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Abstract

We explore how we can build accurate world
models, which are partially specified by lan-
guage, and how we can plan with them in the
face of novelty and uncertainty. We propose
the first model-based reinforcement learning ap-
proach to tackle the environment Read To Fight
Monsters (Zhong et al., 2019), a grounded pol-
icy learning problem. In RTFM an agent has to
reason over a set of rules and a goal, both de-
scribed in a language manual, and the observa-
tions, while taking into account the uncertainty
arising from the stochasticity of the environ-
ment, in order to generalize successfully its pol-
icy to test episodes. We demonstrate the supe-
rior performance and sample efficiency of our
model-based approach to the existing model-
free SOTA agents in eight variants of RTFM.
Furthermore, we show how the agent’s plans
can be inspected, which represents progress
towards more interpretable agents.

1 Introduction

Intelligent agents have the ability of re-composing
known concepts to draw conclusions about new
problems and this translates into the acquisition
of very robust and general behaviours. Current
Reinforcement Learning (RL) agents typically lack
this ability and they need to be re-trained for every
new problem; in contrast language models exhibit
greater generalization abilities and provide a more
flexible approach to solve multiple tasks with a
single model. Thus language-conditioned RL is a
flourishing area of research.

On the other hand, language models are trained
exclusively on textual inputs and struggle to ground
the meaning of the words to real world dynamics.
Multiple interactive environments have been pro-
posed as a testbed for learning how to ground lan-
guage (Chevalier-Boisvert et al., 2018; Zhong et al.,
2019; Ruis et al., 2020; Küttler et al., 2020). While
prior work mostly focuses on Behavioural Cloning

or model-free RL, we argue for a Model-Based Re-
inforcement Learning (MBRL) approach, as this
effectively decouples the problem of understanding
how the world works from the problem of acting
optimally in the world in order to solve one or more
tasks. Concretely, MBRL inherits the advantages
of model-free RL of learning from scratch or from
sub-optimal behaviour, while being orders of mag-
nitude more sample efficient than the model-free
counterpart. Furthermore, it has the added value of
being more interpretable and explainable. In fact,
a decision made by a MBRL agent can be accom-
panied by human-interpretable examples of likely
future trajectories that are taken into account by the
model in making such a decision.

In this work, we focus on Read To Fight Mon-
sters (RTFM), a challenging benchmark for testing
grounded language understanding in the context
of RL proposed by Zhong et al. (2019). RTFM
tests the acquisition of complex reading skills in
RL agents in order to solve completely new tasks
based on written descriptions of the task dynamics
and goal. Critically, the written information pro-
vided is not enough on its own to obtain an optimal
policy, but the agent needs to cross-reference it
multiple times with the current state of the environ-
ment, in order to figure out a plan of action.

We make the following contributions: first, we
formulate a language-instructed MBRL method for
solving RTFM and show how to train an agent in
this environment (see Fig. 1). Our method, named
Reader (for REinforcement learning Agent for Dis-
crete Environments with wRitten instructions), ex-
plicitly models the stochastic changes in the dis-
crete environment and performs planning with a
stochastic variant of Monte Carlo Tree Search
(MCTS, Kocsis and Szepesvári, 2006). We then
demonstrate the effectiveness of Reader on eight
variants of RTFM, showing better performance and
sample efficiency than the SOTA model-free agent
txt2π from Zhong et al. (2019): Reader surpasses
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Figure 1: High-level view of the proposed method. We collect trajectories in the environment with behavioural
policies, then use them to learn Reader, a discrete stochastic world model, and finally deploy Reader at test time to
plan with Monte Carlo Tree Search (MCTS).

txt2π on all the eight RTFM variants when both
methods are trained on 1M frames of experience
and is better on five and on par on the remaining
three even when txt2π is trained on 100 times more
frames1. Furthermore, Reader has comparable per-
formance with a strong model-based Transformer
baseline, while being more than eight times faster
during planning. Finally, we show how Reader’s
plans can be visualised and how those plans change
accordingly to the written instructions, making the
language-instructed model-based approach more
interpretable and trustworthy than the model-free
counterpart.

2 Related Work

Language Grounding and Understanding

Chevalier-Boisvert et al. (2018) proposes BabyAI,
a benchmark for studying the sample efficiency
of Imitation Learning and RL methods in tasks
where the goal is specified in natural language.
Ruis et al. (2020) instead studies the problem
of compositional generalization in situated Lan-
guage Understanding in a Supervised Learning
setup with the gSCAN benchmark, where agents
have to map language instructions to corresponding
action sequences. Narasimhan et al. (2018) consid-
ers a transfer learning setup between pairs of grid-
world environments, where entities are annotated
with language information about their role and be-
haviour. Bahdanau et al. (2018) learns how to train
reward models from language specifications and
expert trajectories and shows the usefulness of such
reward models in training RL agents to accomplish

1For a fair comparison of the methods, we do not train
txt2π with curriculum learning.

language specified tasks.
Our work builds on the environment RTFM, in-

troduced in Zhong et al. (2019), with the main
target of solving such environment with a model-
based approach instead of a model-free one. Sim-
ilar work on grounding language can be found in
Hanjie et al. (2021), which introduces the MES-
SENGER environment. MESSENGER is quite
different from the RTFM environment: it focuses
on adversarial test distributions with spurious cor-
relations and it requires much simpler reasoning
than RTFM. Hence, the architecture proposed for
MESSENGER is not likely to perform well in the
RTFM. Zhong et al. (2021) proposes SILG, a uni-
fied interface for RTFM, MESSENGER, NetHack
(Küttler et al., 2020) and symbolic abstractions of
ALFRED (Shridhar et al., 2020) and Touchdown
(Chen et al., 2019); each environment poses its own
unique challenges, like learning multi-hop reason-
ing or grounding co-references, dealing with partial
observability, large action spaces or rich natural
language instructions and annotations. Both the
baseline in Zhong et al. (2021) and the following
work on SILG in Zhong et al. (2022) include in the
benchmark only the simplest, stationary variation
of RTFM and focus instead on finding model-free
algorithms that are able to deal with all 5 SILG
environments.

