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Abstract
Music captioning has gained significant at-
tention in the wake of the rising prominence
of streaming media platforms. Traditional
approaches often prioritize either the audio
or lyrics aspect of the music, inadvertently
ignoring the intricate interplay between the
two. However, a comprehensive understand-
ing of music necessitates the integration of
both these elements. In this study, we delve
into this overlooked realm by introducing a
method to systematically learn multimodal
alignment between audio and lyrics through
contrastive learning. This not only recognizes
and emphasizes the synergy between audio
and lyrics but also paves the way for mod-
els to achieve deeper cross-modal coherence,
thereby producing high-quality captions. We
provide both theoretical and empirical results
demonstrating the advantage of the proposed
method, which achieves new state-of-the-art
on two music captioning datasets. Our code
is publicly available at https://github.com/
zihaohe123/ALCAP.

1 Introduction

Learning to interpret music based on audio and
lyrics has become an increasingly attractive re-
search area for researchers in the filed music under-
standing and natural language processing (Manco
et al., 2021; Zhang et al., 2022b). The insights
gained from this research into multimodal represen-
tation learning enable a wide range of applications
such as streaming media discovery (Salha-Galvan
et al., 2021) and music recommendation with de-
tailed and human-like descriptions (Andjelkovic
et al., 2019), making the dynamics of search and
recommendation engines more explainable. How-
ever, captioning music is a challenging task. The
duality of music, with its often nebulous and repe-
titious lyrics intertwined with intricate audio com-
positions harboring multiple layers of information,
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introduces a sophisticated web of complexities for
models to navigate and understand.

Previous works on music captioning have primarily
focused on refining singular facets of the encoder-
decoder paradigm, from the enhancement of the
music encoder to the incorporation of sophisticated
attention mechanisms and beam search strategies.
However, little effort has been directed towards
leveraging the correspondence between audio and
lyrics, which could potentially provide useful infor-
mation for generating high-quality captions. Zhang
et al. (2022b) leverage the multimodal informa-
tion from both lyrics and music through a cross-
modal attention module, but the two modalities
are not aligned before fusion. In reality, audio
and lyrics are loosely aligned, as it is common for
composers and lyricists to work separately in the
music industry, resulting in different lyrics fitting
the same melody. Additionally, the same words
with different song patterns and styles can express
diametrically opposite emotions. Therefore, the
loose alignment between music and lyrics make
them imperfect sources of data for existing multi-
modal learning methods that are not equipped with
alignment mechanisms (Nichols et al., 2009; Zhang
et al., 2022a). In this regard, accurate and compre-
hensive music interpretation should leverage the
subtle connections between music and lyrics.

In addressing the complexities of music understand-
ing, we propose to align audio and lyrics pairs with
contrastive learning before modality fusion and
caption generation. Intuitively, paired audio and
lyrics should be brought close together in the la-
tent space, while non-paired ones should be pulled
apart. By adding a contrastive loss, the multimodal
input pairs are forced to be more aligned, which
in turn guides the model to achieve stronger cross-
modal consistency for a more meaningful fused
latent space, thus generating better music captions.
To this end, we propose Alignment Augmented
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Music Captioner (ALCAP), which is an extension
of BART-fusion (Zhang et al., 2022b) for music
captioning with a contrastive learning based align-
ment augmentation module. We provide a theo-
retical explanation of why the proposed alignment
module results in improved generalization from
an information bottleneck perspective. Extensive
experiments on the Song Interpretation Dataset
(Zhang et al., 2022b) and the NetEase Cloud Mu-
sic Review Dataset demonstrate ALCAP’s supe-
riority with marked improvements in key metrics
(ROUGE-L and METEOR) over previous bench-
marks. We also observe performance gain of AL-
CAP in cross-modal text-music retrieval, which is
a common application in industry, providing an
indirect perspective to evaluate the caption qual-
ity. Lastly, we explore the effect of contrastive loss
weights on the model performance via grid search
and conclude our ablation study by showing that
our proposed multimodal alignment module leads
to more concentrated attention on language tokens
through visualization analysis.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to propose an alignment augmentation mod-
ule through cross-modal contrastive learning
between music and lyrics for music caption-
ing. By learning the interactions between the
two modalities in an unsupervised manner, the
model is guided to learn better cross-modal
attention weights for meaningful fused latent
space, leading to high-quality music interpre-
tation generations.

