
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 16460–16476
December 6-10, 2023 ©2023 Association for Computational Linguistics

Interpreting and Exploiting Functional Specialization in Multi-Head
Attention under Multi-task Learning

Chong Li, Shaonan Wang, Yunhao Zhang, Jiajun Zhang, Chengqing Zong∗

State Key Laboratory of Multimodal Artificial Intelligence Systems,
Institute of Automation, CAS, Beijing, China

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
{lichong2021, zhangyunhao2021}@ia.ac.cn,

{shaonan.wang, jjzhang, cqzong}@nlpr.ia.ac.cn

Abstract

Transformer-based models, even though achiev-
ing super-human performance on several down-
stream tasks, are often regarded as a black
box and used as a whole. It is still unclear
what mechanisms they have learned, especially
their core module: multi-head attention. In-
spired by functional specialization in the hu-
man brain, which helps to efficiently handle
multiple tasks, this work attempts to figure out
whether the multi-head attention module will
evolve similar function separation under multi-
tasking training. If it is, can this mechanism
further improve the model performance? To
investigate these questions, we introduce an
interpreting method to quantify the degree of
functional specialization in multi-head atten-
tion. We further propose a simple multi-task
training method to increase functional special-
ization and mitigate negative information trans-
fer in multi-task learning. Experimental results
on seven pre-trained transformer models have
demonstrated that multi-head attention does
evolve functional specialization phenomenon
after multi-task training which is affected by
the similarity of tasks. Moreover, the multi-task
training strategy based on functional special-
ization boosts performance in both multi-task
learning and transfer learning without adding
any parameters. 1

1 Introduction

Transformer, based on the multi-head attention
module, has been the dominant model for down-
stream applications due to its impressive results
(Devlin et al., 2019; Brown et al., 2020; Dosovit-
skiy et al., 2021). However, it is still being utilized
as a whole black-box model, and little is known
about the functions of each sub-module on the final
prediction. Simultaneously, although controversy
still exists, there is overwhelming evidence that

*Corresponding author.
1Our code is available at https://github.com/ZNLP/

FunctionalSpecializationInMHA

supports the idea of functional specialization in
the human brain (Finger, 2001; Kanwisher, 2010).
Such a functional specialization mechanism makes
it easier for the human brain to handle multiple
tasks and solve new problems. It can reuse exist-
ing resources and at the same time evolve specific
regions to avoid the huge cost of redesigning.

Considering the benefits of functional specializa-
tion to human learning ability, it is interesting to
explore whether a transformer model, especially its
central module multi-head attention, would evolve
a similar mechanism under multi-task training. If
so, which factors will impact the degree of func-
tional specialization in the multi-head attention
module? And how to exploit this phenomenon to
improve the generalization ability of Transformer-
based models?

To investigate these questions, we first propose
a method, called Important Attention-head Pruning
(IAP), to quantify the degree of functional special-
ization in the multi-head attention of Transformer-
based models. IAP first calculates the importance
scores of each attention head on different tasks,
then prunes the top important heads for each task
to determine their impact on task performance. We
apply our method to five different tasks with seven
pre-trained transformers. Results show that the
multi-head attention module has evolved distinct
functional specialization phenomena across differ-
ent sizes of BERT and pre-training methods. Fur-
ther quantitative analysis indicates that there is a
negative correlation between task similarity and the
functional specialization phenomenon.

Moreover, we propose a multi-task learning
method, namely Important Attention-head Training
(IAT), to promote the segregation of functions in
the multi-head attention module by training only
the most important part of attention heads for each
task. Experimental results on the GLUE dataset
have demonstrated that our method alleviates the
negative transfer among tasks and improves the
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performance of Transformer-based models on both
multi-task learning and transfer learning without
additional parameters.

To summarize, our main contributions are
twofold:

• We propose an interpretation method called
IAP and find that the functional specialization
phenomenon has evolved in multi-head atten-
tion after multi-task learning. Furthermore,
empirical quantitative experiments show that
such a phenomenon is influenced by the sim-
ilarity between tasks: the more similar tasks
are, the weaker the functional specialization
phenomenon is.

• We propose an exploiting method called IAT
to promote the degree of functional special-
ization. Experiments on multi-task learning
and transfer learning validate that IAT is able
to improve both the performance and general-
ization ability of multi-task learning models
without adding any parameters.

2 Related Work

2.1 Interpreting Neural Networks
Interpreting attention module Analogous to vi-
sual attention, the distribution of attention weight
over input is often used to interpret the final deci-
sion of attention-based model (Clark et al., 2019;
Vig and Belinkov, 2019). Therefore, a lot of work
has been done to study the interpretability of atten-
tion distribution (Jain and Wallace, 2019; Serrano
and Smith, 2019; Jacovi and Goldberg, 2020) or
design better explanation methods (Brunner et al.,
2020; Kobayashi et al., 2020; Bai et al., 2021; Lu
et al., 2021; Liu et al., 2022).

Our work can be classified into another line of
study: investigating the individual attention head in
the multi-head attention module. Voita et al. (2019)
argued that there are redundant heads in Trans-
former by pruning less important heads and analyz-
ing the resulting performance, which is confirmed
by Michel et al. (2019). Jo and Myaeng (2020)
analyzed the linguistic properties of the sentence
representations from attention heads by ten linguis-
tic probing tasks. Hao et al. (2021) only retained
the important heads in BERT and constructed an
attribution tree to interpret the information interac-
tions inside Transformer.

Through pruning attention heads, we study the
role they play in different tasks, rather than show

redundancy in the multi-head attention module
(Michel et al., 2019).

Interpretation inspired by neuroscience With
more understanding of the functional specialization
of the human brain, researchers attempt to interpret
deep learning models with brain activities in spe-
cialized regions (Wehbe et al., 2014; Toneva and
Wehbe, 2019; Zhuang et al., 2021; Bakhtiari et al.,
2021). For example, Toneva and Wehbe (2019)
studied the representations of NLP models across
different layers by aligning with two groups of
brain areas among the language network.

