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A Picture is Worth a Thousand Words: Language Models Plan from Pixels
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Abstract

Planning is an important capability of artificial
agents that perform long-horizon tasks in real-
world environments. In this work, we explore
the use of pre-trained language models (PLMs)
to reason about plan sequences from text in-
structions in embodied visual environments.
Prior PLM based approaches for planning ei-
ther (a) reason about plans from the instruction
alone, (b) assume observations are available in
the form of text (e.g., provided by a caption-
ing model) or (c) incorporate information about
the visual environment in limited ways (such
as a pre-trained affordance function). In con-
trast, we show that PLMs can accurately plan
when observations are directly encoded as input
prompts for the PLM. We show that this simple
approach outperforms prior approaches on the
ALFWorld and VirtualHome benchmarks.

1 Introduction

The ability to reason about plans is critical for per-
forming long-horizon tasks (Erol, 1996; Sohn et al.,
2018; Sharma et al., 2022), compositional gener-
alization (Corona et al., 2021) and generalization
to unseen tasks and environments (Shridhar et al.,
2020). Consider a simple long-horizon planning
scenario where a robot is tasked with preparing and
serving a meal. This presents a non-trivial planning
problem since the agent needs to understand the
sequence of operations required to search for the
relevant objects in the unfamiliar environment and
solve the task by interacting with various objects.

Large language models have been recently
shown to possess commonsense knowledge about
the world such as object affordances and physical
dynamics (Ouyang et al., 2022; Chowdhery et al.,
2022). Early approaches considered text based
environments and fine-tuned PLMs to predict ac-
tions given the history of past observations and
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actions (Jansen, 2020; Micheli and Fleuret, 2021;
Yao et al., 2020). Recent work has used this ability
to reason about plans from text instructions in sim-
ulated household environments with simplifying
assumptions such as text-only environment obser-
vations or feedback (Huang et al., 2022; Ahn et al.,
2022; Li et al., 2022; Logeswaran et al., 2022; Yao
et al., 2022).

We focus on visually grounded planning with
PLMs — the ability to adapt plans based on in-
teraction and visual feedback from the environ-
ment. While PLMs have strong planning common-
sense priors, predictions from a PLM may not be
directly realizable in the environment since the ob-
servation and action spaces are unknown. This
requires grounding the PLM in the environment
and adapting it to observe visual feedback, which
is highly non-trivial. Some prior works assume
the availability of a pre-trained affordance function
(Ahn et al., 2022) or a success detector (Mirchan-
dani et al., 2021). Notably, SayCan (Ahn et al.,
2022) completely decouples the PLM from obser-
vation information by selecting actions that have
both high affordability (through a pre-trained affor-
dance model) and high PLM likelihood. Although
this partially addresses the grounding problem, the
use of visual feedback for action affordance alone
is limited. Often an agent must choose one of
many affordable actions using information from
observations. For example, a driving agent should
re-navigate and possibly turn around when encoun-
tering a “road closed” sign, but SayCan cannot de-
cide between turning around and driving forward
because they are both affordable and the PLM is
blind to observations.

Another workaround explored in prior work is
translating the information in the visual observa-
tions to text using a pre-trained captioning system
and using the caption as a proxy for the observation
(Shridhar et al., 2021; Huang et al., 2022). How-
ever, it can be difficult to faithfully describe an
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Figure 1: Our simple approach VP2 on an embodied agent household environment (ALFWorld (Shridhar et al.,
2021) with visual observations). Visual observations made by the agent are mapped into learnable input embeddings
(visual prompts) by a visual encoder.

image in words and information is lost in this inher-
ently noisy process, which limits the information
available to the planner.

Recent work shows that PLMs can be adapted for
various natural language tasks by inserting tunable
embeddings or soft prompts at the input of the PLM
(also called prompt tuning or prefix tuning) (Li and
Liang, 2021; Lester et al., 2021). This approach
also extends to multi-modal understanding tasks
such as image captioning (Mokady et al., 2021;
Wang et al., 2022) and VQA (Tsimpoukelli et al.,
2021; Li et al., 2023; Wang et al., 2022; Liu et al.,
2023) where images are encoded as soft prompts
and finetuned for the target task. Transformer based
architectures have also been successfully applied
to offline Reinforcement Learning in recent work
(Chen et al., 2021; Janner et al., 2021; Li et al.,
2022; Reid et al., 2022).