In this work, we focus only on RTFM, we con-
sider pre-existing and new dynamical levels of the
game and we propose the first model-based ap-
proach for this environment.

Model-based Reinforcement Learning

AlphaGo (Silver et al., 2016) is the first work
demonstrating SOTA performance of MBRL with
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a MCTS-based agent which has access to the true
simulator of the game of Go and learns with neu-
ral networks both a prior over promising actions
and an evaluation function to estimate the values of
game configurations. MuZero (Schrittwieser et al.,
2019) lifts the constraint of having access to a simu-
lator of the environment, by learning a latent model
of it and using it to perform a variant of MCTS in
the latent space with the aid of a value function and
a policy.

In this work, for simplicity we do not use pol-
icy and value functions as it is not our focus, but
they could be beneficial to reduce the simulation
budget of our MCTS agent further and they would
certainly be necessary to scale up this approach
to higher dimensional action-spaces and longer-
horizon tasks. Overall our contribution is orthog-
onal to the learning of policy and value networks
for MCTS algorithms, as we aim to learn a good
model of a stochastic environment and a complex
language-dependent reward function that is able to
generalize to new environments.

Most works in MBRL assume a deterministic
environment (as it is the case for example in chess
and Go) or weakly stochastic (as Atari) and show
dramatic drops in performance when applied to
stochastic ones. Ozair et al. (2021) demonstrates
how MuZero performance deteriorates when play-
ing chess if the opponent is considered part of
the environment (version of chess denoted single
player) and the algorithm cannot enumerate its ac-
tions, but has to learn to model them as possible
stochastic outcomes.

The Vector Quantized Model (VQM) in Ozair
et al. (2021) probably has the most similar approach
to ours, learning a "State VQVAE" to extract dis-
crete latent codes and then learning a "Transition
model" which, given a latent state-action pair and a
discrete latent code, produces the next latent state.

Another notable line of work capable of deal-
ing with stochastic environments can be found
in Hafner et al. (2018), Hafner et al. (2019) and
Hafner et al. (2020) . These works are based on the
Recurrent State Space Model (Hafner et al., 2018)
and of particular interest is Hafner et al. (2020),
as it also uses discrete latent variables to capture
the stochasticity in the environment dynamics. The
discrete variables are trained with straight-through
gradients and the obtained model is used to produce
synthetic data in the latent space to train a model-
free algorithm instead of being used for planning.

Goal: Fight the order of the forest.
Manual: Fire monsters are weak against
gleaming items. Lightning monsters are
defeated by grandmasters items. Use
shimmering items for poison monsters.
Rebel enclave has the following members:
demon. Dragon are star alliance. Jinn
are on the order of the forest team.
Cold monsters are weak against blessed
items.
Inventory: empty.

Figure 2: Example of a frame from the RTFM environ-
ment with two monsters in the natural language version.
Together with the grid observation (above), the agent is
provided with the goal, manual and the inventory (be-
low).

However, none of these models involves language.

3 Read To Fight Monsters

Read To Fight Monsters (RTFM) is a challenging
benchmark proposed by Zhong et al. (2019) for
testing grounded language understanding in the
context of RL. RTFM tests the acquisition of com-
plex reading skills in RL agents in order to solve
completely new tasks based on written descriptions
of the task dynamics (also called manual m) and
goal g. Crucially, it is not enough to consult the
written information in order to obtain an optimal
policy, but the agent needs to perform a multi-step
reasoning between such information and the cur-
rent state of the environment in order to figure out
a plan of action.

To elucidate the reasoning steps and reading
skills needed to win an episode, we go through
the concrete example reported in Fig. 2.

1. From the goal extract which team to defeat
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(order of the forest).

2. Search in the manual which monster is as-
signed to that team (jinn).

3. Find in the map the element type of the target
monster (fire).

4. Search in the manual which modifier beats the
target monster’s type (gleaming).

5. Find in the map the item with the correct mod-
ifiers (gleaming sword).

6. Pick up the correct item (gleaming
sword).

7. Engage the correct monster (fire jinn)
in combat with the correct item (gleaming
sword).

The agent is given a reward of +1 if it engages
the correct monster in combat while carrying the
correct item, −1 in any other encounter with a
monster and a reward of 0 for all intermediate steps.

As every episode contains a procedurally gener-
ated set of (monster, element) pairs, (item, modi-
fier) pairs, goal and manual entries, the agent can-
not solve new episodes memorizing what is the
right pair of item to take and monster to fight, but
it has to learn to read the goal and the manual and
cross-reference them with the environment observa-
tion. The agent’s performance is tested on episodes
generated in such a way that no assignments of
monster-team-modifier-element are ever seen dur-
ing training, to test whether the agent is able to
generalize via reading to new environments with
unseen dynamics. For more in depth description of
the environment and how it is generated the reader
can refer to Zhong et al. (2019).

We start considering two variants of the origi-
nal RTFM, the dynamical version with simple lan-
guage and the dynamical version with natural lan-
guage, denoted respectively dyna and dyna+nl
in Zhong et al. (2019).

First, we notice that the SOTA agent txt2π
(Zhong et al., 2019) cannot solve even the sim-
pler dyna from scratch; instead it has to resort to
curriculum learning. Second we notice that dyna
and dyna+nl differ in two aspects, both concern-
ing the way in which the manual and the goal are
expressed.

The first difference is that dyna uses fixed
language templates like "gleaming beats
fire" instead of one of multiple crowd-
sourced natural language reformulations, like

"fire monsters are weak against
gleaming items"; we denote them sim-
ple language (sl) and natural language (nl)
respectively.

