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Abstract

A popular approach to streaming speech trans-
lation is to employ a single offline model with
a wait-k policy to support different latency re-
quirements, which is simpler than training mul-
tiple online models with different latency con-
straints. However, there is a mismatch prob-
lem in using a model trained with complete
utterances for streaming inference with partial
input. We demonstrate that speech represen-
tations extracted at the end of a streaming in-
put are significantly different from those ex-
tracted from a complete utterance. To address
this issue, we propose a new approach called
Future-Aware Streaming Translation (FAST)
that adapts an offline ST model for streaming
input. FAST includes a Future-Aware Inference
(FAI) strategy that incorporates future context
through a trainable masked embedding, and
a Future-Aware Distillation (FAD) framework
that transfers future context from an approxi-
mation of full speech to streaming input. Our
experiments on the MuST-C EnDe, EnEs, and
EnFr benchmarks show that FAST achieves bet-
ter trade-offs between translation quality and
latency than strong baselines. Extensive anal-
yses suggest that our methods effectively al-
leviate the aforementioned mismatch problem
between offline training and online inference.1

1 Introduction

Streaming speech translation (ST) systems generate
real-time translations by incrementally processing
audio frames, unlike their offline counterparts that
have access to complete utterances before trans-
lating. Typically, streaming ST models use uni-
directional encoders (Zhang et al., 2019; Ren et al.,
2020; Ma et al., 2020b; Zeng et al., 2021; Zhang
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Figure 1: The input mismatch between offline training
and streaming testing.

et al., 2023) and are trained with a read/write policy
that determines whether to wait for more speech
frames or emit target tokens. However, it can be
expensive to maintain multiple models to satisfy
different latency requirements (Zhang and Feng,
2021; Liu et al., 2021a) in real-world applications.
Recently, some works (Papi et al., 2022; Dong
et al., 2022) have shown that a single offline model
with bidirectional encoders (such as Wav2Vec2.0
(Baevski et al., 2020)) can be adapted to streaming
scenarios with a wait-k policy (Ma et al., 2019)
to meet different latency requirements and achieve
comparable or better performance. However, there
is an inherent mismatch in using a model bidirec-
tionally trained with complete utterances on incom-
plete streaming speech during online inference.

Intuitively, speech representations extracted
from streaming inputs (Figure 1(b)) are less infor-
mative than those from full speech encoding (Fig-
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ure 1(a)) due to limited future context, especially to-
ward the end of the streaming inputs, which can be
exacerbated by the aforementioned mismatch prob-
lem. This raises a natural question: how much do
the speech representations differ between the two
inference modes? We analyze the gap in speech
representations, measured by cosine similarity, at
different positions in the streaming input compared
to using the full speech (Section 3). We observe a
significantly greater gap for representations closer
to the end of a streaming segment, with an average
similarity score as low as 0.2 for the last frame,
and the gap quickly narrows for earlier frames (Fig-
ure 2). Additionally, we observe more degradation
in translation quality for utterances with the great-
est gap in speech representations between online
and offline inference (see Appendix B.2).

We conjecture that the lack of future contexts
at the end of streaming inputs can be detrimen-
tal to streaming speech translation when using an
offline model. To this end, we propose a novel
Future-Aware Inference (FAI) strategy. This ap-
proach is inspired by masked language models’
ability (Baevski et al., 2020) to construct repre-
sentations for masked tokens from their context.
Specifically, we append a few mask embeddings
to the end of the streaming input and leverage the
acoustic encoder (Wav2Vec2.0)’s ability to implic-
itly construct representations for future contexts,
which can lead to more accurate representations for
the other frames in the streaming input.

Furthermore, we propose a Future-Aware Dis-
tillation (FAD) framework that adapts the offline
model to extract representations from streaming
inputs that more closely resemble those from full
speech encoding. We expand the original stream-
ing input with two types of future contexts: one
with m oracle speech tokens for the teacher model,
and another with m mask tokens for the student
model, which is initialized from the teacher model.
We minimize several distillation losses between
the output of the teacher and student models. By
incorporating additional oracle future contexts, the
speech representations for the frames in the origi-
nal streaming input extracted by the teacher model
resemble those when the full speech is available.
FAD aims to adjust the offline model to extract
similar representations for streaming input as it
would for full speech. In combination with FAI,
we improve the model’s ability to extract quality
representations during both training and inference,

alleviating the aforementioned mismatch problem.
We refer to our approach as FAST, which stands
for Future-Aware Streaming Translation.

We conducted experiments on the MuST-C
EnDe, EnEs, and EnFr benchmarks. The results
show that our methods outperform several strong
baselines in terms of the trade-off between transla-
tion quality and latency. Particularly, in the lower
latency range (when AL is less than 1000ms), our
approach achieved BLEU improvements of 12 in
EnDE, 16 in EnEs, and 14 in EnFr over baseline.
Extensive analyses demonstrate that our future-
aware approach significantly reduces the represen-
tation gap between partial streaming encoding and
full speech encoding.