• We provide a theoretical justification for the
improved generalization of the proposed mul-
timodal alignment module from an informa-
tion theory perspective.

• Extensive experiments on two music caption-
ing datasets demonstrate the effectiveness of
our proposed alignment augmentation mod-
ule, and we set the new state-of-the-art on the
Song Interpretation Dataset.

2 Related Work

2.1 Multimodal Alignment

Multimodal representation learning has been in-
creasingly important as modern intelligent appli-
cations require a comprehensive understanding of
vision, language and speech (Yin et al., 2022). To

learn meaningful latent spaces, unsupervised align-
ment between different modality inputs has been
proven effective as an additional layer of struc-
tural information about the data. In the work of
pretraining for speech synthesis (Bai et al., 2022),
aligning the acoustic and phoneme inputs makes
the model more capable of learning cross-modal
attention weights, thereby improving the quality of
acoustic signal reconstruction. ALBEF (Li et al.,
2021) proposes to align vision and language before
the modality fusion, purifying the multimodal in-
put pairs, thus resulting in a more grounded vision
and language representation. This approach can
be interpreted as maximizing mutual information
among different views of the same vision and lan-
guage pair. µ-VLA (Zhou et al., 2022) introduces
image-text level and region-phrase level alignment
in vision and language pretraining so as to make the
most of unpaired data. Goyal et al. (2022) propose
a retrieval process operating on past experiences to
provide the agent with contextual relevant informa-
tion, improving sample efficiency and representa-
tion learning of the policy function. It proves the
effectiveness of retrieval-augmented module in con-
tinuous decision making process which also applies
to the sequence of words generation (Ren et al.,
2017; Guo et al., 2018; Yu et al., 2022; Humphreys
et al., 2022).

Challenges in music-language alignment. While
the majority of work in this field focuses on the
alignment of vision and language (Radford et al.,
2021), the complexities of aligning audio, espe-
cially music, with text present a set of challenges
fundamentally different from those of image-text
alignment, as illustrated by the following reasons.
1) Richness of audio signals: Music, as an audi-
tory medium, encompasses a rich variety of sig-
nals ranging from melodies, rhythms, timbres, to
harmonic structures. These multifaceted signals,
when combined, deliver a sonic experience that of-
ten possesses layers of meaning, emotional depth,
and narrative nuances. 2) Ambiguity and subjectiv-
ity of lyrics: Lyrics, while being textual, are laden
with poetic devices, metaphors, and often abstract
representations. They can be open-ended, prompt-
ing multiple interpretations even without the mu-
sical context. When paired with music, lyrics can
either complement the musical message or intro-
duce added layers of ambiguity. 3) Synchronization
challenges: Music and lyrics evolve synchronously
over time. The alignment is not just about mapping
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the overall theme of a song to its lyrics; it is also
about understanding how specific musical passages
correspond to specific lyrical segments, reflecting
shifts in emotion, intensity, or narrative. These
challenges make the alignment of music and lyrics
a unique and intricate problem. Hence, while the
underlying principle of using contrastive learning
might resemble existing models applied in image
captioning, the intricacies of our domain necessi-
tate tailored approaches. The application of such
techniques to music captioning is relatively nascent,
and our work aims to pave the way for more explo-
rations in this direction.

Comparison between ALCAP and CLIP. While
both models employ contrastive learning for multi-
modal alignment, their objectives and applications
are distinct. CLIP (Radford et al., 2021) is de-
signed for image-text understanding and genera-
tion, leveraging a large dataset of images with their
corresponding textual captions. In contrast, AL-
CAP focuses specifically on music captioning by
aligning audio and lyrics pairs using cross-modal
contrastive learning before modality fusion. This
novel alignment augmentation module in ALCAP
is tailored to address the unique challenges posed
by the ambiguous and repetitive nature of lyrics, as
well as the complexity of audio signals in music.

2.2 Multimodal Music Captioning

Music captioning is a challenging task as it requires
the model to not only comprehensively understand
both music and corresponding lyrics but also to
avoid overfitting on limited music-lyrics pairs due
to copyright restrictions. MusCaps (Manco et al.,
2021) firstly addresses the music captioning task
from an audio captioning perspective, using a mul-
timodal input encoder-decoder architecture based
on LSTM (Hochreiter and Schmidhuber, 1997).
While MusCaps achieves a performance boost in
caption generation, its predictive word sequence
is limited to 20 tokens, which narrows down the
approach’s applicability, or at least not suitable for
our long and human-like language composition sce-
nario. One of the most relevant works to ours is
BART-fusion (Zhang et al., 2022b) which is built
on top of BART (Lewis et al., 2020), adding a mu-
sic encoder and modality fusion module. However,
BART-fusion fails to fully mine the relationship
between the music and lyrics input data. Inspired
by works from retrieval augmented representation
learning, we propose to improve the generalization

ability of BART-fusion by introducing music and
lyrics alignment before modality fusion.