The second difference is that in dyna the sen-
tences of the manual are always ordered in a spe-
cific way (e.g. the first sentence always refers to
monsters of the cold element and the last sen-
tence to the star alliance team), whereas in
the dyna+nl task the order of the sentences is al-
ways shuffled; we call these factors no_shuffle
and shuffle respectively.

Taking all of this into consideration, we pro-
pose to systematically analyse the RL methods’
performances under the following factors of com-
plexity: number of monsters (one or two), kind
of language (sl or nl) and sentence ordering
(no_shuffle or shuffle). Considering all
possible combinations, we end up with eight RTFM
variants; in particular we introduce the single mon-
ster variants to provide more gradual degrees of
complexity to the RTFM challenge.

In the rest of the paper we will use the follow-
ing notation: the original variant with two mon-
sters, simple language and no shuffling, dyna, is
named (two, sl); similarly the original variant
with two monsters, natural language and shuffling,
dyna+nl, is named (two, nl, shuffle).
A consistent notation is adopted for the remain-
ing six variants, which do not have a corresponding
counterpart in the original RTFM.

4 Language-conditioned world model

The goal of any RL agent is to find a policy π(a|s)
that maximizes the expected cumulative reward
Eπ[

∑T
t=0Rt] received from the environment in an

episode if all actions are taken according to such
a policy. In this work, we take the model-based
approach to RL: we learn a language-conditioned
stochastic model of the environment and use it to
plan with a stochastic version of vanilla MCTS.

We name our method Reader (for REinforce-
ment learning Agent for Discrete Environments
with wRitten instructions). It is composed of a
world model and a MCTS planning module. The
world model consists of three components (see
Fig. 3).

1. the representation model, an autoencoder
which encodes the grid-world observations st
into discrete codes zt:

zt = f(st, st−1, at−1),
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Figure 3: Components of language-conditioned world
model: in blue and grey the encoder and decoder of the
representation model, in green the transition model and
in yellow the reward model. During training the three
models are trained separately (in terms of computational
graphs). At planning time, we use the transition model,
followed by the decoder and by the reward model to
predict respectively ẑt+1, ŝt+1, r̂t+1.

2. the transition model, which predicts the dis-
crete codes zt+1:

p(zt+1 | st, at),

3. the reward model, which predicts the next-
step reward:

p(rt+1 | st, st+1, at,m, g).

Note that in contrast to existing model-based
agents, our world model is conditioned on the
episode-specific textual descriptions: the manual
m which describes the roles of the monsters and the
rules of the episode and the sentence g describing
the agent’s goal.

4.1 Representation model
The purpose of the representation model is to en-
code in a latent variable zt the knowledge gained
in observing the current state st, while knowing
already the previous state st−1 and action at−1; the
gain in knowledge comes from the fact that the
environment is stochastic. Once we have the repre-
sentation model, we can train a transition model to
learn the distribution of zt conditional on st−1 and
at−1, as explained in the next section, and use it to
simulate possible next states. Our representation
model is based on vector-quantized variational au-
toencoders (VQVAE, van den Oord et al., 2017),

a latent variable model with discrete latent codes.
The VQVAE architecture is composed of an en-
coder, a decoder and a vector quantization layer
in between. Similarly to (Ozair et al., 2021), we
condition the representation zt of the current state
st on the previous state st−1:

zt = f(st, st−1, at−1),

where zt is a discrete code produced by the en-
coder f . The decoder d is trained to reconstruct the
original state from the discrete code zt given the
previous state and action2:

ŝt = d(zt, st−1, at−1,m).

The discrete codes are produced by the encoder
in the same way it was done in the original VQ-
VAE paper (van den Oord et al., 2017) by keeping
a trained codebook of prototype vectors and se-
lecting as a representation the prototype with the
smallest distance to a continuous encoder output.
We train the model end-to-end using the straight-
through approximation for the vector quantization
function when back-propagating through it. We use
the three losses that were proposed by van den Oord
et al. (2017) and implement the encoder and the
decoder using a Transformer architecture (Vaswani
et al., 2017). Since the RTFM environments have
at most two sources of stochasticity (which corre-
spond to two monsters), we modify the quantiza-
tion layer of our representation model to produce
two codes (za, zb), such that the continuous output
of the encoder is split into parts and the quantiza-
tion is performed for the two parts independently.
This choice gives a combinatorial inductive bias to
the representations we are learning. The two-code
formulation was beneficial in our case, but we re-
port an ablation in appendix D, showing that also a
single codebook works (although slightly worse).
Moreover, the formulation can be easily extended
to n-codes.

4.2 Transition model

The purpose of the transition model is to predict
possible values of the next state st+1 given the
current state and the taken action. We implement
the model by using an additional block (the green

2We denote as ŝ and r̂ the variables that are predicted by
the model, in contrast with the variables s and r that are used
as targets for training. For the discrete codes, we use z for
the encoder’s output and ẑ for the samples drawn from the
transition model.
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block in Fig. 3), which predicts the distribution
p(zt+1 | st, at) of the discrete representation zt+1

of the next state st+1. To simulate the next state
st+1 at the planning stage, the output of this tran-
sition block is passed though the decoder of the
representation model.

We train the transition model concurrently with
training the representation model, using the codes
produced by the representation model as the transi-
tion model targets; we minimize the Cross-Entropy
loss between the transition probabilities p(zt+1 |
st, at) and the transition model targets zt+1. We
stop the gradients such that the existence of the
transition model does not affect the learned repre-
sentations. We use a Transformer architecture for
the transition model.

4.3 Reward model

A key challenge of RTFM is to model correctly
the language-instructed reward function. Since the
environment is stochastic, a natural choice for the
reward function is p(rt+1 | st, st+1, at,m, g), as
including the next state st+1 makes the function
deterministic and thus easier to learn. This is only
made possible by the ability of predicting the next
state st+1 with our stochastic transition model.