Unlike the existing works, we investigate
whether the brain-like functional specialization phe-
nomenon occurs in NLP models, and how to exploit
this phenomenon to improve models.

2.2 Mitigating Negative Information Transfer
in Multi-task Learning

By joint learning multiple tasks, the performance
of a model on the target task can be boosted with
regularization or sharing parameters among tasks
(Collobert et al., 2011; Ruder, 2017; Liu et al.,
2019a). However, multi-task learning models in
NLP often suffer from negative information trans-
fer and are inferior to the single task learning ones
(Martínez Alonso and Plank, 2017; Bingel and Sø-
gaard, 2017).

Our method aims to subdivide task-important
modules in parameters shared to mitigate negative
transfer among tasks, which is different from pre-
vious sampling or additional task-specific adapter
methods (Wu et al., 2020; Pilault et al., 2021). We
only need to preserve mask variables for each at-
tention head rather than all parameters during train-
ing (Sun et al., 2020; Lin et al., 2021; Xie et al.,
2021; Liang et al., 2021), which significantly re-
duce memory costs.

3 Background

3.1 Multi-Head Attention Module
Transformer (Vaswani et al., 2017) extended single
head attention function to Multi-Head Attention
(MHA) module, which aims at capturing informa-
tion from different representation subspaces in par-
allel. Given input X ∈ Rn×d, this module linearly
transforms it into nh subspaces and then applies
attention separately:

Ah(X) = Attention(XWQ
h , XWK

h , XWV
h )

with Attention(Q,K, V ) = softmax(
QKT

√
dk

)V
(1)
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Figure 1: Illustration of how to quantify and improve the degree of functional specialization in multi-head attention
for Transformer-based models. Only attention heads, which are our research target, are depicted in the model for
simplicity. (I) Multi-task learning using Transformer-based models. (II) Quantify the functional specialization phe-
nomenon by determining and pruning the important heads for each task. (III) Improve the functional specialization
phenomenon by only fine-tuning the important heads for each task in the last part of multi-task learning process.

where Q,K ∈ Rn×dk and V ∈ Rn×dv . The out-
puts of all heads are concatenated and linearly trans-
formed into the output space of this module:

MHA(X) = [A1(X); ...;Anh(X)]WO (2)

3.2 Head Importance Score

Michel et al. (2019) proposed an effective method
to prune attention heads and evaluate the impor-
tance of attention heads for a task. In order to prune
the attention head h, they incorporated a mask vari-
able ξh ∈ [0, 1] into the attention function:

Ãh(X) = ξh ·Ah(X) (3)

and set it to a zero value. When ξh equals 1, Equa-
tion (3) is the same with the vanilla attention (Eq.
(1)). The head importance score I

(i)
h of task Ti is

approximated by the expected sensitivity of loss
function to the mask variable ξh:

I
(i)
h = E(x,y)∼D(i)

∣∣∣∣
∂L(i)(x, y)

∂ξh

∣∣∣∣ (4)

where D(i) is the data distribution of task Ti and
L(i)(x, y) is the loss of task Ti on sample (x, y).

Different from Michel et al. (2019) which prune
the least important attention heads to prove the re-
dundancy of attention heads, this paper focuses
on exploring the functional specialization phe-
nomenon after training, thus we prune the most
important heads for each task.

4 Method

Figure 1 illustrates the general procedure of our
methods. Firstly, Transformer-based models are

utilized for multi-task learning and may arise segre-
gation of functions in the multi-head attention mod-
ule. Subsequently, the important attention heads
are determined and pruned to quantify the func-
tional specialization in multi-head attention (Sec-
tion 4.1). Lastly, the roles of important heads in
each task are enhanced to promote the degree of
functional specialization by important attention-
head training (Section 4.2).

4.1 Interpreting: Important Attention-head
Pruning

We introduce a two-step method, namely Impor-
tant Attention-head Pruning (IAP), to quantify the
degree of functional specialization in multi-head
attention. First, the top α ∈ [0, 1] percentage im-
portant heads Hα

i for task Ti, e.g., the ones circled
by dashed lines in Figure 1(II), are found after dual-
task or multi-task training by their head importance
scores. Specifically, we calculate the head impor-
tance score I

(i)
h , defined by Eq. (4), on training

samples to approximate the contribution of head h
to task Ti.

Second, dissociation experiments are conducted
to determine the degree of functional specialization
in multi-head attention. Given a model fθ after
dual-task training on tasks TA and TB , for example,
the relative performance on TA after pruning the
top α important attention heads for TB , denoted by
Hα

B , is calculated as follows:

RPA(H
α
B) =

P
(
fθ\Hα

B
(XA),YA

)

P(fθ(XA),YA)
(5)

where P(·) is the performance metric used, e.g.,
Accuracy, and (XA, YA) is the test sample of Task
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TA. Then, we estimate the degree of functional
specialization by the relative performance differ-
ence after top α important heads for each task are
pruned, called dissociation score:

DA(α) = RPA(H
α
B)−RPA(H

α
A),

DB(α) = RPB(H
α
A)−RPB(H

α
B),

D(α) = DA(α)+DB(α)
2

(6)

where DA(α) denotes the dissociation score of task
TA, and D(α) is the average dissociation score of
this dual-task learning. Given an appropriate α, a
larger dissociation score implies a higher degree of
functional specialization.

Similarly, the dissociation score of task Ti under
multi-task learning is measured via:

Di(α) =
∑n

j=1,j ̸=i RPi(H
α
j )

n−1 −RPi(H
α
i ),

D(α) =
∑n

i=1 Di(α)
n

(7)
To clearly illustrate the functional specialization

phenomenon, we summarize two representative
cases under dual-task learning:

• Double dissociation when DA(α) > 0 and
DB(α) > 0. This is a significant indicator of
functional specialization. That is, each task
requires a unique group of heads, which can
be selectively masked. To eliminate the acci-
dental functional specialization phenomenon,
we argue that a distinct one occurs if the aver-
age dissociation score is higher than or equal
to 10%, i.e., D(α) ≥ 10%, in which 10% is
chosen according to the definition of double
dissociation in neuroscience (Shallice, 1988).