3 Methodology

In this section, we introduce the architecture of AL-
CAP, which is based on BART-fusion (Zhang et al.,
2022b). We first state the problem definition, then
go through each module of the architecture. The
overall framework of ALCAP is shown in Figure
1.

3.1 Problem Definition
Given a song represented as a music-lyrics pair
xi, with a music track mi and its corresponding
lyrics ti, we aim to generate the caption (or inter-
pretation) ŷi of the song, consisting of a sequence
of word tokens. In a typical setting of captioning,
the attention-based encoder-decoder architecture is
adopted to learn the mapping function from mul-
timodal input to text output fθ : {mi, ti} → ŷi.
The model parameters θ are optimized to generate
the caption that is most consistent with the human
annotated caption yi.

3.2 Multimodal Encoding
Music Encoder To obtain the representation of
the music track, we use a pre-trained music en-
coder that includes a convolutional front-end and
Transformer encoder layers (Won et al., 2019). The
model was originally trained to classify music au-
dio into 50 tags under a multi-class setting using the
Million Song Dataset (Bertin-Mahieux et al., 2011).
These tags cover various musical characteristics,
such as the genre (e.g., Jazz and Blues), mode, and
the presence of specific instruments (e.g., piano
or guitar). To perform the classification, the mel-
spectrogram of a music track mi is first passed
through a series of CNN layers for local feature ag-
gregation in the time and frequency axis. The inter-
mediate features are then fed into two Transformer
encoder layers to model the information along the
time axis, taking into account that elements of mu-
sic can appear at different moments within a music
clip. In Won et al. (2019), the output embedding
series from the Transformer layer is further pooled
to perform the classification task. However, in this
paper, the embedding series hm

i ∈ Rlm×dm is used
directly, where lm is the length of the music se-
quence and dm is the hidden dimension.

Lyrics Encoder The representation of lyrics ti is
obtained following standard BART encoder (Lewis
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Figure 1: An overview of ALCAP. The encoded representations of music and lyrics are first aligned using contrastive
learning, then the aligned representations are fused using cross-attention, and further decoded through the text
decoder. The architecture is based on BART (Lewis et al., 2020).

et al., 2020), and denoted as ht
i ∈ Rlt×dt , where

lt is the length of the lyrics sequence and dt is
the hidden dimension. The encoder consists of six
multi-head self-attention layers.

3.3 Multimodal Representation Alignment

Music and lyrics are not inherently connected, as
different lyrics can fit the same melody, and the
same lyrics can convey different emotions when
paired with dynamic, rhythmic music. To fully cap-
ture the interactions between music and lyrics, we
propose using contrastive learning before modality
fusion to explicitly align the two modalities. This is
expected to result in improved performance due to
increased interactions between the two modalities,
as has been previously shown to be effective in the
vision and language domain (Li et al., 2021).

To be specific, given a batch of input music-lyrics
pairs {(m1, t1), (m2, t2), ....,(mn, tn)}, we first
obtain the music representations {hm

1 , hm
2 , ....,

hm
n } by the music encoder, and lyrics represen-

tations {hm
1 , hm

2 , ...., hm
n } by the lyrics encoder re-

spectively. As both music and lyrics are sequences,
we denote h̄ as the mean aggregation of h along
the sequence length dimension. Through a linear

transform on h̄, we obtain the latent code z and
use the InfoNCE loss (Oord et al., 2018) as the
contrastive learning objective in latent space, as

Lcontrast = −
n∑

i=1

log
σ(zm

i · zt
i/τ)∑

k σ(z
m
i · zt

k/τ)
, (1)

where zm
i and zt

i are the latent code of music and
lyrics respectively, and σ(·) is the exponential func-
tion. For simplicity, we ignore the symmetric ver-
sion by switching zm

i and zt
i in Equation 1, which

is also applicable for the purpose of modality align-
ment. Note that InfoNCE can be interpreted as
an estimator of a lower bound of mutual informa-
tion (Belghazi et al., 2018; Oord et al., 2018; Cheng
et al., 2020). We will incorporate this to prove the
effectiveness of out proposed alignment module
both theoretically and empirically, which is sup-
posed to be non-trivial. We will revisit this in § 4
and § 6.