We train the reward model concurrently with the
other two models and during training we use the
true next state for st+1. The main neural architec-
ture that we consider in Reader’s reward model
is one closely based on the txt2π actor-critic ar-
chitecture proposed in Zhong et al. (2019): this
originally takes in input the state st, the manual m
and the goal g and outputs the value of the state
and the policy over the next possible actions; we
adapt it to process at and st+1 as additional inputs
and to predict the distribution of the reward rt+1,
instead of the policy and value of the actor-critic
agent. More details are reported in appendix B. For
additional studies we also consider as an ablation a
Transformer architecture (see appendix D).

Furthermore, since RTFM gives non-zero re-
wards only for terminal transitions, empirically we
find beneficial in terms of sample efficiency and
performance to train the reward function only on
those transitions. For planning, we first predict if
a transition is terminal or not; if the transition is
non-terminal, we assign a reward of 0, if it is termi-
nal, we predict the reward +1 or -1 with the reward
model.

4.4 Transformer baseline world model

A possible alternative to our representation and
transition models over the latent space is to have a
model learn directly the distribution over the next
state st+1 auto-regressively:

p(st+1|ct) =
H∗W∏

ij=1

p(st+1,ij |st+1,<ij , ct),

where ct = (st, at,m, g) is the conditional infor-
mation available, using for example a single Trans-
former model (Vaswani et al., 2017). While this
model is possibly more general and it can be trained
in teacher-forcing mode to capture correctly the
stochasticity of the environment, its auto-regressive
modeling over the entire next state makes it im-
practical for planning, where a model can be used
hundreds if not thousands of times during planning
for every single time-step. We nonetheless consider
this model as a baseline, dubbed "Transformer base-
line"; to keep the comparison with Reader fair, in
both cases we use the same reward model based on
txt2π.

5 MCTS planning with the learned world
model

To use the model for planning, we need to predict
the next state ŝt+1 and reward r̂t+1 given the infor-
mation available at the current step, that is st, at,
m and g. We do that by first using the transition
model to sample the next discrete latent code ẑt+1,
then using the representation model decoder to get
ŝt+1 and finally the reward model to get r̂t+1.

To extend MCTS to stochastic transitions, we
use two types of nodes in the tree: state nodes and
state-action nodes. The tree branches at state nodes
by considering different actions that can be taken
in the state and it branches at state-action nodes by
looking at different stochastic outcomes. While we
have control over the actions that we choose, the
outcomes and corresponding rewards are always
sampled by using the learned model. We index the
possible outcomes from a state-action node based
on the indices of the pair of discrete codes (za, zb)
sampled by the transition model; if the codes have
been already sampled, we continue traversing the
already-expanded tree, otherwise we expand the
newly-sampled state node.
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Methods
Win rate Training

Framesone sl one sl one nl one nl
shuffle shuffle

txt2π
0.38.04 0.41.02 0.39.03 0.42.01 1M
0.99.01 0.68.22 0.50.01 0.50.01 100M

Reader (ours) 0.99.01 0.85.17 0.79.19 0.63.18 1M
Transformer baseline 0.97.01 0.90.15 0.75.19 0.59.17 1M
Oracle MCTS 0.97.01 0.97.01 0.97.01 0.97.01 N/A

Table 1: Comparison of methods (single monster). We evaluate every method with 5 independent training runs
for every single-monster RTFM variant (with simple language, sl, or natural language, nl, and with or without
shuffling). We report the average and standard deviation (over 5 runs) of the win rate over 1000 episodes. We also
report the number of frames used for training each method.

Methods
Win rate Training

Framestwo sl two sl two nl two nl
shuffle shuffle

txt2π
0.09.02 0.09.02 0.07.01 0.08.02 1M
0.24.00 0.24.00 0.24.01 0.24.01 100M

Reader (ours) 0.50.07 0.47.16 0.24.01 0.24.01 1M
Transformer baseline 0.50.07 0.39.10 0.23.03 0.23.01 1M
Oracle MCTS 0.83.01 0.83.01 0.83.01 0.83.01 N/A

Table 2: Comparison of methods (two monsters). We evaluate every method with 5 independent training runs
for every two-monsters RTFM variant (with simple language, sl, or natural language, nl, and with or without
shuffling). We report the average and standard deviation (over 5 runs) of the win rate over 1000 episodes. We also
report the number of frames used for training each method.

6 Experiments

Training

To ease the computational demands of the full RL
pipeline, we consider an offline RL setup. We
first collect a dataset of trajectories for each task,
then we train the model on it without ever directly
interacting with the real environment and finally
we evaluate the MCTS agent equipped with the
learned model by playing 1000 episodes in the
test environments. To collect the datasets we use
a random policy for 50% of the episodes and a
vanilla MCTS policy3 with access to a simulator
of the real environment for the remaining 50% of
the trajectories. The most critical for performance
is obtaining sufficiently many terminal transitions
where the agent interacts with items and monsters,
as these require complex reasoning for reward pre-
diction. A random policy would be inefficient and
the vanilla MCTS policy would not sample enough
failure cases, hence we selected 50/50. We later

3We select the number of simulations per action of the
MCTS policy in such a way that its performance is sub opti-
mal.

ablated Reader’s performance with splits 25/75 and
75/25, finding that the performance is robust to the
chosen split and only slightly decreases in the case
where 75% of the trajectories come from the vanilla
MCTS policy. We report and discuss the full results
of the ablation in Sec. D of the appendix.

Each dataset is composed of 200k episodes, or
roughly 1M frames; full details are reported in Ta-
ble 3 in the appendix. We train the model with mini-
batches of 1-timestep transitions sampled from
the dataset and train the model components as de-
scribed in Sec 4.

