning datasets such as Conceptual Captions (Sori-
cut et al., 2018), the size of the medical dataset
MIMIC-CXR is relatively small. This size limita-
tion becomes a challenge when dealing with novel
diseases like COVID-19, where collecting and la-
beling adequate training data promptly is difficult.
It hinders the application of existing medical report
generation models in addressing novel diseases to
alleviate the workload of physicians efficiently.

Considering that there are a lot of public image-
only datasets, e.g., CheXpert (Irvin et al., 2019),
RSNA Pneumonia (Shih et al., 2019), COVID im-
ages (Rahman et al., 2021), in the literature. To
this end, we propose a self-training framework RE-
MOTE, which enhances the performance of the
medical report generation model by simultaneously
utilizing high-quality paired image-report datasets
and image-only datasets. In implementation, we
adopt the Noisy Student self-training framework
(Xie et al., 2020; He et al., 2020) as the basis to
build our REMOTE for medical report generation,
which consists of a “teacher” model and a “student”
model. It begins by training a “teacher” model on
the high-quality annotated image-report pairs, e.g.,
MIMIC-CXR dataset (Johnson et al., 2019). Sub-
sequently, the teacher model is used to generate
pseudo-reports for medical images in the image-
only dataset without annotated reports. We then
employ MedCLIPScore to score each generated
pseudo image-report pair and filter out low-scoring
pseudo image-report pairs. Finally, we train a “stu-
dent” model on both the annotated high-quality
image-report pairs and the generated pseudo image-
report pairs. In the next training step, we consider
the “student” model as the new “teacher” model,
and by repeating the above steps, we can generate
new pseudo image-report pairs and train new “stu-
dent” models. Through iterating these steps, we
ultimately obtain an accurate and robust medical

16443



report generation model.
It is worth noting that, while the self-training

framework has been explored in uni-modal tasks
such as image classification (Xie et al., 2020) and
machine translation (He et al., 2020), self-training
in medical report generation has not been well ex-
plored. This is because medical report generation
is a multi-modal medical task, incorporating dispar-
ities between the visual and the textual modalities.
Thus, inspired by the great success of CLIP (Rad-
ford et al., 2021), which is trained to align image
and text modalities, we follow the CLIPScore (Hes-
sel et al., 2021) to construct the MedCLIPScore to
obtain a high-quality pseudo image-report pairs. In
detail, we train the MedCLIP (Wang et al., 2022b)
on the MIMIC-CXR dataset, and use it as Med-
CLIPScore to boost the performance and robust-
ness of the medical report generation model.

Overall, the main contributions of this paper are
as follows:

• Based on the noisy student self-training frame-
work, we propose a self-training framework
REMOTE for automated medical report gen-
eration with limited labeled training data.

• Our proposed method includes three com-
ponents: “teacher” model, MedCLIPScore,
and “student” model. The “teacher” model
and MedCLIPScore focus on obtaining high-
quality pseudo image-report pairs from image-
only datasets, which are used to obtain a ro-
bust “student” model. By taking the “student”
model as the new “teacher” model and iter-
ating the above steps, REMOTE can achieve
strong performances with limited labeled data.

• Experiments on two datasets show that our
method can achieve competitive results with
existing fully-supervised methods with only
1% labeled training data.

2 Approach

In this section, we will introduce the core three
components of our approach, i.e., the “teacher”
model, MedCLIPScore, and the “student” model.

2.1 Formulation
The goal of medical report generation is to generate
an accurate medical report r given the input med-
ical image i (Jing et al., 2019; Liu et al., 2021c),
which can be formulated as:

Medical Report Generation : i → r, (1)

The encoder-decoder framework has been widely
used in medical report generation, in which the
image encoder is designed to extract image embed-
dings of input medical image i and the text decoder
is designed to generate the target report r.