2 Background and Related Work

Speech translation systems can be roughly catego-
rized into non-streaming (offline) and streaming
(online) depending on the inference mode. Re-
gardless of the inference mode, speech transla-
tion models typically employ the encoder-decoder
architecture and are trained on an ST corpus
D = {(x, z,y)}, where x = (x1, . . . , xT ) de-
notes an audio sequence, z = (z1, . . . , zI) and
y = (y1, . . . , yJ) the corresponding source tran-
scription and target translation respectively.

Non-Streaming Speech Translation For the
non-streaming ST task, the encoder maps the en-
tire input audio x to the speech representations
h, and the decoder generates the j-th target to-
ken yj conditional on the full representations h
and the previously generated tokens y<j . The de-
coding process of non-streaming ST is defined as
p(y | x) = ∏J

j=1 p (yj | x,y<j).
A significant amount of works have focused on

non-streaming ST, including pre-training (Wang
et al., 2020; Dong et al., 2021a; Tang et al., 2022;
Ao et al., 2022), multi-task learning (Liu et al.,
2020; Indurthi et al., 2020, 2021), data augmenta-
tion (Pino et al., 2019; Di Gangi et al., 2019b; Mc-
Carthy et al., 2020), knowledge distillation (Dong
et al., 2021b; Zhao et al., 2021; Du et al., 2022),
and cross-modality representation learning (Tang
et al., 2021; Fang et al., 2022; Ye et al., 2022).

Streaming Speech Translation A streaming ST
model generates the j-th target token yj based
on streaming audio prefix x≤g(j) and the pre-
vious tokens y<j , where g(j) is a monotonic
non-decreasing function representing the ending
timestamp of the audio prefix that needs to be
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consumed to generate the j-th word. The de-
coding probability is calculated as p(y | x) =∏J

j=1 p
(
yj | x≤g(j),y<j

)
.

Thus, a streaming ST model requires a policy to
determine whether to wait for more source speech
or emit new target tokens. Recent studies (Ma
et al., 2020b; Ren et al., 2020; Zeng et al., 2021;
Dong et al., 2022) make read/write decisions based
on a variant of the wait-k policy that was initially
proposed for streaming text translation, which al-
ternates write and read operations after reading
the first k source tokens. Because there is no ex-
plicit word boundaries in a streaming audio, several
works attempt to detect word boundaries in the au-
dio sequence by fixed length (Ma et al., 2020b),
Connectionist Temporal Classification (Ren et al.,
2020; Zeng et al., 2021; Papi et al., 2022), ASR
outputs (Chen et al., 2021), or continuous-integrate-
and fire (Dong et al., 2022; Chang and yi Lee,
2022). Moreover, some studies (Arivazhagan et al.,
2019; Ma et al., 2020c; Zhang et al., 2020b; Schnei-
der and Waibel, 2020; Miao et al., 2021; Zhang and
Feng, 2022a,c; Zhang et al., 2022; Liu et al., 2021b;
Zhang and Feng, 2022b; Lin et al., 2023) explore
adaptive policies to dynamically decide when to
read or write for streaming text and/or streaming
speech translation. Zhang and Feng (2022d) fill
future source positions with positional encoding as
future information during training for simultane-
ous machine translation (MT) within the prefix-to-
prefix framework. In this paper, we focus on a mat-
ter less attended to – how to alleviate the mismatch
between offline training and online inference.

Knowledge Distillation for Streaming Trans-
lation Existing studies on streaming text and/or
speech translation usually introduce future informa-
tion by distilling sequence-level knowledge from
offline MT (Ren et al., 2020; Zhang et al., 2021;
Liu et al., 2021b; Zhu et al., 2022; Deng et al.,
2023; Wang et al., 2023) and online MT (Zaidi
et al., 2021). Moreover, Ren et al. (2020) leverage
the knowledge from the multiplication of attention
weights of streaming ASR and MT models to su-
pervise the attention of the streaming ST model.
However, our FAD aims to reduce the representa-
tion gap between full speech and streaming speech.

3 Preliminary Analysis

In this section, we examine the mismatch problem
in Transformer-based (Vaswani et al., 2017) ST
architecture between offline training and online de-

Figure 2: The average cosine similarity s̄−τ of the end
100 positions in the streaming speech.

coding. In offline full-sentence ST, the speech rep-
resentation of each frame is obtained by attending
to all frames, including future frames, in the trans-
former encoder layers. Recently, a common ap-
proach in speech translation is to stack a pre-trained
Wav2Vec2.0 (Baevski et al., 2020) as the acoustic
encoder with a semantic MT encoder-decoder, re-
sulting in state-of-the-art performance in the ST
task (Han et al., 2021; Dong et al., 2022; Fang
et al., 2022; Ye et al., 2022). This approach lever-
ages the ability of Wav2Vec2.0 pre-training to learn
better speech representations.