• Single dissociation when DA(α) > 10% and
DB(α) < 0, or DA(α) < 0 and DB(α) >
10%. One significant positive dissociation
score suggests functional specialization may
only arise in this task.

The dissociation scores may be both negatives,
which arise from the wrong evaluation of the impor-
tant heads for each task. It can be summarized into
the double dissociation case under the correct eval-
uation and pruning. In the other cases, e.g, the dis-
sociation scores of both tasks are relatively small,
we argue that there is no functional specialization
in the multi-head attention module. Specifically,
the influence on all tasks will be almost identical
when pruning different groups of heads.

4.2 Exploiting: Important Attention-head
Training

Motivated by the high degree of functional special-
ization in human brain, it is interesting to inves-
tigate whether a higher degree of functional spe-
cialization could improve the performance of the
model on multi-task learning or transfer learning.

To promote the degree of functional specializa-
tion in multi-head attention, we design a multi-task
training method, named Important Attention-head
Traning (IAT). Specifically, only the top α ∈ [0, 1]
important attention heads for task Ti are tuned at
the last δ ∈ [0, 1] multi-task training process, and
the parameters other than the multi-head attention
module are trained as before. To achieve this, we
introduce a mask variable Mi ∈ {0, 1}nh for task
Ti, where 1 indicates to fine-tune this attention
head for Ti. For example in Figure 1(III), only the
mask variables of heads circled by the solid blue
line are set to 1 for Tn. When α = 1 or δ = 0,
our method is the same as the normal multi-task
learning method.

We expect to consolidate the roles of important
heads for each task and facilitate the functional
separation of multi-head attention in this way.

5 Experimental Setup

5.1 Datasets

We select a topic classification datasets (Zhang
et al., 2015), eight natural language understanding
datasets of GLUE (Williams et al., 2018; Rajpurkar
et al., 2016; Wang et al., 2019), and two datasets
(Maas et al., 2011; Khot et al., 2018) for transfer
learning in this study. To avoid an extreme ratio
of training samples between tasks, only five large
datasets in different tasks, which contain more than
10k training samples, are preserved in dual-task
and multi-task learning interpretation experiments.
Like Karimi Mahabadi et al. (2021), SciTail and
IMDB are used only in transfer learning. Statistics
of all datasets used are shown in Table 1.

5.2 Models

As shown in Table 2, seven Pre-trained Transformer
Models (PTMs), including GPT family models,
different sizes of BERT and different pre-training
methods (Radford et al., 2018, 2019; Devlin et al.,
2019; Liu et al., 2019b; Jiao et al., 2020; He et al.,
2021), are investigated in this paper. These models
are all initialized from the transformer library of
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Figure 2: Average dissociation scores of different Transformer-based models (y-axis) after ten dual-task learning
tasks (x-axis) with α = 30%. The larger dissociation score implies a higher degree of functional specialization in
multi-head attention (Section 4.1). All dissociation scores are reported in Table 9. ∗ indicates that the parameters of
BERTBASE encoder are frozen, i.e., the output layers are fine-tuned only.

Task Dataset #Class #Train

Topic Classification AG’s News⋆ 4 120,000
Acceptability CoLA 2 8,551

Natural Language Inference MNLI⋆ 3 392,702
Paraphrase QQP⋆ 2 363,846
Paraphrase MRPC 2 3,668

Question Answering QNLI⋆ 2 104,743
Sentiment Analysis SST-2⋆ 2 67,349

Entailment RTE 2 2,490
Textual Similarity STS-B - 5,749

Natural Language Inference SciTail 2 23,596
Sentiment Analysis IMDB 2 25,000

Table 1: Statistic of datasets used. ⋆ denotes dataset used
in dual-task and multi-task interpretation experiments.

HuggingFace (Wolf et al., 2019). Hyperparameters
are reported in Appendix A.

Model #L #A #L × #A Parameters

GPT 12 12 144 110M
GPT-2 24 16 384 355M

TinyBERT 6 12 72 67M
BERTBASE 12 12 144 110M

RoBERTaBASE 12 12 144 125M
DeBERTaV3BASE 12 12 144 184M

BERTLARGE 24 16 384 340M

Table 2: Statistic of models used. #L=the number of
layers, #A=the number of attention heads per layer.

6 Experiments and Results

6.1 Functional Specialization Does Evolve in
Multi-head Attention

Dual-task Learning Based on the pairwise com-
bination of five datasets, there are ten groups of

Prune Task MNLI QQP QNLI AG SST-2

MNLI† 58.23 71.52 61.39 91.99 85.32
QQP† 62.54 69.43 60.80 91.54 85.13
QNLI† 59.29 70.96 57.50 91.88 86.35
AG† 65.88 76.28 69.35 80.01 85.09

SST-2† 69.50 77.40 73.96 86.51 82.45

Random† 80.68 85.42 85.05 93.65 91.23

Base 83.91 87.64 90.26 94.50 92.05

Di(α) 7.28 5.26 11.07 9.84 3.28

Table 3: Performance(%) of the pruned and base model
on each task using BERTBASE with α = 30%. T † de-
notes top α important heads for this task are pruned.
The lowest value is underlined.

dual-task learning tasks. We observe that the disso-
ciation scores of models without frozen in dual-task
learning are all positive, i.e., double dissociation
phenomenon appears in all task-pairs (details are
shown in Appendix B). As illustrated in Figure
2, BERTBASE shows a distinct functional special-
ization phenomenon (D(α) > 10%) in four dual-
task learning tasks. Moreover, distinct functional
specialization phenomena are also found in the
other two sizes of BERT and GPT models. The
other two base-size models, RoBERTaBASE and
DeBERTV3BASE, even show a higher degree of
functional specialization, in which average dissoci-
ation scores among ten dual-task learning tasks are
13.44% and 10.88% respectively.