2.2 “Teacher” Model
In this study, we employ the ResNet-50 (He et al.,
2016) and Transformer (Vaswani et al., 2017) to
implement the image encoder and the text decoder
of the “teacher” model, respectively. To train the
model, we adopt the high-quality and widely-used
medical report generation dataset MIMIC-CXR
dataset (Johnson et al., 2019). Given the ground
truth report r = {y1, y2, . . . , yN} labeled by physi-
cians for the input image i, we can train the model
by minimizing the cross-entropy (CE) loss, defined
as follows:

LCE(θ) = −
N∑

i=1

log (pθ (yi | y1:i−1; i)) (2)

However, image-report pairs labeled by physicians
are hard to obtain in the real world. In this study,
we propose to adopt the medical images without
labeled reports from the image-only datasets to
boost the performance.

2.3 MedCLIPScore
We first adopt the trained “teacher” model to gen-
erate the reports for the medical images from the
image-only dataset, e.g., CheXpert (Irvin et al.,
2019). Given the input image i∗, we adopt the
beam-search decoding with beam size B to gen-
erate B medical reports {r∗1, r∗2, . . . , r∗B}. In this
way, we can obtain B pseudo pairs of image and
report, i.e., {(i∗, r∗1), (i∗, r∗2), . . . , (i∗, r∗B)}.

Next, to obtain high-quality pseudo image-report
pairs, MedCLIPScore is introduced. We further
pre-train the MedCLIP (Wang et al., 2022b; Zhang
et al., 2020) on the MIMIC-CXR dataset (Johnson
et al., 2019) using Image-Text Matching (ITM)
pre-training objective, which aims to distinguish
whether an image-report pair is a match. In detail,
positive image-report pairs and randomly sampled
negative pairs are fed into the MedCLIP and the
concatenation of textual representation of report R
and visual representation of image I is processed
by a softmax layer to output a binary probability
pITM. Therefore, the ITM objective is defined as:

LITM = −
∑

(I,R)

log pITM (YITM | I,R) (3)
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Methods Ratio of
Labeled Data

MIMIC-CXR COVID-19
BLEU-4 METEOR ROUGE-L CIDEr BLEU-4 METEOR ROUGE-L CIDEr

AdaAtt (Lu et al., 2017) 100% 0.088 0.118 0.266 0.084 0.054 0.084 0.136 0.061
BUTD (Anderson et al., 2018) 100% 0.074 - 0.250 0.073 0.066 0.102 0.159 0.060
Trans. (Vaswani et al., 2017) 100% 0.090 0.125 0.265 - 0.071 0.105 0.176 0.069
R2Gen (Chen et al., 2020) 100% 0.103 0.142 0.277 - 0.078 0.114 0.198 0.135
PPKED (Liu et al., 2021b) 100% 0.106 0.149 0.284 0.237 - - - -
DeltaNet (Wu et al., 2022) 100% 0.114 - 0.277 0.281 - - - -
XProNet (Wang et al., 2022a) 100% 0.105 0.138 0.279 - 0.088 0.120 0.213 0.152

REMOTE 1% 0.115 0.147 0.289 0.266 0.102 0.135 0.254 0.201
100% 0.125 0.157 0.304 0.338 0.113 0.146 0.278 0.269

REMOTE∗ 100% 0.182 0.265 0.412 0.497 0.203 0.266 0.391 0.407

Table 1: Results of our proposed approach on two datasets. Existing works are trained on 100% labeled image-
report pairs of the downstream dataset. 1% denotes our method is trained on 1% labeled image-report pairs plus
90% remaining image-only data (without reports) of the downstream dataset. We calculate P-values between the
performances of our REMOTE (100%) and the best-performing baseline. ∗ denotes we adopt the external public
unlabeled image-only datasets for training.