When applying an offline model to streaming
inference, the lack of future frames causes an ap-
parent mismatch problem, which can lead to a de-
terioration in the extracted speech representations.
To quantify this effect, we examine three offline
ST models trained on the MuST-C EnDe dataset
using the Chimera (Han et al., 2021), STEMM
(Fang et al., 2022), and MoSST (Dong et al., 2022)
architectures, with a trainable acoustic encoder ini-
tialized from Wav2Vec2.0. We conduct analysis
on the tst-COMMON set with a duration between
2s and 10s by removing outliers and noisy data,
resulting 1829 examples.

For an input sequence of audio frames x =
(x1, . . . , xT ), the convolutional subsampler of
Wav2Vec2.0 shrinks the length of the raw audio
by a factor 320 and outputs the full speech rep-
resentation sequence a. For readability reasons,
we uniformly use the notation T to denote the se-
quence length of a = (a1, . . . , aT ). This simplified
notation does not undermine any of our conclu-
sions while making the equations more readable.
For streaming input ∀t ≤ T, x̂t = (x1, . . . , xt),
Wav2Vec2.0 will output the representation ât =
(ât,1, . . . , ât,t).

To quantify the difference in speech representa-
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tions between offline and online inputs, we com-
pute the cosine similarity st,t′ between the speech
representation at the t′-th (t′ ≤ t) position in the
streaming audio input x̂t and at the same position
with full-sentence encoding. We then calculate the
statistics s̄−τ by averaging the cosine similarity
over both the testset B and the time dimension with
a reverse index −τ corresponding to a position
τ − 1 frames before the end of the streaming input.

st,t′(x) = cos(ât,t′ , at′),∀t′ ≤ t, (1)

s̄−τ =
1

|B|
∑

x∈B

1

|x| − τ + 1

|x|∑

t=τ

st,t−τ+1(x) (2)

Figure 2 displays the s̄−τ curve for the last 100
positions in streaming inputs. For τ > 10, the
averaged cosine similarity s̄−τ is greater than 0.8,
indicating that the representations at those posi-
tions in a streaming input are similar to those with
the full speech. However, the curve shows a sharp
decline in the averaged cosine similarity s̄−τ for
the ending positions, particularly for the last one
(τ = 1), suggesting that the mismatch problem can
significantly affect the quality of speech represen-
tation for these positions. We provide additional
analysis in Appendix B.

4 Method

To address the mismatch problem between of-
fline training and online inference, we propose a
novel methodology called Future-Aware Stream-
ing Translation (FAST). This approach adapts an
offline ST model for streaming scenarios by us-
ing a Future-Aware Inference (FAI) strategy during
inference and a Future-Aware Distillation (FAD)
strategy during training. An overview of our pro-
posed method is depicted in Figure 3.

4.1 Model Architecture
Unlike previous works (Ren et al., 2020; Ma et al.,
2020b; Zeng et al., 2021; Liu et al., 2021a) that
require training multiple streaming models for dif-
ferent latency requirements, our goal is to train one
single offline model to meet the requirements. The
overall architecture depicted in Figure 3(a) consists
of an acoustic encoder, an acoustic boundary detec-
tor, a semantic encoder, and a translation decoder.
Acoustic encoder: The pre-trained Wav2Vec2.0
is adopted as the acoustic encoder to learn a better
speech representation (Ye et al., 2021, 2022).
Acoustic boundary detector: To enable the of-
fline ST model to perform chunk-wise streaming

inference, we use a Continuous Integrate-and-Fire
(CIF) module (Dong and Xu, 2020) as the acoustic
boundary detector to dynamically locate the acous-
tic boundaries of speech segments following (Yi
et al., 2021; Dong et al., 2022). The CIF module
generates an integration weight αt for each acous-
tic representation at by Wav2Vec2.0. Then, CIF
accumulates αt in a step-by-step way. When the
accumulation reaches a certain threshold (e.g. 1.0),
the acoustic representations corresponding to these
weights are integrated into a single hidden represen-
tation hj by weighted average, indicating a found
token boundary. The shrunk representations h will
be fed into the semantic encoder. To learn the cor-
rect acoustic boundaries, we use the source text
length J as the weakly supervised signal.

LCIF =

∥∥∥∥J −
∑T

t=1
αt

∥∥∥∥
2

(3)

There are two benefits of using CIF as a boundary
detector. For offline ST model, it can address the
length gap between speech and text. It can also
provide the acoustic boundaries to perform read-
/write policies for streaming inference. Similar to
the word alignment in NMT (Li et al., 2022, 2023),
it can align the source audio and source text token.
Semantic encoder and Translation decoder: The
standard transformer (Vaswani et al., 2017) com-
posed of Le encoder layers and Ld decoder layers
is used. The translation loss is defined as:

LST(x,y) = −
∑J

j=1
log p (yj | y<j ,x) (4)

4.2 Future-Aware Inference
The offline ST model is trained with the following
objective function:

Loffline = LST + λ · LCIF (5)

where λ is a hyper-parameter to balance two losses.
Based on the analysis in Section 3, we find that

it is only necessary for the offline ST model to be
aware of a short future during streaming encoding.
Thus, we first propose a Future-Aware Inference
(FAI) strategy to enhance the representations of
streaming speech in Figure 3 (b).