To eliminate the accidental functional special-
ization phenomenon, we train another dual-task
model using a frozen BERTBASE encoder for com-
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Performance on Task A Performance on Task B

Task A Task B Base Acc. Task A† Task B† Base Acc. Task A† Task B† DA(30%) DB(30%) D(30%)

AG QNLI 94.13 85.94 92.44 91.13 65.04 52.95 6.905 13.270 10.088
AG-Pair QNLI 94.46 56.17 64.52 90.72 64.85 53.66 8.842 12.337 10.590

AG SST-2 94.29 89.51 92.32 92.47 89.76 86.01 2.982 4.051 3.517
AG-Pair SST-2 94.68 67.65 71.80 92.66 89.33 85.78 4.387 3.837 4.112

Table 4: Comparison between different input paradigm combinations. The input of AG-Pair is a pair of sentences
from AG, and the label is whether they belong to the same topic.

parison. As shown in the fifth row of Figure
2, most of the dissociation scores are relatively
small, and only one dual-task pair, “MNLI and
AG”, shows a mild functional specialization phe-
nomenon (D(α) > 5%). The average dissocia-
tion score of these ten task pairs spontaneously
increases by 6.32% if we fine-tune the shared en-
coder.

Multi-task Learning We further conduct multi-
task learning experiments using all five tasks in
dual-task learning. In addition to all positive disso-
ciation scores, we find that the performance of one
task decreases more when pruning the top 30% im-
portant attention heads of this task compared with
other tasks (Table 3). It demonstrates that the func-
tional specialization phenomenon has evolved after
multi-task learning, i.e., there is a unique group of
heads more important to one specific task. Other-
wise, the influence on all tasks would be similar
when pruning the most important attention heads
for different tasks.

The absolute performances on the first three
tasks (MNLI, QQP, and QNLI) suffer a drastic drop
after pruning only 30% attention heads. For exam-
ple, the lowest drop is 14.41% on MNLI when the
top 30% important heads for SST-2 are pruned,
while the highest one is only 14.49% among the
AG and SST-2 when pruning the same amount of
attention heads. It indicates that tasks taking two
sequences as input, e.g., natural language inference
and question answering, depend on attention mech-
anism more than one sequence input task, which is
in line with the finding of Vashishth et al. (2019).
See Appendix C for more details and analyses.

6.2 Task Similarity Affects Functional
Specialization

After observing the functional specialization phe-
nomenon in the multi-head module, it is interesting
to study how this phenomenon is affected. In this
section, we empirically explore two factors: task
similarity and input paradigm.
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Figure 3: The average dissociation score and similarity
of each task-pair in multi-task learning.

Task Similarity The task similarity metric
Cognitive-Neural Mapping (CNM), which is found
less sensitive to underlying models (Luo et al.,
2022), is utilized to quantify the similarity of task-
pair in this section.

As shown in Figure 3, we observe that there is
a significant negative correlation between the aver-
age dissociation score of task-pair and the similar-
ity between tasks. In other words, the more similar
the tasks are, the lower the average dissociation
score is, which suggests the weaker the functional
head specialization phenomenon is. The other three
task similarity metrics used and fitting results refer
to Appendix D, where this negative relationship is
also found.

Input Paradigm There are two different input
paradigms, sentence pair (MNLI, QNLI, and QQP)
and single sentence (AG and SST-2), among these
five tasks. We notice the average dissociation score
of two tasks in different input paradigms is higher
than the same input paradigm ones in Figure 2
(BERTBASE: 12.654% > 3.016%). Thus, exper-
iments are conducted to investigate the effect of
input paradigm on the degree of functional spe-
cialization in multi-head attention. Specifically,
we construct a dataset named “AG-Pair” using the
sentences of AG dataset, which aims to identify
whether a pair of input sentences belong to the
same topic. The number of samples in AG-Pair is

16465



Model Type #Params CoLA
Mcc

MNLI-(m/mm)
Acc

MRPC
F1

QNLI
Acc

QQP
F1

RTE
Acc

SST-2
Acc

STS-B
rs

Avg

TinyBERT‡ ST 9.0× 46.3 83.0/82.4 85.1 90.0 70.7 65.6 92.9 84.6 77.8

TinyBERT MTL 1.0× 35.2 82.6/81.9 83.4 90.5 70.2 74.0 92.5 83.5 77.1
+IAT MTL 1.0× 39.3 82.5/81.9 85.4 90.3 70.5 74.1 92.7 84.2 77.9

BERT1
BASE ST 9.0× 52.1 84.6/83.4 88.9 90.5 71.2 66.4 93.5 85.8 79.6

PALs2 MTL 1.13× 51.2 84.3/83.5 88.7 90.0 71.5 76.0 92.6 85.8 80.4
CA-MTL3

BASE MTL 1.12× 53.1 85.9/85.8 88.6 90.5 69.2 76.4 93.2 85.3 80.9

Ticket-Share‡BASE MTL 1.0× 50.3 83.7/83.0 88.0 90.5 70.5 76.6 93.7 84.8 80.1

BERTBASE MTL 1.0× 49.8 83.9/83.4 86.4 89.9 70.3 76.0 93.2 85.7 79.8
+IAT MTL 1.0× 51.6 83.9/83.1 87.6 90.6 71.2 76.8 94.1 86.2 80.6

BERT1
LARGE ST 9.0× 60.5 86.7/85.9 89.3 92.7 72.1 70.1 94.9 86.5 82.1

Adapters-2564 ST 1.3× 59.5 84.9/85.1 89.5 90.7 71.8 71.5 94.0 86.9 80.0
CA-MTL3

LARGE MTL 1.12× 59.5 85.9/85.4 89.3 92.6 71.4 79.0 94.7 87.7 82.8

Ticket-Share‡LARGE MTL 1.0× 56.2 86.0/85.6 88.7 92.7 71.4 78.8 94.5 85.6 82.2

BERTLARGE MTL 1.0× 56.8 85.6/84.9 86.6 92.4 71.3 79.0 94.3 86.2 81.9
+IAT MTL 1.0× 60.0 85.5/85.3 88.4 92.1 71.5 79.1 94.5 86.8 82.6