Taking inspiration from these works, we propose
the simple approach of embedding visual obser-
vations (‘visual prompts’) and directly inserting
them as PLM input embeddings. The visual en-
coder and PLM are jointly trained for the target
task, an approach we call Visual Prompt Plan-
ning (VP2). By teaching the PLM to use observa-
tions for planning in an end to end manner, we re-
move the dependency on external data such as cap-
tions and affordability information that was used
in prior work. We show that this simple approach
performs better than prior PLM-based planning ap-
proaches on two embodied planning benchmarks
based on ALFWorld (Shridhar et al., 2021) and
Virtualhome (Puig et al., 2018).

2 Preliminary: Prompt Tuning

Given a sequence of tokens x1, . . . , xt, an auto-
regressive language model predicts a probability
distribution over the next token pLM(·|x1, . . . , xt).
While a PLM expects to see natural language to-
kens in its context, the model can be extended to
process a sequence of embeddings. The input layer

of a PLM converts tokens x1, . . . , xt into token
embeddings e1, . . . , et which are passed on to sub-
sequent layers. Soft prompt tuning introduces addi-
tional tunable embeddings p1, . . . , pk in the input
layer pLM(·|e1, . . . , et, p1, . . . , pk)1 which can be
optimized with respect to a target training objective
using gradient descent.

3 Approach

Problem Setting. We assume a goal-based MDP
setting, parameterized by M = (S,A,G, P,RG):
a state space S, action space A, a goal space
G, transition probabilities P , and reward RG .
The planner is given N expert demonstrations
D = {(g(i), o(i)0 , a

(i)
0 , o

(i)
1 , a

(i)
1 , . . . , o

(i)
T , a

(i)
T )}Ni=1

where goals g(i) ∈ G and actions a(i) ∈ A are
available as text and observations o(i) ∈ RH×W×C

are images of size H × W × C. Further, we do
not assume the list of possible actions available
to the agent is known, or any pretrained admis-
sibility or affordance function is known. Given
goal description g, past actions a1, . . . , at−1 and
observations o1, . . . , ot, we seek to build a pol-
icy π which models the next action probability
π(at|g, a1···t−1, o1···t).

Visual Prompt Planning. If goal description, ac-
tions and observations are available in the form
of discrete token sequences, predicting the next
action is similar to a language modeling task and
a PLM can be fine-tuned for next action predic-
tion: maximize log pLM(at | cxtt), where cxtt =
concat (g, o1, a1, o2, . . . , at−1, ot). However, ob-
servations may not be available in the form of text
in practice and we attempt to tackle this scenario.

As we discuss in Section 2, PLMs are
capable of processing a sequence of embed-
dings (which may not necessarily correspond
to actual text tokens). The context can be

1In an abuse of notation, we will use pLM with token inputs
or embedding inputs interchangeably.
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re-written in terms of embedding sequences
as cxtt = concat

(
ge, oe1, a

e
1, o

e
2, . . . , a

e
t−1, o

e
t

)
2

where ge, oei , a
e
i respectively represent embedding

sequences corresponding to the goal description,
observations and actions. We assume that the goal
description and actions are available in the form of
text and ge, aei can be obtained as the corresponding
token embedding sequences.

Observation Encoder. To obtain observation em-
beddings oei , we propose to learn an observation
encoder fobs-enc : RH×W×C → Rm×E . fobs-enc
maps visual observations o to a sequence of m em-
beddings each of size E, where m is a hyperparam-
eter and E is the PLM’s embedding dimensionality.
In our experiments we consider an observation en-
coder of the form fobs-enc(o) = fFFN(fpretrained(o)),
where fpretrained is a pre-trained visual encoder and
fFFN is a feedforward network.