After obtaining the cross-modal model Med-
CLIP pre-trained on MIMIC-CXR, we follow
CLIPScore (Hessel et al., 2021) to obtain Med-
CLIPScore, which can measure the match between
the image and pseudo report. Given a pseudo
image-report pair (i∗, r∗), we first adopt the Med-
CLIP to extract the visual representation I∗ and tex-
tual representation R∗. Then, to assess the quality
of the generated pseudo image-report pair (i∗, r∗),
following CLIPScore (Hessel et al., 2021), Med-
CLIPScore is defined as:

MedCLIPSore (I∗, R∗) = w ∗max (⟨I∗, R∗⟩, 0) (4)

where w attempts to stretch the range of the score
distribution to [0, 1] (Hessel et al., 2021), and the
⟨·, ·⟩ denotes the cosine similarity. At last, we set
a threshold τ and filter out low-scoring pseudo
image-report pairs with MedCLIPSore lower than
τ . In this way, we can obtain high-quality pseudo
image-report pairs to boost the medical report gen-
eration model.

2.4 “Student” Model

We further combine the generated pseudo image-
report pairs and original human-labeled image-
report pairs to train the “student” model by mini-
mizing the cross-entropy loss. During the training
process, for each training batch, the ratio of human-
labeled and generated pseudo image-report pairs
is 1:M (M=6). At last, after obtaining the “stu-
dent” model, we take the trained “student” model
as the new “teacher” model to generate new pseudo
image-report pairs. The REMOTE stops training
until the performance no longer increases. As a
result, REMOTE can achieve encouraging results
with limited labeled data.

3 Experiments

We first describe a benchmark dataset, our built
dataset, the metrics, and the settings used for evalu-
ation. Then, we present the results of our approach.

3.1 Datasets, Metrics, and Settings
3.1.1 Datasets
We conduct experiments on the widely-used bench-
mark dataset MIMIC-CXR (Johnson et al., 2019)
and a built COVID-19 dataset, where the for-
mer consists of 377,110 chest X-ray images and
227,835 radiology reports, the latter includes 2,025
COVID-19 cases (including both images and re-
ports). For the MIMIC-CXR dataset, we follow the
official splits to report our results. The COVID-19
dataset contains 980 COVID-19 records and 1,045
non-COVID-19 records from 1,877 patients, with
a total of 2,025 records. Each record is composed
of the X-ray image and the corresponding medi-
cal report. The max, median, and mean length of
the reports are 82, 35, and 39 words, respectively.
We randomly split the dataset into 70%-10%-20%
training-validation-testing splits.

3.1.2 Metrics
To access the performance of medical report gen-
eration models, we compute the widely-used eval-
uation metrics, i.e., BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), ROUGE-L
(Lin, 2004), and CIDEr (Vedantam et al., 2015),
which measure the match between the generated
reports and ground truth reports.

3.1.3 Settings
To implement our approach and the existing works
on the COVID-19 dataset, we follow common prac-
tice (Jing et al., 2019; Li et al., 2018; Liu et al.,
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Methods Ratio of
Labeled Data

MIMIC-CXR COVID-19
BLEU-4 METEOR ROUGE-L CIDEr BLEU-4 METEOR ROUGE-L CIDEr

XProNet (Wang et al., 2022a) 100% 0.105 0.138 0.279 - 0.088 0.120 0.213 0.152
REMOTE (Ours) 1% 0.115 0.147 0.289 0.266 0.102 0.135 0.254 0.201
w/o input noise 1% 0.103 0.131 0.276 0.254 0.097 0.126 0.237 0.192
w/o model noise 1% 0.093 0.125 0.270 0.248 0.093 0.114 0.228 0.178

REMOTE (Ours) 100% 0.125 0.157 0.304 0.338 0.113 0.146 0.278 0.269
w/o input noise 100% 0.119 0.152 0.295 0.329 0.102 0.137 0.271 0.260
w/o model noise 100% 0.108 0.140 0.282 0.314 0.095 0.129 0.266 0.251

REMOTE∗ (Ours) 100% 0.125 0.157 0.304 0.338 0.113 0.146 0.278 0.269
w/ RSNA Pneumonia (Shih et al., 2019) 100% 0.146 0.190 0.355 0.381 0.142 0.180 0.310 0.301
w/ CheXpert (Irvin et al., 2019) 100% 0.165 0.231 0.381 0.422 0.172 0.215 0.349 0.353
w/ COVID images (Rahman et al., 2021) 100% 0.136 0.176 0.332 0.365 0.175 0.204 0.352 0.358
w/ RSNA + CheXpert + COVID 100% 0.182 0.265 0.412 0.497 0.203 0.266 0.391 0.407

Table 2: Quantitative analysis of our method, including the input noise and model noise. ∗ denotes the model is
further trained on the external unlabeled image-only data.