RoBERTa‡BASE ST 9.0× 60.0 87.2/86.7 90.8 93.1 72.1 71.9 95.7 88.2 82.9

RoBERTaBASE MTL 1.0× 55.3 87.2/86.7 89.6 92.3 71.4 80.0 95.1 87.1 82.7
+IAT MTL 1.0× 59.9 86.9/86.8 90.9 92.4 71.8 80.5 95.4 87.1 83.5

DeBERTaV3‡
BASE ST 9.0× 67.1 90.0/89.2 90.6 94.4 73.9 81.5 96.2 88.9 85.8

DeBERTaV3BASE MTL 1.0× 63.1 89.9/89.2 89.4 93.8 73.7 86.7 95.5 89.6 85.7
+IAT MTL 1.0× 67.2 89.7/89.2 90.9 93.8 74.0 86.9 95.8 89.7 86.4

Table 5: GLUE test set results using the GLUE evaluation server. “ST” stands for the single task fine-tuned model,
whereas “MTL” denotes the multi-task learning model. The multi-task learning models we tested are not further
fine-tuned on each task, so there is only one model for all tasks (1.0× in #Params). Results from: Devlin et al.
(2019)1, Stickland and Murray (2019)2, Pilault et al. (2021)3, Houlsby et al. (2019)4. ‡ indicates our implement
result for a fair comparison. The highest performance in the last two conditions of each model is displayed in bold.

the same as AG, which is 120k, and each sample in
AG occurs twice in the AG-Pair dataset. The gener-
ation method and statistics of AG-Pair are reported
in Appendix E.

As shown in Table 4, there is no significant dis-
sociation score difference between “AG + QNLI”
and “AG-Pair + QNLI” dual-task learning tasks,
which also holds for “AG + SST-2” and “AG-Pair
+ SST-2”. We note that the absolute performances
on the AG-Pair dataset suffer a drastic drop after
pruning only 30% attention heads, which is similar
to the other tasks taking a pair of sentences as input
(Table 3).

According to the experimental results presented
above, we observe that task similarity plays a more
important role than the input paradigm in the func-
tional specialization of the multi-head attention
module.

6.3 Improving Multi-Task Models by Training
Important Attention Heads

Once the importance of attention heads for each
task is figured out, we should be able to consol-
idate their roles by only finetuning them. Thus,

Important Attention-head Training (IAT) (Section
4.2) is applied to the multi-task learning models
on 9 GLUE datasets and compared against vanilla
multi-task learning. We observe that the degree of
functional specialization in the multi-head attention
module is improved by training the top important
attention heads during the last part of multi-task
learning (details refer to Appendix F).

Table 5 reports on a comparison result of single
task fine-tuning models, multi-task learning mod-
els as well as the models using adapters on GLUE
test set.2 GPT and GPT-2 are not incorporated
due to their inferior performance on GLUE. With
important attention-head training, the average per-
formances of five multi-task learning models are
increased by 0.76% on average over the vanilla
multi-task learning baseline. These transformer
family models for multi-task learning even surpass
their single task fine-tuning counterparts, which
consist of 9 task-specific models.

In most cases, multi-task learning models with

2For a fair comparison, we treat MNLI-m and MNLI-mm
as two tasks, which is the same as Houlsby et al. (2019) and
Pilault et al. (2021).
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# Samples of SciTail # Samples of IMDB

Model 4 16 32 100 4 16 32 100

MT-DNN 71.83±6.5 81.24±3.8 82.59±2.3 85.90±2.0 77.65±4.7 80.76±3.1 82.98±0.9 83.65±0.6

Ticket-ShareBASE 73.17±6.1 82.07±4.0 83.05±2.4 86.22±1.5 78.43±4.0 81.57±1.6 83.07±0.6 83.84±0.5

BERTBASE 69.44±8.9 79.41±4.7 81.52±3.0 85.65±1.6 72.21±6.2 78.67±3.5 82.10±1.0 83.39±0.5

+IAT 75.66±4.0 82.11±3.2 83.82∗
±1.9 86.60∗

±1.3 80.50∗
±2.6 82.03∗

±1.9 83.33∗
±0.5 84.08∗

±0.3

Table 6: Few-shot transfer learning results on development sets across 30 seeds (∗ indicates statistically significant
improvements of 5% level). All models use BERTBASE as encoder and are initialized from their multi-task learning
models on GLUE.

IAT receive a performance gain on the four small
datasets (CoLA, MRPC, RTE, and STS-B), among
which the improvement on CoLA is the most signif-
icant (+3.6% on average). It comes from the allevi-
ation of negative transfer in CoLA under multi-task
learning. For example, compared with fine-tuning
on CoLA (60.5%), the performance of BERTLARGE
drops to 56.8% under multi-task learning, while it
increases to 60.0% after using IAT. The perfor-
mances of multi-task learning models on two large
datasets, QQP and SST-2, are also improved by our
method. More results, including different sampling
methods and performances on GLUE development
sets, are shown in Appendix F.

Few-shot Transfer Learning Furthermore, we
investigate whether a multi-task learning model
with a more specialized multi-head attention mod-
ule will be better at transfer learning. Table 6
presents the few-shot transfer learning results us-
ing different amounts of training samples from Sc-
iTail (natural language inference task) and IMDB
(sentiment analysis task). We find that the model
initialized from a multi-task learning model using
IAT achieves a higher accuracy on the new task,
especially when fewer samples are provided. IAT
degrades to the multi-task learning method pro-
posed by Liang et al. (2021) when δ = 1, and
often obtains a worse performance in multi-task
learning and transfer learning (Ticket-Share in Ta-
ble 5 and Table 6). It may come from the weak
functional specialization phenomenon in the origi-
nal pre-trained models (e.g., the frozen BERTBASE
encoder in Figure 2), which makes it harder to cor-
rectly determine the most important attention heads
for each task at the beginning of multi-task training.