Training Objective. We learn to model the next
action given previous actions, observations, and
the goal. Similar to prior approaches (Micheli and
Fleuret, 2021; Huang et al., 2022), we define the
loss as in Equation (1), where cxt

(i)
t is a concate-

nation of goal, action and observation embeddings
as previously described.

LD = − 1

N

∑

i,t

log pLM(a
(i)
t | cxt(i)t ) (1)

In this loss, the parameters of the observation en-
coder fobs-enc are tuned. The PLM may also be
fine-tuned with this loss, which we perform in our
main experiments. However, the PLM may also be
frozen (and only the observation encoder tuned),
which we perform in the ablation study.

4 Experiments

4.1 Environments
We experiment with embodied agent tasks that in-
volve navigating and manipulating objects in a sim-
ulated household environment. The agent acts by
feeding text commands to a low-level controller
that executes various pretrained skills (such as go
to cabinet or take apple from cabinet).

VizALF. This environment is based on ALF-
World (Shridhar et al., 2021) and contains 6 types
of tasks that are compositional and contain multi-
ple subgoals that must be completed. In contrast

2Note that each of ge, oei , a
e
i are embedding sequences and

the concat operation concatenates these sequences.

to ALFWorld which is a purely text based environ-
ment, we consider the same set of tasks but with
only visual observations from the AI2-Thor sim-
ulator (Kolve et al., 2017). We used the training
and evaluation task split provided in ALFWorld
which consists of 4620 training tasks, 187 in distri-
bution evaluation tasks, and 192 out of distribution
evaluation tasks. However, we found 64/187 and
52/190 of the ID and OD evaluation tasks respec-
tively were impossible to complete, due to errors
in the ALFWorld low level action implementations.
So, we normalized the success rate of all agents by
the oracle agent’s success rate.

VirtualHome. We experiment with tasks from
LID (Li et al., 2022) which are based on the Virtu-
alHome simulator (Puig et al., 2018). Each task is
specified using a set of goal conditions that must
be met at the end of the episode (e.g., There must
be two pancakes in the fridge). We use the in dis-
tibution and novel scene splits from LID. 2000 in
distribution tasks were used for training and 200
novel scene tasks were used for evaluation.

4.2 Models

We use the GPT2med language model (355M pa-
rameters) in all our experiments. We consider the
following baselines for comparison.

Ignore. A simple baseline inspired by Jansen
(2020) that ignores the visual observations and pre-
dicts the entire text action sequence only from the
goal text description. This baseline is finetuned
with the same objective as in Equation (1) but with-
out observations in the context.

Captions. Instead of feeding visual observations
to the planner language model, we use text captions
predicted by a captioning model as a proxy (Shrid-
har et al., 2021). We train a ClipCap (Mokady et al.,
2021) model on ground-truth captions from the re-
spective environment’s training demonstrations and
use them for captioning. The captioning model is
trained on 70k and 60k captions on VizALF and
VirtualHome respectively.

SayCan. The SayCan (Ahn et al., 2022) archi-
tecture has two components: a) A PLM that ranks
actions and b) An affordance function that predicts
what actions are affordable from a given state. Say-
Can evaluates a given action by combining its likeli-
hood under the PLM (ignoring visual observations)
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Approach
VizALF VirtualHome

ID OD ID OD

Ignore (Jansen, 2020) 35.4 22.4 6.0 1.5
Captions (Shridhar et al., 2021) 53.2 20.3 7.0 2.5
SayCan (Ahn et al., 2022)

- GPT2med (Finetuned PLM, Trained affordance) 36.6 19.3 7.0 1.0
- GPT2med (Finetuned PLM, Oracle affordance) 51.2 27.8 13.6 5.0
- FLAN-T5xxl (Few-shot PLM, Oracle affordance) 40.6 26.1 3.9 0.0

VP2 (ours) 55.3 27.8 20.6 7.5

Table 1: Success rates of approaches on VizALF and VirtualHome (VH) benchmarks. We present the average
success rate for in distribution (ID) and out of distribution (OD) tasks.

with its affordance score as shown in Equation (2).