Results

We train our Reader model on the eight RTFM tasks
proposed in Sec. 3 and evaluate its performance
with MCTS, using 400 simulations per time step.

We compare against two strong agents: the first,
which we call Oracle MCTS, uses MCTS with the
ground-truth simulator of the environment, instead
of using a learned world model; this represents a
sort of upper bound for the performance of our
agent. The second is the model-free agent txt2π
proposed in (Zhong et al., 2019), which at the time
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(a) Goal: defeat the order of the forest (b) Goal: defeat the star alliance

Manual: Grandmasters beat cold. Blessed beat fire. Shimmering beat lightning.
Gleaming beat poison. Demon are order of the forest. Dragon are rebel enclave.
Jinn are star alliance.

Figure 4: Interpretable plans. Action sequences planned with MCTS and Reader for different possible goals
and the same manual (reported above). Planned action sequences can be visually inspected to interpret the agent’s
decisions. Furthermore, given the same state, we can prompt the agent with different goals (or manuals) and see how
the agent’s plan changes accordingly, e.g. from (a) to (b). For ease of visualization in the environment considered
the monsters are stationary.

of writing detains the state-of-the-art in RTFM en-
vironment. In contrast with the training procedure
used in Zhong et al. (2019) to obtain the SOTA, we
bar all the methods from resorting to curriculum
learning, because it is expensive to study and to
ablate systematically; furthermore, while certainly
useful, it is not needed to evaluate the merits of
RL algorithms and architectures. We also com-
pare to our model-based Transformer baseline
described in Sec. 4.4; this model is also evaluated
with MCTS, but we use only 100 simulations per
time step, as planning with a fully auto-regressive
Transformer model is much slower than planning
with Reader.

We report the results for the single monster vari-
ants in Table 1 and the ones for the two monsters
variants in Table 2. Reader is superior in all eight
tasks to the txt2π agent trained on 1M frames. Fur-
thermore, when compared with the txt2π agent
trained on 100M frames, Reader is still better on
five out of the eight tasks and achieves equal per-
formance on the remaining three.

Reader performance is also on par with that of
the Transformer baseline, but it is much faster at
planning: a prediction step with Reader takes ap-
proximately 12 ms, whereas one with the Trans-
former baseline takes about 102 ms (more than

eight times slower). We provide further ablations
of Reader’s representation and reward model in
appendix D.

These results thus validate our method and show
how Reader is a strong, sample-efficient and fast
language-instructed model-based method. How-
ever RTFM still remains an open challenge, as
none of the methods closes the gap with the Or-
acle MCTS in the harder variants4.

Interpretability

Finally, in this section we show how we can an-
swer questions like "Why does the agent act in this
way?" and "How would have the agent behaved if
the goal were different?".

To do that, for a given state, manual and goal, we
build a stochastic tree with MCTS and Reader. We
then select the path from the root of the tree which
at every state node selects the best action and at
every state-action node selects the most likely out-
come. Finally, we render with arrows the agent’s
movements corresponding to the action-sequence
obtained above. With the same procedure, we can
also prompt the agent with alternative language

4Interestingly enough, Reader surpasses the Oracle in the
simplest variant. We explore this result in more depth in Sec. E
of the appendix.
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instructions and compare how the plans change ac-
cordingly; this lets us answer counterfactual ques-
tions about the agent’s behavior. An example of
this procedure can be seen in Fig. 4 and more are
presented in Sec. F of the appendix.

7 Discussion and Conclusions

RL environments such as RTFM are great for de-
veloping models capable of natural language un-
derstanding. Prior work shows that the model-free
approach might work well in those benchmarks, but
it requires a large number of samples and it is not
insightful with regard to the agent’s understanding
capabilities.

In this work we show that the model-based ap-
proach can improve both the performance and
the sample-efficiency of RL agents. While the
sample-efficiency gains were expected, we specu-
late that the performance gains in RTFM are mostly
driven from improvements in estimating the com-
plex language-dependent reward function; we think
that disentangling the reward prediction from the
environment stochasticity by conditioning the re-
ward prediction on the next predicted frame is a
key element in this regard. Moreover we provide
concrete examples of how the agent’s plans can be
inspected and we consider this a step in the direc-
tion of more interpretable RL agents.

Our experiments highlight that RTFM remains a
challenging benchmark and that existing methods
need a large number of samples to learn the RTFM
reward. Therefore, more research is needed to im-
prove the sample efficiency of models for grounded
language learning; leveraging the out-of-the-box
representation learning capabilities of pre-trained
large language models seems a promising direction
to explore.

Another very interesting future direction is to
extend Reader to more realistic visual represen-
tations; using pre-trained patch embeddings from
vision foundation models like ViT (Dosovitskiy
et al., 2020) appears to be a very promising avenue.

Limitations

We did not study the effect of the curriculum learn-
ing used in Zhong et al. (2019), nor compared
with the results of txt2π trained with such protocol;
we leave such study for future work. We did not
test the approach on the more complex variants of
RTFM presented in the original work by Zhong
et al. (2019), as SOTA results on those variants

are obtained through curriculum learning. We did
not try our approach on other environments than
RTFM, as it would be too large a step for a single
paper. Language-instructed environments are quite
different from one another as they test for different
reasoning properties. As such, it would require
some tailoring and considerable computational re-
sources to extend our method to other environments
like Alfred (Shridhar et al., 2020).
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A Offline trajectories datasets

To collect the datasets we use a random policy for
50% of the episodes and a vanilla MCTS policy
with access to a simulator of the real environment
for the remaining 50% of the trajectories.

The MCTS policy used to collect data specif-
ically uses 30 internal simulations per time-step,
maximum rollout length of 10, a discount factor
of 0.9 and the Upper Confidence Bound constant
c = 1.