In this strategy, the streaming inference is di-
rectly performed on offline ST model without fine-
tuning. Particularly, we use the mask tokens of
Wave2Vec2.0 as the pseudo future context and ap-
pend them to the speech tokens generated from
the already consumed speech frames. Because
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Figure 3: Illustration of offline ST model and proposed methods FAI and FAD.

the mask token embedding is trainable when pre-
training Wave2Vec2.0, and the contrastive loss is to
identify the quantized latent audio representation of
masked regions based on unmasked context, this is
intuition that mask tokens can possibly encode fu-
ture context. In addition, the masking strategy dur-
ing pre-training results in approximately 49% of all
time steps being masked with a mean span length
of 300ms, it also guarantees that Wav2vec2.0 is
able to extract better speech representations even
with the presence of large amount of mask tokens.

Wav2Vec2.0 consists of a multi-layer convolu-
tional subsampler fc and a Transformer encoder fe.
During our online inference, for each audio prefix
x̂t = (x1, . . . , xt), the fc first outputs streaming
speech tokens ĉt = (c1, . . . , cτ ), where ĉ ∈ Rτ×d

and d is the dimension of model and τ is the
sequence length after convolutional subsampling.
Then, we concatenate the streaming speech tokens
ĉ and m mask token embeddings e ∈ Rd along
the time dimension, resulting in a longer sequence
of speech tokens ∈ R(τ+m)×d. The new speech
tokens are then fed into the Transformer encoder
fe, but only the first τ encoder outputs (i.e., speech
features) will be kept for the CIF module because,
as discussed in Section 3, the last m speech fea-
tures are of poor quality and adversely affect trans-
lation quality. Then, if an acoustic boundary is
detected by the CIF module, the decoder will emit
new words based on wait-k policy, otherwise, the
streaming speech is continued to be read. The FAI
strategy is outlined in Algorithm 1 in Appendix.

4.3 Future-Aware Distillation

Although FAI considers mask tokens as the pseudo
future context, it is still preferred to leverage the fu-

ture oracle speech tokens, which is unavailable dur-
ing inference. Therefore, we take one step further
by proposing a fine-tuning method – Future-Aware
Distillation (FAD). It aims to distill the knowledge
from teachers with oracle future contexts into stu-
dents with pseudo future contexts.

The teacher model is the offline ST by optimiz-
ing Eq. (5) and is frozen. The student model has
exactly the same architecture as the teacher and is
initialised from the teacher. However, the semantic
encoder and translation decoder are frozen to retain
offline-trained ST performance.
Training A naive solution is to distill knowledge
from the full speech into every possible streaming
speech for each audio. However, since the length
of speech tokens is typically very large, e.g., 300
on average, it is computationally prohibitive. To
this end, we propose a simple and efficient imple-
mentation via random sampling.

Given a full audio waveform x, fc outputs the
speech tokens c ∈ RT×d. We randomly sample an
integer t ∈ [1, T ] to construct the streaming speech
token c≤t. Then, we define the teacher input of fe
with oracle future context as following:

ĉT = c1:t+m ∈ R(t+m)×d, (6)

where m is a hyper-parameter to denote the num-
ber of future contexts. The most straightforward
approach is to use the full speech as the teacher
input. However, due to the bidirectional acoustic
encoder, the streaming speech representation of the
same position constantly changes when consuming
new frames.

To maintain consistency with the inference
method FAI, we use the mask tokens as the pseudo
future context and append them to the sampled
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speech tokens to construct the student input.

ĉS = Concat{c1:t;m× [e]} ∈ R(t+m)×d, (7)

where e ∈ Rd is the mask embedding.
We can obtain the streaming speech representa-

tions from teacher fT
e and student fS

e . Then the
first t speech representations are fed into the CIF
module to derive the teacher and student weight se-
quence. Concretely, they can be written as follows.

âT , âS = fT
e (ĉ

T ), fS
e (ĉ

S) (8)

αT
1:t, α

S
1:t = CIF(âT1:t),CIF(â

S
1:t) (9)

Eventually, two distillation losses are proposed to
reduce the speech representation gap.

LW2V
KD = 1− cosine(âS1:t, â

T
1:t) (10)

LCIF
KD =

∑t

τ=1
KL(αT

τ ∥αS
τ ) (11)

The first loss is to directly minimize the stream-
ing speech representations with cosine similarity.
The second loss is to learn more correct acoustic
boundaries for online inference by calculating the
KL-divergence between two weight distributions.
Note that according previous analysis in Section 3,
the representations of the first t speech tokens after
fT
e should have high quality if m > 10, so only the

first t speech representations are taken into account
for loss calculation.