Score(at) = pLM(at|g, a1:t−1) · paff(at|ot) (2)

We consider different design choices for each of
these components. We consider two variations for
the PLM: 1) A frozen FLAN-T5xxl (11B) model
that is few-shot prompted similar to the original
work. 2) A GPT2med model fine-tuned for next
action prediction (details in the appendix).

We also consider two variations for the affor-
dance model: 1) An oracle affordance function
which assumes knowledge about ground-truth af-
fordable actions. 2) A trained affordance func-
tion trained using supervised learning on training
demonstrations annotated with affordance informa-
tion. In both versions, we use a PLM to predict
action sequences from the goal text and select an
action based on the SayCan score in Equation (2).

4.3 Results
Table 1 compares the performance of our method
against baselines. Our simple approach (VP2) per-
forms better than all baselines, despite not using
external data (caption and affordance information).
VP2 benefits from direct coupling between the plan-
ner language model and environment observations.

The Ignore baseline performs worse compared to
other methods that make use of observations. How-
ever, on out of distribution tasks it suffers less from
domain-shift compared to some of the other ground-
ing baselines such as Captions. The Captions base-
line performs better than Ignore, but suffers from
information loss in the captioning process.

In comparison, SayCan with oracle affordance
is comparable to or better than Ignore and Cap-
tions (slightly worse than Captions on VizALF ID)
in spite of incorporating observation information

only through the affordance function (both FLAN-
T5xxl and GPT2med). SayCan using the trained
affordance only performs slightly better than Ig-
nore on in distribution, and similarly suffers from
domain-shift on out of distribution tasks. FLAN-
T5xxl performs well on VizALF despite no training.
However, it performs poorly on VirtualHome due
to demonstration trajectories in VirtualHome being
relatively long, which inhibits SayCan from using
many examples for few-shot prompting.

4.4 Ablations
Table 2 presents ablations we perform to identify
the importance of each component of our approach.

Visual Encoder. Replacing the CLIP visual en-
coder with a Resnet50 (He et al., 2016) significantly
degrades the performance. This suggests that the
image-text alignment pre-training of CLIP helps
produce observation features that are more easily
interpreted by the language model. In contrast to
prior methods that consider auxiliary alignment ob-
jectives to match the distribution of inputs (Reid
et al., 2022), it could be more beneficial to use
powerful encoders such as CLIP.

Pretrained Prompt Model. We also test how
using pre-trained visual prompts can affect perfor-
mance. We used visual prompts pre-trained with
the CLIPCap captioning objective on the Concep-
tual Captions dataset (Sharma et al., 2018). How-
ever, using this pre-trained visual prompt hurts the
success rate. We hypothesize that the knowledge
aquired by the LM during captioning isn’t directly
useful for action prediction.

Prompt Tuning on frozen language models.
We consider an ablation where the language model
backbone is held fixed and only visual prompts and
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Ablation
VizALF

ID OD

VP2 55.3 27.8

visual enc. resnet50 30.1 12.9

prompt CLIPCap 50.5 15.9

base LM
GPT2med Frozen 48.0 16.5
GPT2XL Frozen 48.0 16.7
GPTJ Frozen 50.0 15.8

Table 2: Select ablations on the VizALF benchmark,
with average success rate for in distribution (ID) and out
of distribution (OD) tasks. We tested our approach VP2

with and without different components. A full ablation
table is included in the appendix (Table 4).

task prompt tokens are tuned (similar to Frozen
(Tsimpoukelli et al., 2021)). We found that freez-
ing the language model generally performs worse
than fine-tuning it. The drop in performance can be
attributed to the limited influence of prompt tokens
in controlling the language model’s behavior.

Effect of LM pre-training. We examine the ben-
efit of LM pre-training by training a model from
scratch on varying amounts of training data in Fig-
ure 2. We find that the pre-trained model converges
faster and is more sample efficient compared to the
model trained from scratch. This confirms find-
ings from prior work about how language model
pre-training benefits learning sequential decision
making tasks (Reid et al., 2022).