We report in Table 3 the dataset statistics for
the single monster (one) and two monsters (two)
variants of RTFM. Since all dynamical variants
of RTFM have the same underlying mechanics
(e.g. either one or two monsters and two items
placed randomly in a grid world, the monsters
move stochastically according to an unknown pol-
icy which is always the same in all the variants),
all the dataset statistics are identical, up to stochas-
tic fluctuations, for the sl / nl factors and the
no_shuffle / shuffle factors.

B Training details

We report in the following section the summary de-
tails about the architectures and training procedures
used in this work.

Both the Representation model and the Transi-
tion model use the Transformer architecture. The
Representation model comprises of the Encoder,
the Decoder and the Vector Quantization layer;
both the Encoder and the Decoder are implemented
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Dataset one two
Tot. frames 1120k 971k
Non-terminal 920k 771k
Successes 116k (10%) 77k (8%)
Failures 88k (8%) 123k (13%)
Win rate (random) 17.3% 4.6%
Win rate (MCTS) 94.7% 71.0%

Table 3: Datasets collected for offline training of the
model and relative statistics.

as two-layers Transformer encoder. The Transition
model comprises a two-layer Transformer encoder
(to encode st and at) and a two-layer Transformer
decoder (to auto-regressively predict the indices
of (za,t+1, zb,t+1)). All hyper-parameters of the
Transformer layers are reported in Table 4, follow-
ing PyTorch naming convention.

Hyper-parameters Values
d_model 128
nhead 4
dim_feedforward 256
dropout 0.1
activation gelu

Table 4: Transformer hyper-parameters for the Repre-
sentation and Transition models.

The Vector Quantization layer is made of 2 code-
books of 32 codes with feature dimension 64 (half
of the model dimension of the Encoder and De-
coder model dimension). We use a commitment
loss coefficient β = 0.25 and a codebook learning
rate multiplier λ = 5. Following (Lancucki et al.,
2020), we use KMeans ++ to reinitialize the codes
during the first 6 epochs, once every 50 forward
passes.

For the Reward model, we modify txt2π archi-
tecture as follows:

1. We remove the concatenation of 2D positional
embeddings to the state;

2. We encode the next state and inventory in the
same way as the current state and inventory
are encoded in txt2π;

3. We concatenate along the channel dimension
the embedded current state and next state;

4. We concatenate along the feature dimension
the embedded current inventory and next in-
ventory;

5. We adapt the txt2π layers to receive variables
with double the amount of channels or features
(because of the concatenation above);

6. We replace the linear layers for the policy
and the value with linear layers to predict the
reward class, the termination signal and the
valid moves in the next state.

We use the same identical hyper-parameters as
the ones used in txt2π: embedding dimension of
30, dimension of small RNN of 10, dimension of
Bi-LSTM of 100 and dimension of final represen-
tations of 400. For more details about the architec-
ture, please refer to (Zhong et al., 2019).

For the Transformer baseline model, we use
a encoder-decoder architecture, plus the Reward
model from Reader. Encoder and decoder use two
layers; all layers use model dimension of 256, feed-
forward dimension of 1024, gelu activation func-
tion, dropout of 0.1. The choice of a bigger model
was made to offset the fact that there is no Tran-
sition model, thus there are less layers in total (4
instead of 6).

We report the other hyper-parameters used dur-
ing training in Table 5.

Hyper-parameters Values
Batch size 512
Optimizer Adam
Learning rate 10−4

Lr warm-up steps 400
Epochs 114

Table 5: Hyper-parameters used.

Finally we divide the collected transitions ac-
cording to their reward (0, +1, -1) and form batches
with an equal number of samples from each class,
as the 0 class represents roughly 79% of all tran-
sitions, while the +1 and -1 represent respectively
8% and 13% of the transitions5.

C Computational resources used

GPU resources used for Table 1 and Table 2 are
reported in Table 6, whereas the CPU resources for
the MCTS evaluation of the agents are reported in
Tab 7.

All experiments use either the Tesla V100 or the
AMD MI250X GPU models and the total amount

5This in the two-monsters case. In the single monster case,
the percentages are slightly different, respectively 82%, 10%
and 8%.
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Model single (h) total (h)
Reader 13.5 540
Transformer baseline 10 400
txt2π 23 920
Total 1840

Table 6: GPU resources used for Table 1 and Table 2.
We use 5 random seeds and train on 8 tasks.

Model single (h) total (h)
Reader (64) 112 4480
Transformer baseline (64) 304 12160
txt2π (24) 552 22080
Total 38720

Table 7: CPU resources used for Table 1 and Table 2.
We use 5 random seeds and evaluate on 8 tasks. Number
of CPU cores used for every run is reported between
parenthesis after the name of the model.

of resources used to obtain the reported results is
approximately 1840 GPU hours and 38720 CPU
hours.

D Ablation studies

Codebook ablation

Ablation study with an earlier version of Reader
shows on (two, sl) RTFM variant that using two
codebooks instead of a single one gives a slight
advantage (see Table 8).

Codes Embedding dim Win rate
32x32 64 0.79 (0.02)
32 128 0.67 (0.13)
512 128 0.75 (0.01)
1024 128 0.75 (0.03)

Table 8: Reader codebook ablation.

Reward model ablation

We also tried to substitute the txt2π Reward model
with a Transformer-based one. What we found
is that the Transformer architecture is superior in
the environments without manual shuffling, but is
clearly inferior when the shuffling happens (see
Table 9). The overall performance averaged over
the 8 RTFM variants is roughly equal, but while
the Transformer architecture is promising for the
Reward model, there is also some a clear barrier
in that the 1D positional encodings for the manual
do not seem to suffice for it to learn the reward

function in the shuffle case; thus we chose txt2π
architecture for our Reward model.