Optimization The total training objective of the
FAD can be written as L = LW2V

KD + LCIF
KD. The

overall training procedure of the proposed method
is shown in Figure 3(c).

5 Experiments

5.1 Experimental Settings

Datasets We evaluate our approach on MuST-C V1
English-German (EnDe), English-Spanish (EnEs)
and English-French (EnFr) datasets (Di Gangi et al.,
2019a), where limited previous works discussed
the En-Fr streaming ST with BLEU-latency curve.
All the corpora contain source audios, source tran-
scriptions, and target translations, and the results
reported are conducted on the corresponding tst-
COMMON set. Detailed statistics of different lan-
guage pairs are given in Appendix A.

For speech data, we normalize the raw audio
wave to the range of [−1, 1). For text data, we
keep punctuation and remove non-printing charac-
ters, and remain case-sensitive. For each transla-

tion direction, the unigram SentencePiece2 model
(Kudo and Richardson, 2018) is used to learn a
shared vocabulary of size 10k.
Model Configuration For the acoustic encoder, we
use Wav2vec2.03 (Baevski et al., 2020) following
the base configurations. We construct the acoustic
boundary detector by applying the CIF (Yi et al.,
2021) on the last dimension of speech represen-
tation. We use 8 and 6 layers for the semantic
encoder and the translation decoder respectively,
with 4 attention heads and 768 hidden units.
Training The detailed training schedule of the of-
fline ST model is given in Appendix C. We set the
length m of future context tokens to 50 for both
FAD and FAI. All hyper-parameters are tuned on
EnDe devset and applied to other language pairs.
We train all models with 3.2 million frames per
batch on 8 Nvidia Tesla V100 GPUs. We imple-
ment our models with Fairseq4 (Ott et al., 2019).
Inference We average the checkpoints of the best
10 epochs on development set for evaluation. We
perform streaming-testing with the wait-k policy.
k is counted by the detected acoustic units from
the CIF module. To follow the tradition in simul-
taneous translation (Zeng et al., 2021; Dong et al.,
2022), we do not rewrite the tokens that have al-
ready been generated.
Evaluation Metrics We use SacreBLEU5 for the
translation quality. The latency is evaluated with
Average Latency (AL) (Ma et al., 2019), Average
Proportion (AP) (Cho and Esipova, 2016), and Dif-
ferentiable Average Lagging (DAL) (Cherry and
Foster, 2019) in the SimulEval6 (Ma et al., 2020a).
System Settings We compare our method with sev-
eral strong end-to-end streaming ST approaches.
(i) SimulSpeech (Ren et al., 2020) and RealTranS
(Zeng et al., 2021) use uni-directional encoder
rather than bidirectional one. (ii) MoSST (Dong
et al., 2022) applies an offline-trained model with
a monotonic segmentation module for streaming
testing and achieves competitive performance. (iii)
MMA-SLM (Indurthi et al., 2022) enhances mono-
tonic attention to make better read/write decisions
by integrating future information from language
models. (iv) ITST (Zhang and Feng, 2022b) learns

2https://github.com/google/
sentencepiece

3https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_small.pt

4https://github.com/pytorch/fairseq
5https://github.com/mjpost/sacrebleu
6https://github.com/facebookresearch/

SimulEval
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Figure 4: The translation quality (BLEU) against the latency metrics (AL) on the tst-COMMON set of MuST-C
EnDe, EnEs, and EnFr dataset. † denotes that the results are obtained from corresponding papers. offline is the
offline performance of teacher model (offline-trained ST) by greedy search. The curve corresponding to B is the
online performance of the teacher model using vanilla wait-k policy. The curve corresponding to B + FAI is the
online performance of the teacher model with our FAI strategy. The curve corresponding to FAST is the online
performance of our student model with the FAI strategy, i.e., FAD + FAI.

an adaptive read/write policy by quantifying the
transported information weight from source token
to the target token. (v) MU-ST (Zhang et al., 2022)
learns an adaptive segmentation policy to detect
meaningful units, which makes read/write deci-
sions. (vi) Baseline is our offline-trained ST model
(B for abbreviation). For fair comparisons, it has
the same structure as MoSST.

5.2 Main Results

We presents the main results in Figure 4 7. Com-
pared with the online models SimulSpeech, Re-
alTranS, and ITST, our offline model (baseline)
achieves higher translation quality with high la-
tency as it encodes bidirectional context informa-
tion during training, however, in the low latency re-
gion, it performs poorly due to the input mismatch
between offline-training and online-decoding.

B + FAI With the ability to reduce this mismatch,
FAI is directly applied for our offline (baseline)
model and can achieve higher BLEU in all latency
regions. In particular, it outperforms our most com-
patible baseline B by large margins in lower latency
regions (when AL is less than 1000ms), with im-
provements over 6 BLEU in both EnDe and EnEs,
10 BLEU in EnFr.