5 Conclusion

We present a simple approach for planning from
pixels, building on the planning commonsense
knowledge acquired by large language models.
Compared to prior work, which indirectly incor-
porates observation information by captions or af-
fordance, our approach is simpler, does not use
external data, and benefits from directly coupling
the language model and observations. Experimen-
tally, we showed our approach performs better than
prior methods on two embodied agent benchmarks.

Limitations

We showed that VP2 is a simple and effective ap-
proach for incorporating visual feedback for PLM
planners. However, VP2 has several limitations.
By using PLMs for planning, VP2 inherits the limi-
tations and biases learned by PLMs including but

1000 2000 3000 4000
Number of Training Samples

0

10

20

30

40

50

Vi
zA

LF
 S

uc
ce

ss
 R

at
e 

(%
)

ID
OD

No pretraining ID
No pretraining OD

Figure 2: Ablation showing the learning efficiency (a)
with and without language model pre-training and (b)
varying the number of training demonstrations.

not limited to issues relating to PLMs inheriting
biases from on large unlabeled datasets and possi-
ble misalignments between PLMs and human in-
tent (Bommasani et al., 2021; Bender et al., 2021).
In addition, VP2 relies on demonstration data to
train the visual prompts. One possible extension to
VP2 would be to use few-shot prompting with vi-
sual prompts, similar to Tsimpoukelli et al. (2021).
As a planning agent, VP2 also relies on the imple-
mentation of the low-level controller for executing
various pretrained skills. The overall performance
of the system is bottlenecked by the capabilities of
these pretrained skills.

VP2 was evaluated using the AI2Thor and Vir-
tualHome simulated home environments. While
they have been used as standard benchmarks in
prior works, the scenarios and data in these environ-
ment are not as complex as the real world. Future
work may be done with training VP2 with more var-
ied linguistic data such as the crowd-sourced data
from TEACh (Padmakumar et al., 2022) or realistic
robotic environments such as used in SayCan (Ahn
et al., 2022).
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A Appendix

A.1 Experimental Setup Details
Visual Observations, Text Actions. VizALF
uses the same action set defined in ALFWorld with
the following difference. ALFWorld is a text-based
environment and it references multiple instances
of an object type with object identifiers (cabinet
1, cabinet 2, etc.). These object identifiers are
no longer meaningful in the visual setting as the
grounding of cabinet 1 to the physical cabinet is
unknown to the agent. We thus removed these
numeric identifiers in the action and ground-truth
text observation (e.g., “cabinet 1” becomes “cabi-
net”). The set of valid actions and objects is defined
in (Shridhar et al., 2021). We use the same proce-
dure for removing object numeric identifiers from
VirtualHome.

Ground Truth Captions. Ground truth captions
are needed to train the captions baseline and needed
for the captioning auxiliary task. In VizALF, we
use the ground truth captions provided in ALF-
World (Shridhar et al., 2021), which are generated
from visible objects and a pre-defined template.
We define ground truth captions for VirtualHome
using a similar template on the environment’s list
of interactable objects for each observation.

Ground Truth Affordability. Ground truth la-
bels for affordability are needed to train the Say-
Can trained affordance model. As the trained af-
fordance is a binary classifier, we create a training
set of observation-action-affordability pairs. To do
this, for each observation, we sampled all afford-
able actions, and a subset of non-affordable actions
(as there are vastly more non-affordable actions in
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each state). We tested two methods for sampling
non-affordable actions: 1) We used a hand-coded
heuristic that selects non-affordable actions based
on actions that are likely to be predicted by the
LM but are not affordable. 2) We use actions that
are predicted with high likelihood from the Ignore
baseline but are not affordable. We did not find a
significant difference in non-affordable examples
on performance.

A.2 SayCan Baseline Details

In the original SayCan (Ahn et al., 2022), the PLM
gives a score for every possible action at each
timestep. When the oracle action affordances are
known (around 15 actions affordable) at a given
time, we can evaluate the PLM score on all afford-
able actions. However, when oracle affordances
are not available, in our trained affordance setting,
each step has thousands of possible actions (ac-
tions are a combinatorial product on action type
and objects). Evaluating the LM on each action
is infeasible. Instead, we use a beam search on
the PLM to generate the top-k most likely actions,
rank these likely actions using the SayCan score.
Specifically, for a given observation o, predict the
next action a by:

1. Sample top-k actions a1, . . . , ak from PLM.

2. Compute

Score(at) = pLM(at|g, at−1, . . . a1) · paff(at|ot)

3. Return argmax(Score(a))

In addition, the original SayCan does not per-
form any finetuning on the PLM. However, we
found that SayCan improved in our environment
tasks when finetuning a smaller model.