2021b,a) to adopt the ResNet-50 (He et al., 2016)
as the image encoder, which is pre-trained on Ima-
geNet (Deng et al., 2009) and fine-tuned on public
available CheXpert dataset (Irvin et al., 2019). We
adopt the Transformer (Vaswani et al., 2017) to im-
plement the text decoder. For the MedCLIPScore,
we set w to 2.5, and threshold τ to 0.75 (Hessel
et al., 2021). For model training, we follow the
Noisy Student self-training framework (Xie et al.,
2020) to inject the input noise and model noise
to enhance the robustness and performance of the
model. For parameters optimization, we adopt the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 1e-4 and a batch size of 16.
We apply a beam search of size 3 for inference.

3.2 Main Results

The results in Table 1 show the comparison of RE-
MOTE and existing strong methods, e.g., PPKED
(Liu et al., 2021b), DeltaNet (Wu et al., 2022),
and XProNet (Wang et al., 2022a). As we can
see, when trained on 1% of labeled image-report
pairs, combined with 90% of image-only data with-
out reports, REMOTE demonstrates competitive
performance with previous methods. When RE-
MOTE is trained with the complete 100% labeled
data, its performance surpasses the existing state-
of-the-art methods on both two datasets. For ex-
ample, on the MIMIC-CXR dataset, REMOTE
achieves a BLEU-4 score of 0.125, a METEOR
score of 0.157, a ROUGE-L score of 0.304, and a
CIDEr score of 0.338. Similarly, on the COVID-
19 dataset, the scores are 0.113, 0.146, 0.278, and
0.269, respectively. Additionally, the table also in-
dicates an enhanced version of REMOTE, denoted
as REMOTE∗, which utilizes external large-scale
public unlabeled image-only datasets, i.e., RSNA
Pneumonia (Shih et al., 2019), CheXpert (Irvin

et al., 2019), COVID chest X-ray images (Rahman
et al., 2021; Cohen et al., 2020), for training. The
results show a remarkable improvement. Overall,
the result demonstrates the robustness and effective-
ness of the REMOTE, especially when considering
its competitive results with limited labeled train-
ing data, which are common in real-life clinical
practice.

4 Analysis

We will provide quantitative and qualitative analy-
ses to understand our method.

4.1 Quantitative Analysis

Table 2 shows that both the input noise and model
noise contribute to improved performances. In de-
tail, the input noise and model noise lead to the
best improvements when the model is trained on
the 1% labeled data. It proves the effectiveness
of our approach in generating accurate medical
reports when the labeled training data is limited.
When adopting the external unlabeled image-only
data for model training, the performances of our
approach on the two datasets are improved with the
increasing amount of unlabeled image-only data.
As a result, our method greatly surpasses the state-
of-the-art method XProNet (Wang et al., 2022a) by
13.3% ROUGE-L score and 25.5% CIDEr score on
the MIMIC-CXR and COVID-19 datasets, respec-
tively. The superior performances show that our
approach has the potential to be well-applied to real
clinical practice, where the training data labeled by
physicians is scarce.

4.2 Qualitative Analysis

In this section, we show the medical reports gener-
ated to compare our approach with state-of-the-art
method (Wang et al., 2022a) qualitatively. The
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REMOTE [1%]:

There is a moderate

cardiomegaly with

bilateral patchy opacities.

The mediastinal and hilar

contours are normal. The

pulmonary vasculature is

normal. Lungs are clear.

No pleural effusion or

pneumothorax is seen.

Ground Truth:
The heart is again mildly

enlarged. The mediastinal and

hilar contours appear unchanged.

Pleural effusions have more fully

resolved. There is persistent

patchy opacification of the right

mid upper and left upper lungs,

which are background findings.