FAST (FAD + FAI) Furthermore, our FAST
achieves the best trade-off between translation qual-
ity and latency, especially at extremely low latency

7The extended results for other latency metrics (AP and
DAL) are described in Appendix D.5.
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region (AL is about 200ms, k = 1), achieving the
improvements of 6 BLEU in EnDe, 10 BLEU in
EnEs, and 4 BLEU in EnFr compared to B + FAI.
It indicates that FAST can effectively mitigate the
input mismatch between offline-training and online-
decoding. In addition, our method achieves com-
parable translation quality with full-speech trans-
lation at middle latency (at AL around 3000ms),
especially for EnEs.

5.3 Ablation Study

In this section, we study the effectiveness of our
methods. All ablation results are obtained from the
MuST-C EnDe tst-COMMON set. The results are
shown in Figure 5.
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Figure 6: Effect on BLEU-AL curve of FAST w.r.t. m.

(1) w/o LW2V2
KD : if removing the LW2V2

KD , the trans-
lation quality drops by 1-2 BLEU in all latency re-
gions, including high latency region. This demon-
strates optimizing LW2V2

KD can guarantee the full
speech translation performance.

(2) w/o LCIF
KD: If removing the LCIF

KD, the transla-
tion quality will be slightly degraded. However, we
observe that the distances between two consecutive
acoustic boundaries become larger. For example,
the AL of this variant at wait-1 is greater than 750,
but the AL of the other variants at wait-1 is approx-
imately 150. As expected, optimizing LCIF

KD can
ensure the correct acoustic boundaries.

(3) w/o FAI: In this variant, we use the stu-
dent model by FAD with vanilla wait-k policy for
streaming inference (i.e., inference without mask
tokens). However, FAD training considers mask
tokens as student input, so this mismatch leads
to significant performance degradation in low and
middle latency regions. This indicates that our FAD
and FAI should be used together to achieve better
streaming performance.

(4) w/o mask embeddings: During training and
inference, our model appends m mask tokens into
streaming speech tokens as the pseudo future con-
texts. In this variant, we remove the mask tokens
during both training and inference. Even though
no mismatch, we still observe a significant drop in
translation quality, especially for high latency. This
result indicates that the pseudo future contexts can
enhance the streaming speech representations.

5.4 How much future context is needed?

To answer this question, we explore the FAST
(FAD + FAI) with different lengths of future con-
text. Figure 6 shows the overall results. m = 0
means the offline system without distillation. The
offline system inherits the mismatch problem, but
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Figure 7: Effect on the s̄−1 w.r.t. m.
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Figure 8: Effect on the average cosine similarity s̄−t′ of
the streaming speech representations at the end positions
(before mask tokens). After applying FAI and FAST,
the representations of the end positions are improved.

our method gradually improves the performance as
m increasing from 0 to 20. Since we found only
the representation of last 10 positions is poor (in
Section 3), FAST obtains similar BLEU-AL curve
when m is significantly larger than 10, e.g., 20-100.

After the FAD training, we investigate the repre-
sentation of the last position (before mask tokens)
by s̄−1 in Eq. (2) w.r.t. m. The results are shown
in Figure 7. We observe that 1) as m increases, the
streaming speech representation of the last position
becomes better; 2) the curves of the cosine similar-
ity becomes flattened when m > 10 significantly.
This is consistent with the trend in Figure 6.

5.5 Analysis on The Representation Gap

Figure 8 plots the changes of average cosine simi-
larity s̄−t′ in Eq. (2) of the last 40 positions (before
mask tokens) in the streaming speech after apply-
ing the FAI or FAST (FAD + FAI). They achieve at
least 0.6 and 0.8 cosine similarity at the last posi-
tion, respectively. The baseline only has the < 0.6
cosine similarity for the last 4 positions and only
0.2 for the last position. It indicates that the repre-
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Method Easy Medium Hard AL

Offline (greedy) 26.38 23.22 21.26 -
Baseline 18.88 12.95 10.38 1295
+ FAI 23.88+5.00 18.99+6.04 16.45+6.07 1143
FAST 24.44+5.56 19.89+6.94 16.53+6.15 1135

Table 1: Performance (BLEU) on different monotonic
levels on test set of MuST-C EnDe.

sentations with FAI are closer to those of the full
speech, especially at the ending positions, and FAD
training can further close this gap.

5.6 What examples are improved?
For tst-COMMON on MuST-C EnDe, we use
awesome-align8 (Dou and Neubig, 2021) to iden-
tify the token-level alignment between source tran-
scription and target translation following Zhang
and Feng (2022d). First, we define the source-to-
target alignment position shift as max{0, i − j},
where the ith source token is aligned to the jth
target token. If i− j is large, it means in order to
translate the jth target token, the model may need
to read more until seeing the ith source token. Then
we calculate the monotonic level of each example
as the averaged alignment position shift over the
number of aligned tokens, i.e.,

M =
1

|A|
∑

(i,j)∈A
max{0, i− j}. (12)

where M denotes monotonic level and A repre-
sents aligned pairs. We evenly divide the test set
into three groups (Easy, Medium, and Hard) ac-
cording to different monotonicity levels. For each
group, we evaluate different inference methods and
report the results in Table 1. As we explained in
D.1, it is almost impossible to guarantee the same
AL for different inference methods. For a fair com-
parison, we try our best to set the AL of different
methods to be approximately equal. We can see
our inference strategies show a significant advan-
tage on the non-monotonic examples (Medium and
Hard groups).