A.3 Code Implementation Details

Our approaches and baselines were implemented
using the Huggingface Transformers Python li-
brary (Wolf et al., 2019). Code for the VizALF
environment was modified from the ALFWorld
codebase (Shridhar et al., 2021). Code for the Vir-
tualHome environment was modified from the LID
codebase (Li et al., 2022).

A.4 Computational Budget

Experiments were conducted on A100 GPUs. Most
approaches used a GPT2med as a base LM, totalling
400M parameters. Prompt tuning ablations with

larger frozen models had 1.5B and 6B parameters
in total. For the FLAN-T5xxl-SayCan experiments
(using an 11B model) we did no training.

A.5 Hyperparameters
In general we used similar hyperparameters for
the PLM and visual prompts across approaches,
but adjusted the epochs to account for learning
visual prompts vs. learning text only and number
of training samples.

Hyperparameter Value

Epochs 50
Batch Size 8
Seed {0, 1}
Grad Accum. Steps 1
LM GPT2med
LM learning rate 5e-5
LM weight decay 1e-3
Gradient clipping None
Weight decay 0.01
VP learning rate 1e-2
VP size 10
VP visual encoder CLIP ViT-B/32
VP arch. 2-hidden-layer MLP
Max context tokens 1000

Table 3: Hyperparameters for VP2 in VizALF and Vir-
tualHome.

VP2. We show relevant hyperparameters for VP2

in Table 3.

Ignore Baseline. We used the same hyperparam-
eters as in Table 3 but remove visual prompt param-
eters.

Caption Baseline. To train a captioning model,
we use the same hyperparameters as Table 3 but
set {epochs = 10}. We train a separate PLM for
the action prediction model (which uses predicted
captions as input) using the same hyperparameters
as Table 3 but set {epochs = 20}. For the context
of the captions, we add goal text to encourage the
PLM to produce captions: “Your task is to: caption
the following observation”. We also tested finetun-
ing a CLIPCap captioning model for this baseline,
but found this decreased captioning performance.

SayCan Baseline. For the frozen FLAN-T5xxl-
SayCan model, we performed prompt engineering
similar to Ahn et al. (2022). For every task, we sam-
ple k examples for few shot prompting (as many
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can fit in the context length) in the following for-
mat:
Here are some step by step instructions
for example tasks.
Example: <g1>. 1. <a1> 2. [...] [...]
Example: <gk>. 1. <a1> 2. [...]
Give step by step instructions for the
following task.
<goal>

To retrieve examples, we sampled k samples
from the training dataset that are similar to the
current goal. For VizALF, we took samples that
are the same task type (pick-place, heat, etc. ) and
for VirtualHome, we took samples where the goals
were most similar according to a simple bag of
words heuristic. We found the best value for k =
30 from a grid search on k ∈ {1, 5, 10, 15, 30}.

For the fine-tuned action prediction model
GPT2med-SayCan, we use the same hyperparam-
eters as Table 3 but set {epochs = 20}. For the
trained affordance model, we use the same hyper-
parameters as Table 3 but set {epochs = 2}. For
the context of the trained affordance, we add goal
text to encourage the PLM to predict affordance:
“Your task is to: predict whether the following ac-
tion is valid.” The PLM must either output the
token “valid” or “invalid”, given the observations
and action contexts.

A.6 Full Ablations

We present more detailed ablations in Table 4
presents additional ablations for prompt size, train-
ing samples, and LM pretraining (more comprehen-
sive version of Table 2 in the main text).