Streaky left basilar opacity also

has improved. Pulmonary edema

has more fully resolved. A PICC

line again terminates in the

superior vena cava.

XProNet [100%]:

Lungs are clear and the 

pulmonary vasculature is 

normal. Heart size is 

normal. There is no 

pleural effusion or 

pneumothorax. There 

are no acute osseous 

abnormalities. The 

mediastinal and hilar 

contours are normal.  

Figure 1: Medical reports generated by the state-of-the-art fully-supervised method XProNet (Wang et al., 2022a)
and our approach. Correct results and Unfavorable results are denoted as Bold text and Underlined text, respectively.

generated reports are reported in Figure 1, which
clearly shows that there are two key abnormalities
in the given medical images, i.e., “{The heart is
again mildly enlarged}” and “{There is persistent
patchy opacification of the right mid upper and left
upper lungs}”. Fortunately, REMOTE trained on
1% labeled training data correctly generate “{There
is a moderate cardiomegaly with bilateral patchy
opacities}”, which not only captures the ‘enlarged
heart’ and ‘patchy opacification’, but also accu-
rately describes the details, i.e., ‘bilateral’. In com-
parison, the report generated by the state-of-the-art
method XProNet, which is trained on full training
data, does not cover the two core abnormalities. Be-
sides, XProNet gives a wrong clinical description,
i.e., “{Heart size is normal}”. The reported exam-
ple qualitatively demonstrates the effectiveness of
REMOTE, which can generate accurate medical
reports using 1% labeled training data.

5 Conclusion

In this work, we presented a novel self-training
framework, REMOTE, aimed at boosting the per-
formance of medical report generation from unla-
beled visual medical images, especially in scenar-
ios with limited labeled training data. By harness-
ing the power of both high-quality paired image-
report datasets and unlabeled image-only datasets,
our approach effectively reduces the reliance on ex-
tensive labeled training data, which are both time-
consuming and costly to obtain. Our REMOTE in-
troduces a “teacher” model and a “student” model
to generate pseudo image-report pairs and refine
the generation, respectively. Specifically, we in-
troduced MedCLIPScore to ensure the quality of
the generated pseudo image-report pairs. The ex-
periments on the widely-used benchmark dataset
MIMIC-CXR and a COVID-19 dataset validated

the robustness and effectiveness of REMOTE. In
particular, using only 1% of labeled training data,
our approach could achieve competitive perfor-
mances comparable to fully-supervised state-of-
the-art methods.

Limitations

Although the REMOTE can automatically gener-
ate medical report generation with limited labeled
training data, the performance of our approach is
highly dependent on the amount and quality of un-
labeled image-only data. It indicates that we still
need the independent set of medical images which
may still be difficult to collect for some scenarios
or some types of medical images. Besides, the it-
erative “teacher” and “student” training model can
be computationally intensive, possibly limiting its
adoption in resource-constrained settings.

The error analysis shows that our model suf-
fers from several common drawbacks: i) generat-
ing repeated sentences, and ii) misunderstanding
rare pathologies and diseases in some cases. They
can be attributed to the lack of detailed and accu-
rate visual information. We may alleviate these
drawbacks by introducing strong pathologies and
disease predictors to accurately extract a set of
pathologies and diseases. However, it is unlikely
to be avoided completely, as these drawbacks are
common in medical report generation models.

Ethics Statement

We conduct experiments and analysis on a pub-
lic MIMIC-CXR dataset and a built COVID-19
dataset. Besides the COVID-19 dataset, all medi-
cal images used, both labeled and unlabeled, were
sourced from publicly available datasets, ensuring
that no private or unauthorized patient data was
employed. For the COVID-19 dataset, all protected
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health information (PHI) was removed. Further-
more, all images and reports were de-identified,
ensuring the privacy and confidentiality of patients.
While our method reduces the need for exten-
sive labeled datasets, its outputs are still machine-
generated, requiring critical human oversight, par-
ticularly when used in clinical decision-making.
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