6 Conclusion

In this paper, we examine streaming speech trans-
lation from a new perspective. We investigate
the effects of the input mismatch between offline-
training and online-decoding. We find that the rep-

8https://github.com/neulab/
awesome-align

resentations at the ending positions in the stream-
ing input are particularly poor, directly impacting
the translation quality. We propose FAST, which
introduces future contexts to improve these rep-
resentations during training and testing via FAD
and FAI, respectively. Experiments and analysis
demonstrate their effectiveness in bridging the rep-
resentation gap between full speech encoding and
partial streaming encoding. Furthermore, our meth-
ods can be generally beneficial to streaming speech
translation models that are based on Wav2Vec2.0.
In the future, we will explore the relevant method
independent on Wav2Vec2.0.

7 Limitations

Our proposed method is built upon the Wav2Vec2.0
base model, whose superior representation power
has been shown to enhance the performance of of-
fline ST models. Nevertheless, it should be noted
that its parameters are considerably large, approx-
imately 95M. This may lead to increased compu-
tational costs during training and inference. If we
want to extend the model to the long context audio
(similar to the document level machine translation
(Zhang et al., 2020a)), we have to explore the future
work in our conclusion.

The CIF module for detecting the acoustic
boundary is optimized from the weakly supervised
signal – total length of text tokens. In streaming
inference, the boundary detector is not guaranteed
to predict accurate boundaries. In other words,
it is not guaranteed to align each text token with
detected boundaries during online inference. How-
ever, due to the good performance of overall trans-
lation quality, we hypothesize that these bound-
aries may represent some meaningful acoustic (or
phrase-like) units. The underlying meaning should
be another future work to explore.
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A Data Statistics

We evaluate our model on MuST-C V1 English-
German (EnDe), English-Spanish (EnEs) and
English-French (EnFr) datasets (Di Gangi et al.,
2019a). For training set, we follow Dong et al.
(2022) to filter out short speech of less than 1000
frames (62.5ms) and long speech of more than
480,000 frames (30s). The statistics of different
language pairs are illustrated in Table 2.

split EnDe EnEs EnFr

train 225,271 260,041 269,248
dev 1,418 1,312 1,408
tst-COMMON 2,641 2,502 2,632

Table 2: Number of samples for each split of MuST-C
datasets.

B Additional Preliminary Analysis

B.1 Which part of streaming speech
representation is worse?

To further verify that only the representation of the
end position in streaming speech is poor, we calcu-
late the cosine similarity st,t′ between the speech
representation at the t′-th (t′ ≤ t) position in the
t-th streaming audio input x̂t and the speech repre-
sentation at the same position in the full encoding.
Then we average the cosine similarities over the
sentences in dataset B to obtain robust statistics.

For t′ ≤ t, s̄t,t′ =
1

|Bt|
∑

x∈Bt

st,t′(x)

=
1

|Bt|
∑

x∈Bt

cos(ât,t′ , at′),

(13)

where Bt = {x : |x| ≥ t} contains the audio inputs
with length no shorter than t.

We empirically compare the averaged cosine
similarity at the beginning, middle, and end posi-
tions of the speech representations. Figure 9 shows
s̄t,t′ of the first three (t′ = 1, 2, 3), middle three
(t′ = ⌊1+t

2 ⌋ − 1, ⌊1+t
2 ⌋, ⌊1+t

2 ⌋+ 1), and last three
(t′ = t − 2, t − 1, t) positions for each encoding
step t. At the beginning and middle positions, the
averaged cosine similarity s̄t,t′ is greater than 0.8
except t′ = 1, indicating that the representations
at such positions in the partial streaming input are
close to those in the full speech. Note that t′ = 1
with a slightly lower similarity won’t hurt the per-
formance much, because in practice it is almost

impossible to apply wait-1 policy (only read 20ms
speech input) in streaming ST. However, the s̄t,t′

declines significantly for the end positions, espe-
cially for the last one. In addition, we observe
that as t becomes larger, the streaming input will
gradually approximate the full speech input, then
the gap of the speech representation between the
offline and the online input becomes smaller. We
conclude that the representations of the end po-
sition in the streaming speech are particularly
inferior.

B.2 Does the poor representation at the last
positions of streaming speech affect
streaming ST performance?

To answer this question, we only calculate the av-
erage cosine similarity in the last position for each
sample.