3.4 Multimodal Fusion and Decoding
Before decoding, the aligned representations of mu-
sic tracks hm

i and lyrics ht
i are further fused by a

cross-attention module, where the lyrics represen-
tations are linearly projected as queries, and the
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music representations are projected as keys and
values. The process can be described as

hf
i = T (Q,K,V),

Q = WQht
i,K = WKhm

i ,V = WV
ℓ h

m
i , (2)

where hf
i is the final fused representation, WQ ∈

Rdt×dk , {WK
ℓ ,WV

ℓ } ∈ Rdm×dk are linear trans-
form parameters, respectively; dk is the projection
dimension.

The fused representation contains semantics from
both the music track and the lyrics, as the alignment
by contrastive learning ensures sufficient interac-
tions between them. While the multimodal encoder
fused the text and music as a whole, the decoding
process follows a teacher-forcing fashion to pre-
dict each caption words, i.e., the ground-truth word
token of the ith sample yi,t are provided at every
step t during training. We use the BART decoder
(Lewis et al., 2020) to generate the caption autore-
gressively and maximize the factorized conditional
likelihood. The caption loss is defined as

Lcap = − 1

n

n∑

i=1

T∑

t=1

logP (yi,t|yi,<t,h
f
i ), (3)

where yi,<t is the ground-truth word token before
step t and P indicates the probability of the token
at step t conditioning on previous tokens and fused
multimodal representation.

3.5 Overall Learning Objective
To this end, we define the final loss to be the
weighted sum of the caption loss and the contrastive
learning loss as follows:

L = Lcap + α ∗ Lcontrast, (4)

where α is the weight of the contrastive learning
loss, balancing the contribution of captioning and
multimodal alignment.

4 An Information Theoretical Perspective

In this section, we explain the performance im-
provement of our alignment module based on con-
trastive learning from a mutual information per-
spective.

Given an input pair xi := {mi, ti}, information
bottleneck (IB) (Alemi et al., 2016) encourages the

model to find minimal but sufficient information
about the input xi with respect to the target cap-
tion words yi. In other words, the objective of the
training process in IB can be formulated as

max
pθ(z|x)

I(y; z)− βI(x; z), (5)

where I(y; z) is the mutual information between
the output and the latent code, I(x; z) is the mutual
information between the input and the latent code,
and pθ(z|x) is the conditional distribution of latent
code parameterized by the encoder θ. To optimize
the IB, an upper bound on I(x; z) is typically taken
for generalization ability of a model (Tishby et al.,
2000; Alemi et al., 2016). From the information
perspective, we show the following lower bound
on the mutual information of (x, z) in our setting.

Proposition 4.1. The mutual information of (x, z)
in our setting is upper bounded by

I(x; z) ≤ R(z)− I(m; t),

where R(z) ≜ Ep((m,t)|z)
[
log

Ep(z)[p((m,t)|z)]
p(m)p(t)

]

depends only on z and is independent of x.

In light of the fact that contrastive learning tends
to maximize mutual information between (m, t)
pairs, the above lower bound suggests that it can be
considered as an approximate implementation of
information bottleneck. Furthermore, if the music-
lyrics pairs used in contrastive learning are not well
aligned, one can actually prove that the learning
will fail.

Proposition 4.2. If the music-lyrics pairing in the
learning process is random such that the music and
lyrics are sampled independently, then the mutual
information between the input x and the represen-
tation z will be zero, and thus the encoder cannot
learn anything useful.

The proof is provided in Appendix A. To sum up,
based on the InfoNCE loss (Gutmann and Hyväri-
nen, 2010), the proposed alignment module can
be interpreted as maximizing the mutual informa-
tion lower bound between the music m and cor-
responding text t, which translates to minimizing
the mutual information between the input x and
the latent code z, and consequently improving the
generalization ability of the model.

5 Data

In this paper, we experiment on two datasets – the
Song Interpretation Dataset (Zhang et al., 2022b)
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and the NetEase Cloud Music Review Dataset.