Ablation Study To take a deep look into the
improvements contributed by important attention-
head training, we conduct an ablation study on
GLUE dev set using BERTBASE (Table 7). After

Model Avg # Tasks Improved

BERTBASE 82.64±0.09 -

w/ Prune the least important 30% heads 82.23±0.46 3
w/ Train random 30% heads 82.71±0.10 6
w/ Train the most important 30% heads 83.41±0.20 8

Table 7: Ablation study of different multi-task methods
on GLUE dev set with δ = 10%.

Model SciTail IMDB

BERTBASE 69.44±8.94 72.21±6.17

w/ Train random 30% heads 72.61±7.13 77.81±3.76

w/ Train the most important 30% heads 75.66±4.02 80.50±2.63

Table 8: Ablation study of 4-shot transfer learning using
different multi-task learning models on GLUE.

pruning the least important 30% heads, there is
a performance gain on three tasks (MRPC, SST-
2, and STS-B), which is in line with the previous
finding that Transformer can be improved by prun-
ing some redundant attention heads (Michel et al.,
2019).

It is interesting to find that multi-task models can
benefit from training random 30% attention heads
for each task, which may arise from the mitigation
of gradient interference by subdividing the parame-
ters shared. Compared with training random 30%
attention heads, training the most important part
of attention heads can further improve the average
performance and benefit more tasks, which is con-
firmed in the ablation study of few-shot transfer
learning (Table 8).

7 Conclusions and Future Work

In this paper, we conduct extensive dissociation
experiments and observe that the brain-like func-
tional specialization phenomenon does evolve in
multi-head attention after dual-task or multi-task
learning. Furthermore, experimental results show
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that the performance and generalization ability of
multi-task models can be improved by the multi-
task training method based on functional special-
ization. This work, inspired by neuroscience find-
ings, studies the interpretation and improvement
of neural networks, which we hope will promote
more efforts on interdisciplinary work combining
neuroscience and artificial intelligence.

In the future, we plan to investigate more neu-
ral network modules that may arise the functional
specialization phenomenon under multi-task learn-
ing. Another direction is to design better meth-
ods exploiting this phenomenon to further improve
multi-task learning models.

Limitations

Firstly, we conduct extensive experiments on multi-
ple natural language understanding tasks only, and
multi-modal tasks could be investigated further.

In addition, only one approach is utilized to esti-
mate the importance of each attention head, and the
most important attention heads are pruned at once.
Because of this choice, our results can be seen as a
lower bound on the estimation of functional special-
ization in multi-head attention. We acknowledge
that there might be methods to show higher dissoci-
ation scores, such as adopting other attention head
importance estimation methods (Hao et al., 2021;
Li et al., 2021) or iterative pruning.

We note that the four similarity metrics used in
this study are model-dependent, and recognize that
results might be different for other Transformer-
based models.

Lastly, there are two hyper-parameters intro-
duced in our multi-task training method, which
may need extra tuning when adapted to other multi-
task learning settings.
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A Hyperparameters

A.1 Dual-task and Multi-task Learning

To fine-tune the pre-trained models on dual-task
or multi-task learning, we use Adam optimizer
(Kingma and Ba, 2015), in which β1 = 0.9 and
β2 = 0.999, and a learning rate of 2e-5. We also
use a linear warm-up schedule and set the warm-up
proportion to 0.1. The number of epochs is em-
pirically set to 5 for a fair comparison. The only
exception is the distillation of TinyBERT, which
contains intermediate layer distillation and pre-
diction layer distillation. Under the supervision
of a fine-tuned BERTBASE, these distillation meth-
ods are performed for 2 and 3 epochs without aug-
mented data, respectively. Unless otherwise speci-
fied, the proportional sampling method is utilized
in multi-task learning.

Similar to the difference in area between cortical
regions, the best α for each task may be different
in dissociation experiments. We acknowledge that
higher dissociation scores can be obtained by fine-
tuning α in each dual-task learning task. For a
fair comparison, α is empirically set to 30% in
all dissociation experiments to show the extent of
functional specialization in the multi-head attention
module. All experiments are repeated under three
random seeds and average results are reported.

A.2 Transfer Learning

Since only a small part of training samples are used
in transfer learning experiments, we increase the
number of training epochs to 20, and conduct a
paired bootstrap statistical test under 30 random
seeds (Dror et al., 2018).

B Dual-task Learning Experiments

In this section, we present the results of all multi-
head attention based models investigated in dual-
task learning tasks.

As reported in Table 9, the dissociation scores
of Transformer-based models in dual-task learning
are all positive when fine-tuning the pre-trained
encoder, i.e., double dissociation phenomenon ap-
pears in all task-pairs. It further demonstrates that
the functional specialization phenomenon does ap-
pear in the multi-head attention module after train-
ing on these dual-task learning tasks.

C Multi-task Learning Experiments on
BERTBASE

We report more results of multi-task learning ex-
periments conducted in Section 6.2. The pair-wise
dissociation scores are reported in Table 10.

Distribution of Heads Pruned To gain more in-
sights about the functional specialization in multi-
task learning, we statistic the distribution of heads
pruned for each task across layers in multi-task
learning (Figure 4). The average number of atten-
tion heads pruned shows a trend of increasing first
and then decreasing, which changes at the 4th layer.
The two layers with the greatest difference among
tasks are the first layer (σ = 2.39) and the sixth
layer (σ = 2.08) of BERTBASE after fine-tuning 5
epochs on these five tasks.

Figure 4: The number of important heads pruned among
the layers of BERTBASE after multi-task learning. The
average number of heads pruned in one layer is 3.6
(α = 30%).

Overlapping of Heads Pruned Table 11 reports
the overlapping of attention heads pruned between
tasks. It seems that the proportion of overlapping
heads pruned does not completely correspond to
the dissociation score of each task (Table 10). For
example, as for the MNLI and AG tasks, the task
with the highest overlapping of heads pruned is the
same as the one with the lowest dissociation score.
However, the highest overlapping of heads pruned
for SST-2 comes to the second-highest dissociation
score when combined with MNLI.