Architecture Win rate Win rate
no shuffle shuffle

txt2π 0.631 0.547
Transformer 0.790 0.371

Table 9: Reward model ablation. While the Trans-
former architecture is superior in the environments with-
out manual shuffling, it is clearly inferior when the
shuffling happens. Thus our main choice for the Reward
model architecture is txt2π.

Dataset collection ablation

To study the impact of the dataset collection strat-
egy on our method, we run an ablation study where
we change the percentage of trajectories collected
with the random policy (rnd) and those collected
with the vanilla MCTS policy (mcts) and re-train
Reader from scratch in each split and environment.
In particular we consider the 25 rnd / 75 mcts and
the 75 rnd / 25 mcts splits, in addition to the origi-
nal 50 rnd / 50 mcts split used for the results in the
main experiments. We report in Table 10 the results
for the single monster environments, in Table 11
the results for the two monsters environments and
in Table 12 the average across all eight environ-
ments for each split.

We find that further increasing the percentage of
MCTS trajectories leads to a drop of performance
across the environments, while decreasing it (i.e.,
increasing the percentage of trajectories from the
random policy) slightly increases performance.

We speculate that this is due to the fact that, in
order to learn the reward function properly, we
need to collect many terminal transitions where
the knowledge of the manual is needed to predict
the corresponding reward. This happens when the
agent is carrying an item and interacts with a mon-
ster, either with positive or negative reward. Tra-
jectories from the vanilla MCTS policy usually
contain predominantly terminal transitions with
positive reward, while trajectories where the agent
carries an item and receives a negative reward are
less abundant and might be found more often when
following the random policy. This would explain
why having more random trajectories rather than
MCTS ones is helpful in the splits that we consid-
ered.
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Methods
Win rate Training

Framesone sl one sl one nl one nl
shuffle shuffle

Reader 50 rnd / 50 mcts (ours) 0.99.01 0.85.17 0.79.19 0.63.18 1M
Reader 25 rnd / 75 mcts 0.99.01 0.76.22 0.64.18 0.50.01 1M
Reader 75 rnd / 25 mcts 0.99.01 0.92.16 0.69.06 0.76.18 1M

Table 10: Comparison of dataset composition (single monster). We evaluate every method with 5 independent
training runs for every single-monster RTFM variant (with simple language, sl, or natural language, nl, and with
or without shuffling). We report the average and standard deviation (over 5 runs) of the win rate over 1000 episodes.
We also report the number of frames used for training each method.

Methods
Win rate Training

Framestwo sl two sl two nl two nl
shuffle shuffle

Reader 50 rnd / 50 mcts (ours) 0.50.07 0.47.16 0.24.01 0.24.01 1M
Reader 25 rnd / 75 mcts 0.49.01 0.49.14 0.24.01 0.24.01 1M
Reader 75 rnd / 25 mcts 0.53.12 0.48.17 0.24.02 0.24.02 1M

Table 11: Comparison of dataset composition (two monsters). We evaluate every method with 5 independent
training runs for every two-monsters RTFM variant (with simple language, sl, or natural language, nl, and with or
without shuffling). We report the average and standard deviation (over 5 runs) of the win rate over 1000 episodes.
We also report the number of frames used for training each method.

Split Win rate
Reader 50 rnd / 50 mcts (ours) 0.59
Reader 25 rnd / 75 mcts 0.54
Reader 75 rnd / 25 mcts 0.60

Table 12: Dataset composition ablation. Average win
rate across all eight variants of RTFM considered for
each dataset composition.

E Reader and Oracle MCTS performance

In Table 1 we show that the win rate of Reader is
2% higher than the win rate of Oracle MCTS for the
most simple RTFM environment (one,sl). This is
surprising at first sight, as the underlying planning
algorithm is the same and, assuming that Reader
learned the optimal reward function, the difference
in performance must come from differences in the
transition probabilities, as that is the only remain-
ing difference. In the following of this section we
explain how is it possible that planning with vanilla
MCTS and a learned world model can yield better
results than planning with the same MCTS algo-
rithm but with the ground-truth simulator instead
of the world model.

First, we need to keep in mind that vanilla MCTS
is not necessarily an optimal planner, as it relies on
a random policy to estimate the values of the leaf

nodes. While using a random policy greatly simpli-
fies the algorithm (which for example can be used
out-of-the-box without any policy and value learn-
ing), it also implies that value estimates have high
variance and are usually greatly underestimated.

Second, in the single monster case, for every
state there always exists an action that is 100%
safe to take, thus an optimal agent should be able
to always avoid losing. By inspecting the failure
cases of the Oracle MCTS we can see that the agent
sometimes takes risky actions, as the ones reported
in Fig. 5 and Fig. 6, where the agent decides to go
straight for the item it needs, at the risk of encoun-
tering the monster.

These two points together imply that if the op-
timal action’s Q-value is greatly underestimated
due to high variance and the usage of the random
rollouts, then it is possible that riskier actions’ Q-
values might seem higher. This in turn makes the
MCTS sample more and more the risky action,
leaving the optimal action under-explored and thus
underestimated.

Why then using Reader’s world model is able to
improve the performance? It turns out that Reader’s
learned world model is biased towards sampling
transitions where the monster moves towards the
agent. This penalizes what we called risky actions,

16595



as the estimated risk is higher in Reader, and leads
to safer behaviors which explain the increase in
win rate from 97% to 99% in the (one,sl) RTFM
variant. One of the possible ways in which we
can show this bias is the following: we simulate
episodes with a random policy until termination,
we then consider the second to last state s and
the last action a and we simulate with the ground-
truth simulator n possible outcomes {s′(i)}i=1,...,n.
We then create an identifier (e.g. a hash) for each
unique outcome (in the single monster case, there
are at most five, corresponding to all the possible
movements the monster can do) and compute the
total probability of reaching an outcome being a
terminal state. We then estimate the total probabil-
ity of reaching a terminal state with Reader’s world
model. The transition probabilities p(s′|s, a) are
given by the total sum of the probabilities of all
the latent codes z that together with s and a are
decoded into s′:

p(s′|s, a) =
∑

z∈Z
p(z|s, a)δ(d(z, s, a,m), s′),

where p(z|s, a) is Reader’s transition model,
d(z, s, a,m) is the Reader’s representation decoder
and δ(·, ·) is Dirac’s delta distribution. We get a
78% probability of reaching a terminal state for the
ground-truth simulator and 95% probability in the
case of Reader’s world model6. The bias found is
coherent in terms of magnitude and sign with the
explanation given above.