5.1 Song Interpretation Dataset
The Song Interpretation (SI) Dataset dataset (Zhang
et al., 2022b) contains audio excerpts from 27,834
songs from Music4All Dataset (Santana et al.,
2020) and 490,000 user interpretations of the songs.
Each song is in 30 seconds and recorded at 44.1
kHz. Based on user votes of the interpretations,
Zhang et al. (2022b) create three variants of the
dataset, as 1) SI Full: the full dataset after some
preprocessing; 2) SI w/voting ≥ 0: the subset
with only interpretations that received non-negative
votes; 3) SI w/voting > 0: the subset with only
interpretations that received positive votes. The
sizes of the training splits of the three datasets
are 279,283, 265,360 and 49,736 respectively. All
three datasets share the same test split consisting
of 800 instances.

5.2 NetEase Cloud Music Review Dataset
In addition to the Song Interpretation Dataset where
the interpretations were mostly written by peo-
ple who grew up under the influence of European
and American culture, we curate another dataset -
the NetEase Cloud Music (NCM) Review Dataset,
where the reviews were written by people from
China. NCM is a free music streaming service that
is immensely popular in China. One of its most
prominent features is that users can create their
own playlists, write reviews and share the playlists
with other users.

We collect user-created playlists from NCM and
keep those consisting of only English songs. Be-
cause our model generates captions at an individual
song level, for each playlist, we keep one song from
it that has the highest popularity, i.e., the song that
has been collected to most playlists1. As a result,
from each playlist, we have an instance of the song-
review pair. For each song, we keep the middle 30
seconds excerpt and sample it at 22.05kHz. Since
BART (Lewis et al., 2020) is pretrained in English,
we translate the Chinese reviews into English using
Google Translate.

The NCM Review Dataset contains 22,210 playlists
(songs) and their reviews. An example is shown

1Admittedly this is not the best way to create the song-
review pairs given that the reviews were written at the entire
playlist level. Nevertheless, the main goal of this paper is
NOT to introduce this curated dataset, but to demonstrate the
effectiveness of ALCAP in generating better song captions on
different datasets.

in Figure 2. We randomly split the dataset into
train/val/test splits, with sizes of 15,547, 3,331,
and 3,332.

Title: I Feel Lucky
Artist: Mary Chapin Carpenter
Lyrics: Well I woke up this morning stumbled out of my rack; I
opened up the paper to the page in the back; It only took a
minute for my finger to find; My daily dose of destiny, under
my sign; My eyes just about popped out of my head; It said “the
stars are stacked against you girl, get back in bed”; I feel lucky,
I feel lucky, yeah; No Professor Doom gonna stand in my
way….
Review: As soon as you listen to the style of the song, you will
know that it is the familiar style of the American West and the
South, the taste of country rock. How could such a delicacy be
missing from the music feast? Let's enjoy it together.

Figure 2: An example in NetEase Cloud Music (NCM)
Review Dataset.

6 Experiments

6.1 Experimental Setup

We resample each song at 16kHz and take a 15s
excerpt. The maximum caption length is 512.
The model is implemented in PyTorch (Paszke
et al., 2019). We use the BART implementation
facebook/bart-base from Huggingface (Wolf et al.,
2019). We use a batch size of 26 and a learning
rate of 5e − 5. The weight of contrastive learn-
ing α loss is set to 0.02. For better computation
efficiency we freeze the parameters in the music
encoder and precompute the music representations.
We train the model for 20 epochs and report the
results on the test split using the checkpoint with
the best evaluation performance. All hyperparame-
ter tuning is based on grid search. All models are
trained on a Tesla A100 GPU with 40GB memory.
The training time for SI-Full, SI w/voting ≥ 0, SI
w/voting > 0, and NCM Review are 28h, 28h, 5h,
and 3h respectively.

We use ROUGE-1,2,L (ROUGE, 2004) and ME-
TEOR (Banerjee and Lavie, 2005) as evaluation
metrics. ROUGE measures the overlap of n-grams
between the referenced text and the generated text.
On top of ROUGE, METEOR complementarily
measures the semantic similarity between the two
pieces of text by taking into account synonyms
through WordNet. For both metrics, we use the
implementation with default parameters from Hug-
gingface Datasets library. We use three random
seeds and report the average performance on the
test set.
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Dataset Method R-1 R-2 R-L Meteor
BART 44.1 14.0 24.5 22.5

SI Full BART-fusion 46.1 15.0 25.1 23.0
ALCAP 48.2±0.3 15.7±0.1 26.4±0.2 27.8±0.2
BART 44.8 14.9 24.7 22.7