D Task Similarity Metrics and Fitting
Results

To verify the robustness of our finding in Section
6.2, the following four metrics are adopted to de-
termine the similarity of each task pair:
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MNLIA QQPA QNLIA AGA

QQPB QNLIB AGB SST-2B QNLIB AGB SST-2B AGB SST-2B SST-2B

Model DA DB DA DB DA DB DA DB DA DB DA DB DA DB DA DB DA DB DA DB

GPT 0.28 3.76 2.10 1.36 16.75 10.47 16.49 1.13 1.36 0.80 18.19 3.60 25.19 1.08 28.74 3.51 31.34 0.75 2.51 4.08

GPT-2 4.76 3.26 3.09 0.71 15.44 3.29 17.69 5.79 12.64 0.66 19.24 2.39 50.19 4.18 18.62 4.69 16.49 6.81 3.60 6.61

TinyBERT 2.04 20.10 3.82 1.19 35.66 5.36 31.85 4.71 14.42 0.63 8.70 6.54 24.39 2.35 14.87 6.28 35.59 1.63 1.08 1.59

BERTBASE 2.78 2.60 2.34 2.63 11.36 16.26 13.81 0.21 1.92 4.82 28.97 10.39 11.34 3.18 13.27 6.91 32.87 3.28 2.98 4.05

BERT∗
BASE −0.96 0.35 −0.13 1.21 5.59 4.53 3.27 1.20 0.01 0.15 0.82 3.94 −1.07 6.95 6.74 0.90 7.68 2.14 2.48 3.90

BERTLARGE 2.43 0.83 5.69 3.55 17.31 6.16 19.83 9.81 0.02 5.90 22.40 2.88 21.20 6.52 17.90 9.56 20.44 8.73 7.72 7.23

RoBERTaBASE 8.56 10.86 1.31 4.32 17.43 38.23 5.48 8.40 2.43 0.54 23.27 22.73 22.19 5.59 15.96 47.73 16.09 5.01 6.62 6.16

DeBERTaV3BASE 6.21 4.64 14.21 0.02 24.11 8.47 27.03 2.65 9.50 0.02 11.65 9.50 20.51 13.33 3.42 16.92 20.36 2.33 4.97 17.78

Table 9: Results in dual-task learning experiments under α = 30%. ∗ indicates that the parameters of BERTBASE
encoder are frozen.

.

Task MNLIA QQPA QNLIA AGA SST-2A

MNLIB - 2.385 4.321 12.671 3.115
QQPB 5.161 - 3.657 12.198 2.907
QNLIB 1.275 1.746 - 12.555 4.236
AGB 9.169 7.819 13.135 - 2.865

SST-2B 13.496 9.091 18.246 6.874 -

Table 10: DA(α) between task-pairs, which is calcu-
lated on the pruning results of multi-task learning with
α = 30%. The highest dissociation score in each task A
is displayed in bold, and the lowest one is underlined.

Task MNLIA QQPA QNLIA AGA SST-2A

MNLIB - 81.40 83.70 58.14 68.99
QQPB 81.40 - 78.29 63.57 62.79
QNLIB 83.70 78.29 - 62.02 62.02
AGB 58.14 63.57 62.02 - 64.34

SST-2B 68.99 62.79 62.02 64.34 -

Table 11: The overlapping percentage of important
heads pruned in multi-task learning under α = 30%.
The highest overlapping in each task A is displayed in
bold, and the lowest one is underlined.

Direct Similarity Estimation (DSE) This
method approximates the similarity of task pairs by
the average similarity of sentence representations
from models fine-tuning on the corresponding task.
Therefore, we randomly select 1000 sentences
from the Wikipedia corpus and adopt cosine
similarity to quantify the similarity of sentence
representations. Results with DSE metric are
shown in Figure 5.

Analytic Hierarchy Process (AHP) On the
other hand, the similarity of task pairs can be ap-
proximated from the pair-wise transfer learning
results (Zamir et al., 2018). Given a target task,
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Figure 5: The average dissociation score and DSE simi-
larity of each task pair in multi-task learning.

models transferred from different source tasks are
compared on a hold-out dataset to determine the
transferability of the target task, which is further
used to approximate the similarity between tasks.
Results using AHP are illustrated in Figure 6.
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Figure 6: The average dissociation score and AHP simi-
larity of each task pair in multi-task learning.

Cognitive Representation Analytics (CRA) In-
spired by Representational Similarity Analysis
(RSA) in cognitive neuroscience (Kriegeskorte
et al., 2008), CRA first calculates the Representa-
tion Dissimilarity Matrix (RDM) by the dissimilar-
ity of sentence representations, then approximates
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the similarity between tasks by the similarity be-
tween the corresponding RDMs (Luo et al., 2022).
Figure 7 presents the results with CRA.
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Figure 7: The average dissociation score and CRA simi-
larity of each task pair in multi-task learning.

Cognitive-Neural Mapping (CNM) CNM cal-
culates the task similarity by mapping sentence
representations of fine-tuned models to fMRI data
(Luo et al., 2022), which is recorded when 5 partici-
pants were intently reading presented 384 passages
(Pereira et al., 2018). Different from randomly se-
lecting 25k fMRI voxels, the most informative 5k
fMRI voxels for each participant are used to pre-
dict the similarity among tasks. Results with CNM
have been shown in Figure 3.

To sum up, we observe that there is a negative
correlation between the average dissociation score
and the task similarity, no matter which task simi-
larity metric is adopted.

E AG-Pair dataset

The AG-Pair dataset is built from the original
dataset AG’s News that contains 120k training sam-
ples from four topics. Given a pair of news as input,
the model has to predict whether they are belonging
to the same topic (Same) or not (Different).

To generate this dataset, samples in AG are it-
erated in random order and have an equal chance
to combine a sample in the same topic or the other
three topics. Thus the numbers of training samples
in two classes are both 60k. Moreover, each news
in AG’s News occurs exactly twice in the AG-Pair
dataset to keep the same word frequency.

F Other Experimental Results on GLUE

In this section, we report more results and analyses
of multi-task learning models on GLUE. Figure 8
illustrates that the average dissociation scores of
five Transformer-based models are all improved by
IAT as we expected.