Next, in Fig. 5 and Fig. 6 we inspect a typi-
cal failure case, where we show examples of risky
behavior that emerges from the Oracle MCTS,
the transition probabilities for all the possible out-
comes estimated from the ground truth simulator
and Reader’s world model and finally the Q-values
of the top two actions when running MCTS with
either method. We can see how Reader’s bias in
sampling the worst-case scenario helps in ranking
the safer action higher than the risky one.

Finally, we can see in Fig. 6 how Reader’s bias
is dependent on the action. This can be explained
by our training procedure, where in forming the
mini-batches we up-sample the terminal transitions
to balance the reward classes. As the training of
the reward model is independent from the training
of the representation and transition models, we can
fix this issue by sampling separate mini-batches

6Note that these are conditional probabilities on the fact
that at least one outcome is a terminal state. The conditioning
is coming from the procedure with which we pick (s, a).

for the two parts of the model and re-balancing the
classes only in the case of the reward model.

F More interpretability results

Similarly to Fig. 4, we can show how the agent’s
plans change if we change the manual instead of
the goal.

In Fig. 7 we effectively change the (item, mon-
ster) assignment by swapping the modifiers of the
two items present in the state. This means that
to achieve the same goal (e.g. killing the fire
dragon) the agent has to collect a different item in
the two scenarios and it does that correctly (on the
left it plans to use the grandmasters hammer
as grandmasters beat fire, whereas on
the right it plans to use the gleaming axe as
gleaming beat fire).

In Fig. 8 instead we change the (monster, team)
assignment, such that the same goal (defeat
the star alliance) effectively asks to de-
feat a different monster in the two cases (dragon
on the left, jinn on the right). The agent
identifies correclty the target monster in the two
cases and the correct item to defeat such mon-
ster (grandmasters hammer on the left, as
grandmasters beat fire and the dragon
is of the fire type, gleaming axe on the right,
as gleaming beat poison and the jinn is
of the poison type).
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Figure 5: Oracle MCTS failure case (first example). On the left is represented a state, with red arrows highlighting
the action that the Oracle MCTS decides to execute and the movement of the monster that could lead to failing
the episode. On the right are reported the probabilities for the different movements of the monster (in red the one
that would make the agent lose) and Q-values estimated via MCTS for the best two actions (in blue the one for the
highest Q-value). We report these values both for the ground-truth simulator and for Reader’s world model. What
emerges is that Reader’s world model is over-sampling the outcomes that lead to terminal states, resulting in a more
conservative behavior (i.e. in a different choice of actions).

Figure 6: Oracle MCTS failure case (second example). On the left is represented a state, with red arrows
highlighting the action that the Oracle MCTS decides to execute and the movement of the monster that could lead to
failing the episode. On the right are reported the probabilities for the different movements of the monster (in red the
one that would make the agent lose) and Q-values estimated via MCTS for the best two actions (in blue the one
for the highest Q-value). We report these values both for the ground-truth simulator and for Reader’s world model
conditioned on two different actions. What emerges is that Reader’s world model is biased only when an action can
lead to a terminal state (action UP in this case) and it estimates quite accurately the probabilities when conditioned
on other actions (e.g. action STAY in the example). This bias is most likely an artifact of the training procedure,
where the terminal transitions are up-sampled to balance the reward classes.
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(a) Goal: Defeat the star alliance.
Manual: Blessed beat cold. Grandmasters beat fire.
Shimmering beat lightning. Gleaming beat poison.
Demon are order of the forest. Jinn are rebel enclave.
Dragon are star alliance.

(b) Goal: Defeat the star alliance.
Manual: Blessed beat cold. Gleaming beat fire.
Shimmering beat lightning. Grandmasters beat poison.
Demon are order of the forest. Jinn are rebel enclave.
Dragon are star alliance.

Figure 7: Interpretable plans for (item modifiers, monster elements) assignments. Action sequences planned
with MCTS and the learned world model for different possible (item modifiers, monster elements) assignments
in the manual (changes highlighted in the two captions). Planned action sequences can be visually inspected to
interpret the agent’s decisions. Furthermore, given the same state, we can prompt the agent with different (item
modifiers, monster elements) assignments and see how the agent’s plan changes accordingly, e.g. from (a) to (b).
For ease of visualization the environment is deterministic.
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(a) Goal: Defeat the star alliance.
Manual: Blessed beat cold. Grandmasters beat fire.
Shimmering beat lightning. Gleaming beat poison.
Demon are order of the forest. Jinn are rebel enclave.
Dragon are star alliance.

(b) Goal: Defeat the star alliance.
Manual: Blessed beat cold. Grandmasters beat fire.
Shimmering beat lightning. Gleaming beat poison.
Demon are order of the forest. Dragon are rebel enclave.
Jinn are star alliance.

Figure 8: Interpretable plans for (monster, team) assignments. Action sequences planned with MCTS and the
learned world model for different possible (monster, team) assignments in the manual (changes highlighted in the
two captions). Planned action sequences can be visually inspected to interpret the agent’s decisions. Furthermore,
given the same state, we can prompt the agent with different (monster, team) assignments and see how the agent’s
plan changes accordingly, e.g. from (a) to (b). For ease of visualization the environment is deterministic.
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