SI w/voting ≥ 0 BART-fusion 46.7 15.6 25.5 23.4
ALCAP 47.7±0.3 15.6±0.1 26.0±0.1 27.7±0.1
BART 41.2 13.0 22.8 22.0

SI w/voting > 0 BART-fusion 44.3 14.6 24.7 22.6
ALCAP 49.8±0.1 16.0±0.1 27.1±0.1 27.7±0.1

NCM Review
BART-fusion 18.2±0.3 1.9±0.1 13.6±0.1 10.9±0.3
ALCAP 20.6±0.2 2.6±0.1 15.3±0.3 11.8±0.2

Table 1: Results of music captioning. The best results are highlighted in bold.

6.2 Baselines

BART is a model that utilizes only unimodal tex-
tual information from lyrics. The BART-fusion
model, on the other hand, fuses representations
from music and lyrics, but the two representations
are not aligned prior to modality fusion. The re-
sults of these two baselines are reported in Zhang
et al. (2022b). We do not compare with Manco
et al. (2021), which focuses on short-length music
descriptions with a maximum of 22 tokens.

6.3 Experiments I: Music Captioning

The results are presented in Table 1. We have found
that ALCAP outperforms both BART-fusion and
BART on all four datasets, in terms of all four met-
rics, thereby setting a new state-of-the-art. Specifi-
cally, the improvement on METEOR is more pro-
nounced than on ROUGE metrics, which demon-
strates that ALCAP is capable of capturing the se-
mantics of the song for music captioning, not just
memorizing the syntax. Furthermore, the results
on the NCM Review for both models are overall
worse than those on SI datasets. We believe this
is due to the weaker correspondence between the
music tracks and reviews in the NCM Review, as
the reviews were originally created at the playlist
level. Despite this, ALCAP is still able to capture
such weak correspondence and achieve a signifi-
cant improvement over the baseline.

6.4 Experiments II: Text-Music Retrieval

One of the most practical applications of music
captioning is text-music retrieval, where given a
piece of music description, the goal is to retrieve
the most relevant music according to the text. In

light of this, in this analysis, we test the retrieval
capability of ALCAP and the baseline model. The
setting of cross-modal retrieval in this experiment
is different from previous works such as Yu et al.
(2022), where the retrieval is performed on the
two modalities that are directly aligned through
contrastive learning.

As proposed in Zhang et al. (2022b), we randomly
select one sentence from the human-generated in-
terpretation or review in the test split, and use it as
a query. The queries are used to retrieve the corre-
sponding songs through their generated captions by
our models. Specifically, we compute the represen-
tations of the queries and generated captions using
Sentence-BERT (Reimers and Gurevych, 2019).
Thus, for each query, we obtain a ranked list of
retrieved songs through the cosine similarities be-
tween the query representation and generated cap-
tion representations. We use precision@k and re-
call@k as the evaluation metrics. The results are
shown in Table 2.

We observe that ALCAP outperforms BART-fusion
on most datasets and metrics, indicating the su-
periority of cross-modal alignment between mu-
sic tracks and lyrics that makes the generated
captions more semantically aligned with human-
written texts. This is apart from several cases where
ALCAP ties with BART-fusion. Compared to SI
datasets, the relatively low performance on NCM
Review of both models is due to 1) the weak cor-
respondence between the song and the review as
we mentioned in previous sections, and 2) the re-
trieval pool (test split) is much larger – 3,332 for
NCM Review vs. 800 for SI. Nevertheless, ALCAP
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Dataset Method p@5 p@10 p@20 p@30 r@5 r@10 r@20 r@30

SI Full
BART-fusion 3.2% 1.9% 1.2% 0.9% 16.0% 19.0% 24.0% 27.0%
ALCAP 3.6% 2.1% 1.2% 1.0% 18.0% 21.0% 24.0% 31.0%

SI w/voting >= 0
BART-fusion 2.2% 2.0% 1.0% 0.7% 11.0% 17.0% 20.0% 23.0%
ALCAP 4.2% 2.6% 1.5% 1.1% 21.0% 26.0% 30.0% 32.0%

SI w/voting >0
BART-fusion 2.2% 1.2% 0.9% 0.7% 11.0% 12.0% 18.0% 20.0%
ALCAP 3.0% 1.6% 1.0% 0.8% 15.0% 16.0% 20.0% 23.0%

NCM Review
BART-fusion 0.2% 0.1% 0.1% 0.1% 1.0% 1.0% 2.0% 2.0%
ALCAP 0.2% 0.2% 0.1% 0.1% 1.0% 2.0% 3.0% 4.0%

Table 2: Results of text-music retrieval. The best results are highlighted in bold.

still outperforms the baseline in such a challenging
scenario.