Prompt Size. We tested visual prompt sizes {1,
5, 10, 20}, where 10 is the prompt size used in VP2.
Lowering the prompt size to 1 and 5 lowers the
success rate in VizALF, as less visual information
can be contained in each prompt. However, raising
the prompt size to 20 may allow more information
in a visual prompt, but also causes the LM’s context
to increase. This can harm the LM as the context
needs to be trimmed to fit within the limited context
window. From Table 4, this seems to harm the
success rate.

A.7 Auxiliary Tasks

In VP2, the LM is only trained on the action
prediction loss function LD. We hypothesized
that auxiliary tasks that train visual prompts in
additional ways can help ground and improve
the visual prompts for planning. To do this,

Ablation
VizALF

ID OD

VP2 55.3 27.8

visual enc. resnet50 30.1 12.9

prompt CLIPCap 50.5 15.9

base LM
GPT2med Frozen 48.0 16.5
GPT2XL Frozen 48.0 16.7
GPTJ Frozen 50.0 15.8

prompt size
1 48.8 14.9
5 54.4 17.1
20 54.8 20.0

aux. task
inv-dyn. 58.8 20.7
captions 58.5 21.4
goal-pred. 52.9 17.8

samples
100 14.6 9.2
500 33.9 12.9
1000 44.7 17.6

samples, no
pre-train

100 4.6 1.1
500 15.5 14.3
1000 30.9 15.4
4620 (all) 56.4 22.2

Table 4: All ablations on the VizALF benchmark, with
average success rate for in distribution (ID) and out of
distribution (OD) tasks. We tested our approach VP2

with various components added or removed.

we trained the LM concurrently on LD and a
loss derived for each auxiliary task. 1) Inverse
Dynamics (inv-dyn. ). The LM must predict
the action that is executed between two observa-
tions: Linv-dyn = − 1

N

∑
i,t log pLM(a

(i)
t |o(i)t , o

(i)
t+1).

2) Captions. The LM must predict the
ground truth caption text for each observa-
tion. This is the same training objective used
in CLIPCap (Mokady et al., 2021): Lcap =

− 1
N

∑
i,t log pLM(caption(i)t |o(i)t ). 3) Goal Predic-

tion (goal-pred). The LM must predict the goal
text given action-observation context. Lgoal-pred =

− 1
N

∑
i log pLM(g(i)|o(i)1 , a

(i)
1 , . . . , o

(i)
T , a

(i)
T ).

Results. We show an example of the caption-
ing auxiliary task in Figure 3. We find auxiliary
tasks (inv-dyn. and captions) can help ground vi-
sual prompts and improve success rate for in dis-
tribution tasks. However they also cause VP2 to
overfit and perform worse on out of distribution
tasks. The last auxiliary task goal pred. seems to
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LLM

to drawergo

to drawergo phone drawertake from

phone drawertake from

to bedgo phone bedput on

phone bedput onTask: put a cellphone on bed to bedgo

Visual Encoder Visual Encoder Visual Encoder Visual Encoder

On the shelf, you 
see a mug, a 
book, a mug, and 
a keychain.

The drawer is open. In it, 
you see a desklamp, a 
alarmclock, a cd, a 
creditcard, and a pen.

The drawer is open. In it, 
you see a desklamp, a 
alarmclock, a cd, a 
creditcard, and a pen.

On the bed, you see 
a pillow, a laptop, a 
laptop, and a pillow.

Captioning Auxilliary TaskPredicted Captions

Figure 3: Example of VP2 with the captioning auxiliary task in VizALF. Each observation is encoded into a visual
prompt VPt and used to predict the next action. The LM is also trained to predict a caption for each VPt.

decrease performance in both ID and OD.

Hyperparameters. For auxiliary tasks, we add
a tunable task embedding to each context, where
each task (action prediction vs. auxiliary task) has
a separate task embedding. This embedding helps
the LM to learn multiple tasks. We used a task em-
bedding length = 10. To compute the loss, we add a
weight parameter to control the loss between action
prediction and auxiliary task: L = LD + αLaux.
In our experiments, we tested α = {0.1, 1.0} and
found α = 0.1 works the best. Otherwise, we used
the same hyperparameters as Table 3.
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