Figure 8: Average dissociation score of five multi-task
learning models on GLUE dev set with α = 30%.

Figure 9 and 10 present the impact of two hy-
perparameters, δ and α in IAT, on the average per-
formance of BERTBASE. It is interesting to find
that with a small δ and α (e.g., δ = 10% and
α = 30%), BERTBASE using IAT can achieve
a good performance on GLUE dev set. There-
fore, we only consider a limited hyperparameter
sweep for each multi-task learning model with
δ ∈ {0.05, 0.1, 0.15} and α ∈ {0.1, 0.2, 0.3}.

Figure 9: The average performance of BERTBASE on
GLUE dev set using IAT with different δ (α = 50%).

Same as the finding in Stickland and Murray
(2019), the annealed sampling method is better for
multi-task learning of GLUE than the proportional
sampling method. The sampling probabilities of
task i in annealed sampling are changed with epoch
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Figure 10: The average performance of BERTBASE on
GLUE dev set using IAT with different α (δ = 10%).

e, and are calculated as follows:

pi ∝ Nε
i

with ε = 1− 0.8
e− 1

E − 1

(8)

where Ni is the number of samples in task i, E is
the total number of epochs. In contrast, the ε in
proportional sampling is always equal to 1.

Table 12 shows the results of five multi-task
learning models using the proportional sampling
method on GLUE test set. We can find that these
multi-task learning models with proportional sam-
pling perform better on GLUE test set after using
IAT (+0.68% on average), which is in line with the
findings in Section 6.3. It further demonstrates the
effectiveness of our method.

Additional experimental results on development
sets of GLUE for all models tested in this paper are
reported in Table 13. In most cases, the standard
deviation of average performance on GLUE devel-
opment set is less than or equal to the baseline after
using IAT, which indicates the robustness of our
method.
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Model CoLA
Mcc

MNLI-(m/mm)
Acc

MRPC
F1

QNLI
Acc

QQP
F1

RTE
Acc

SST-2
Acc

STS-B
rs

Avg.

TinyBERT 27.0 82.8/82.5 83.4 90.3 70.4 71.6 92.3 83.4 76.0

+IAT 33.7 82.8/82.2 85.3 90.6 70.3 71.9 92.5 84.0 77.0
BERTBASE 41.8 83.6/82.7 85.0 90.1 70.6 74.7 93.0 83.2 78.3

+IAT 45.1 84.0/83.3 85.1 89.6 70.8 76.2 92.8 83.5 78.9
BERTLARGE 53.3 85.4/84.9 85.9 92.0 71.3 78.6 94.3 84.8 81.2

+IAT 56.7 85.8/84.8 85.9 92.3 71.5 78.9 94.4 84.9 81.7

RoBERTaBASE 52.5 87.5/86.8 88.4 92.3 71.9 79.1 94.8 85.8 82.1

+IAT 56.1 87.1/86.7 88.5 92.6 72.3 79.9 95.2 85.8 82.7

DeBERTaBASE 61.9 89.9/88.9 87.6 93.7 73.8 86.0 95.8 88.4 85.1

+IAT 64.8 89.7/89.0 89.2 93.8 73.9 86.7 96.1 88.8 85.8

Table 12: GLUE test set results of five multi-task learning models using proportional sampling.

Model CoLA
Mcc

MNLI-(m/mm)
Acc

MRPC
F1

QNLI
Acc

QQP
F1

RTE
Acc

SST-2
Acc

STS-B
rs

Avg.

Proportional Sampling

TinyBERT 31.3 83.2/83.5 83.9 90.3 86.3 71.8 91.5 85.8 78.6±0.5

+IAT 37.5 83.1/83.1 85.5 90.5 86.7 72.1 91.6 86.6 79.6±0.3

BERTBASE 47.2 83.7/83.3 85.0 90.3 87.0 78.3 92.7 86.6 81.6±0.3

+IAT 52.0 83.6/83.6 86.5 90.1 87.2 79.4 91.9 87.2 82.4±0.2

BERTLARGE 54.1 85.7/85.6 86.9 91.6 88.3 82.1 93.2 87.9 83.9±0.3

+IAT 58.9 86.0/85.7 86.9 91.8 88.2 82.7 93.4 87.9 84.6±0.3

RoBERTaBASE 49.7 87.6/87.1 89.7 91.9 87.6 83.0 94.5 88.4 84.4±0.3

+IAT 54.2 87.2/87.1 89.8 92.3 87.8 84.4 94.1 88.4 85.0±0.1

DeBERTaBASE 65.5 89.8/90.0 89.1 93.8 89.3 87.0 95.1 90.0 87.7±0.2

+IAT 67.9 89.7/90.0 90.1 93.9 89.4 87.6 95.5 90.1 88.2±0.1

Annealed Sampling

TinyBERT 40.7 83.1/82.9 85.0 90.4 86.2 73.6 90.6 87.5 80.0±0.3

+IAT 45.8 82.8/83.0 85.5 90.3 86.6 74.7 91.2 87.9 80.9±0.4

BERTBASE 51.1 83.6/83.9 87.6 90.1 87.1 79.8 92.2 88.4 82.6±0.1

+IAT 53.5 83.8/84.0 89.0 90.6 87.6 80.6 93.2 88.4 83.4±0.2

BERTLARGE 58.8 85.8/85.8 87.4 91.8 87.9 82.0 92.8 88.6 84.5±0.2

+IAT 61.6 86.0/86.0 88.7 91.5 88.0 82.2 93.7 89.1 85.2±0.2

RoBERTaBASE 54.3 87.3/87.0 92.2 92.3 86.9 84.6 94.5 89.0 85.3±0.1

+IAT 59.2 87.1/86.8 92.2 92.2 87.1 84.7 94.3 89.1 85.9±0.1

DeBERTaBASE 65.7 90.0/90.1 90.7 93.9 89.0 88.0 95.2 90.3 88.1±0.2

+IAT 68.7 89.9/90.0 91.4 94.0 89.1 88.5 95.3 90.7 88.6±0.1

Table 13: GLUE development set results of five multi-task learning models.
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