6.5 Case Study I: Visualizing the Attention
Weights

To better understand the mechanism within the
cross-attention module, we plot the attention
weights of BART-fusion and ALCAP on five input
examples from the training set in Figure 3. Both
models are trained on the SI w/voting > 0 dataset.

(a) (b) (c) (d) (e)

0.2

0.4

0.6

0.8

Figure 3: Illustration of the cross-modal weights for
five samples (a)∼(e). The first row shows the cross-
modal attention weights output by BART-fusion and the
second row shows the weights by ALCAP. The y-axis
and x-axis in each sub-graph indicates the text tokens
and music segments respectively.

The attention weights from ALCAP appear to be
more focused on specific text tokens, in contrast to
BART-Fusion, which has a more evenly distributed
attention across all tokens. This phenomenon sug-
gests that ALCAP, equipped with the cross-modal
alignment module, is more effective at learning
the interactions between the music audio and text
domains.

6.6 Case Study II: Examples of Generated
Caption

In this case study we show a representative example
of generated captions from ALCAP and BART-

fusion on Child In Time by Deep Purple, as in
Figure 4. The song is from the test split of SI, and
both models are trained on SI w/voting > 0.

From the lyrics and the reference interpretation,
we can infer that the song is about war, which is
captured by ALCAP. The generated caption con-
tains "shot" and "sniper", which indicates that the
model has correctly understood the theme of the
song. However, BART-fusion fails to interpret the
song correctly, instead interpreting it as a love song.
We propose that this is due to the song’s 70s Rock
music style being too typical, and the lack of cross-
modal alignment in BART-fusion. This allows the
unimodal information from the sound track to dom-
inate and confuse the model. As 70s Rock en-
compasses a wide range of topics, including love,
it becomes harder to identify the correct topic of
war. However, the alignment module in ALCAP
manages to capture the semantics of the song and
provide a more accurate interpretation.

6.7 Ablation Study: Effect of Contrastive
Learning Weight

To further investigate the effect of multimodal
alignment through contrastive learning, we show
the performances of using different weights of con-
trastive learning α on SI w/voting > 0 on music
captioning (Figure 5) and text-music retrieval (Fig-
ure 6).

We observe that in both figures, the scores peak at
α = 2e − 2, and decrease with higher weights or
lower weights. When the weight is below 2e− 2,
the model fails to learn sufficient alignment be-
tween the two modalities; on the other hand, when
the weight is greater than 2e− 2, the model suffers
because the overly large weight of contrastive learn-
ing loss negatively affects the optimizing of caption
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Lyrics: Sweet child in time; You‘ll see the line; The line that’s drawn between; Good and bad; See the blind man; Shooting at the world;
Bullets flying; Oh taking toll; If you‘ve been bad; Oh Lord I bet you have; And you’ve not been hit; Oh by flying lead; You‘d better close
your eyes; Oh bow your head; Wait for the ricochet; I wanna hear you sing; Sweet child in time; You’ll see the line; The line that‘s drawn
between; Good and bad; See the blind man; Shooting at the world ….
Reference: I don‘t think this song is about the Vietnamese war, but rather war in general. The blind man is not just a person, or a country -
it’s mankind. Almost every nation has been in a conflict or war. And yes, some countries are more powerful than others, but in the end -
what has war resolved? Every country has sinned, some more than others. Nobody is innocent. Every action has a reaction - you shoot
bullets blindly for unjustified reasons, and you are bound to have it ricochet back to you. The lyrics alone make this song great, but what
really sends it to one of the all-time best works of genius art is everything else in the song - from the captivating organ intro, to Blackmore's
unreal guitar skills, to Gillain's extraordinary vocals, and the passion that brought it all together. Probably the best song ever.
BART-fusion: I think this song is about a guy who is in the midst of a breakup with his girlfriend. He is trying to figure out what to do with
his life, but he ends up killing himself. He tries to convince himself that he can do it, and he can‘t do it. He wants to be able to show her that
he still loves her, and is willing to do anything to help her, even if it means killing herself. He can’t do it by himself, because he knows she
will never be happy, and will never see him again. He will never give up on her, no matter how hard he tries. He knows that she will always
love him, and it will be a long time before he does, but she is not willing to give up, and she is going to be with him forever.
ALCAP: I think this song is about a man who was shot in the head by a sniper. He was shot by the sniper. The sniper was shot at the end of
the night, and he was killed. He is still alive, but he is in a coma, and the sniper is still there. He has been shot. He‘s dying. It’s a sad song,
but it‘s a beautiful song. I think it’s about a guy who is dying. I’m not sure what this song means, but I think this is a good song.

Figure 4: An example of generated captions from ALCAP and BART-fusion on Child In Time by Deep Purple.
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Figure 5: Results of music captioning using different
weights of contrastive learning α on SI w/voting.

loss, which is the most prominent at α = 20.

7 Conclusions

In this paper, we introduce the Alignment aug-
mented music Captioner (ALCAP), a pioneering
model designed to enhance music captioning by in-
corporating an alignment augmentation module us-
ing cross-modal contrastive learning. Our model’s
distinctiveness, particularly in the under-researched
music domain, stems from its ability to successfully
bridge the gap between music and its linguistic in-
terpretation. We provide a theoretical analysis of
the improved generalization of our model from an
information bottleneck perspective. Experiments
on two music captioning datasets demonstrate the
effectiveness of ALCAP, and we achieve the new
state-of-the-art on both of them.

Our next steps will focus on collecting extensive
music song data from the Web and pretrain the
music-lyrics alignment module, after which the
model is further finetuned on small-scale music
captioning. This model would be tailored to cater to
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Figure 6: Results of text-music retrieval using different
weights of contrastive learning α on SI w/voting.

large-scale song interpretation generation on vari-
ous genres and styles of music. In addition, ground-
truth interpretations, as drawn from user-generated
content, inherently bring the risk of biases. We will
be committed to developing strategies to effectively
mitigate biases from these interpretations, ensuring
that our model’s outputs are as neutral and accurate
as possible.

Limitations

Due to computational limitations, the parameters of
the music encoder in ALCAP were fixed, and the
music representations were precomputed, follow-
ing Zhang et al. (2022b). This approach may result
in a decrease in performance compared to a model
where the music encoder is fully fine-tuned for
the music captioning task. Additionally, the Song
Interpretation dataset, being the only publicly avail-
able music captioning dataset, is limited in scope,
making it challenging to pretrain a large music cap-
tioning model that is suitable for various genres and
styles of music. Furthermore, user-generated song
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interpretations and reviews may contain biases or
even hate speech, which could be perpetuated dur-
ing training of the model.
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A Proofs of Proposition 4.1 and 4.2

I(x; z) =Ep(x,z)

[
log

p(x, z)

p(x)p(z)

]

=Ep(x,z)

[
log

p(x|z)
p(x)

]

=Ep(m,t,z)

[
log

p((m, t)|z)
p(m, t)

]

=Ep(m,t,z)

[
log

p((m, t)|z)
p(m)p(t)

]

− I(m; t)

=Ep((m,t)|z)p(z)

[
log

p((m, t)|z)
p(m)p(t)

]

− I(m; t)

≤Ep((m,t)|z)

[
log

Ep(z)[p((m, t)|z)]
p(m)p(t)

]

− I(m; t)

=Ep((m,t)|z)

[
log

p(m, t)

p(m)p(t)

]

− I(m; t) ,

where the inequality follows by Jensen inequality.
This completes the proof of Proposition 4.1.

Based on the above derivation, if (m, t) pairs are
sampled randomly, in the probabilistic graphical
model language (Koller and Friedman, 2009), this
corresponds to a V -structure between (m, t) and
z. And a V -structure indicates the marginal inde-
pendency between m and t (Koller and Friedman,
2009). Thus, we have

I(x; z) ≤Ep((m,t)|z)

[
log

p(m, t)

p(m)p(t)

]
− I(m; t)

=Ep((m,t)|z)

[
log

p(m)p(t)

p(m)p(t)

]
− I(m; t)

= −I(m; t)

Since we know that both I(x, z) and I(m; t) must
be non-negative, we have

I(x; z) = I(m; t) = 0 .
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Consequently, this leads to the independency of x
and z, i.e,, z contains zero information of z. This
completes the proof of Proposition 4.2.
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