∀x, s̄−1(x) =
1

T

t=T∑

t=1

cos(ât,t, at), (14)

s̄−1(x) reflects the degree of deterioration of the
representation at the last position of the streaming
speech. We sort the dataset by the value of the
degree and divide them evenly into 5 groups to
ensure enough samples in each group. The trans-
lation quality of each group is shown in Figure 10.
The performance of streaming ST drops close to
10 points as the representation at the last position
of the streaming speech becomes worse, while the
full-sentence ST fluctuates less than 4 points. In
addition, the performance gap between the stream-
ing ST and the full-sentence ST becomes larger as
the representation at the last position gets worse. In
the worse group, the streaming ST is 12.41 points
lower than the full-sentence ST. Therefore, we con-
clude that the poor representation at the end
position of the streaming speech has a strong
effect on the translation quality.

C Details of Offline Training

We use an Adam optimizer with learning rate 1e−4

and warmup step 10k. We decay the learning rate
with inverse square root schedule.

The offline ST model is first trained by a multi-
task learning, including ASR and ST tasks. A lan-
guage identity tag is prepended to the target sen-
tence for indicating which task is learned. In this
stage, the CIF module which is used to detect the
acoustic boundary is deactivated, in other words,
the CIF module is not trained. The main purpose
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Algorithm 1 Pseudocode of FAI strategy strategy in a PyTorch-like style.

# model: an offline-trained ST model consists of a acoustic encoder Wav2vec2.0, a token boundary detector
, a semantic encoder, and a decoder

# m: mask length, K: wait lagging, audio: audio waveform
# mask_emb: pre-trained mask embedding in Wav2vec

N = 0 # the number of source text tokens
x = [] # streaming audio prefix
y = [] # translations
mask_embs = mask_emb.repate(m, 1) # mask embeddings: m × d
while y[-1] != "<eos>":

if x == audio: # audio has been read
y = y + model(a,y) # write new target token

elif N - len(y) < K: # wait K detected source tokens
x = x + read(audio) # incrementally read audio
c = model.wav2vec2.cnn(x) # audio tokens τ × d

c = torch.cat((c, mask_embs), dim=0) # concatenate audio tokens and mask embeddings, (τ + m) × d
a = model.wav2vec2.encoder(c) # audio representations, (τ + m) × d
a = a[:a.shape[0] - m,:] # discard the predicted representations, τ × d

if model.token_detector(a): # source text token boundary is detected
N += 1

else:
h = model.semantic_encoder(a)
y = y + model.decoder(h, y) # write new target token
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Figure 10: Performance with degree of deterioration of
the representation at the last position of the streaming
speech.

is to learn a better decoder, i.e., a well-trained lan-
guage model. Then, we activate the CIF module
such that its parameters are trainable, and continue
to train for another several epochs. In this stage,
only the ST task is learned.

D Additional Experiments

D.1 Why we use AL rather than k?

In our presented results, we plot the BLEU v.s.
AL rather than k. We argue that k is not a fair
metric to evaluate the latency. In text streaming
translation, different tokenization (e.g., different
number of BPE operations) will lead to different
token boundaries for the same sentence. It indi-
cates the k tokens do not necessarily represent the
same partial sentence for different BPE methods.
This situation becomes even severer for speech
streaming translation. As we have a source text
token boundary detector in our model, the first k
detected text tokens will represent different lengths
of audio frames for different input audios. To be
precise, the wait-k policy used in our streaming
speech translation is actually wait-k detected to-
kens policy. Therefore, we prefer to use AL rather
than k as the latency metric in our experiments.
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Figure 11: We measure the accuracy of predicted context by calculating the cosine similarity between every
predicted future representation and full speech representations at the same position.

D.2 How important of the Wav2Vec2.0?

As we mentioned in the main text, the special audio
token “mask" in Wav2Vec2.0 is pre-trained on the
Librispeech dataset to reconstruct the correspond-
ing feature conditional on unmasked context via
the contrastive task. In our experiments, we didn’t
include contrastive learning as the auxiliary task
in the downstream ST training. And in our FAI
inference, we directly leverage the mask embed-
dings as the future context by appending them to
the streaming input. However, we found the speech
representations after ST training becomes even bet-
ter. Particularly, we calculate the cosine similarity
between every predicted future representation and
full speech representations at the same position,
and the results are illustrated in Figure 11. On
either the Librispeech or the MuST-C audio test
set, the fine-tuned Wav2Vec2.0 can produce better
speech representations from the masking inputs.

D.3 Why m > 10?

Based on the analysis in Section 3, we observed
that the representations of the last 10 positions of
the streaming speech are poorer. For example, the
speech representations ât−10:t for streaming speech
c1:t of length t are poor. Similarly, in FKD for a
teacher’s streaming speech input c1:t+m of length
t+m, the speech representations ât+m−10:t+m are
always suboptimal. Hence, not all t + m speech
representations can be utilized as teachers, only the
first t speech representations are taken into account
for loss calculation. If m < 10, t+m− 10 will be
smaller than t, and the representations ât−10+m:t

will also be of inferior quality, making the repre-
sentation ât−10+m:t a poor teacher. Thus, m needs
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Figure 12: BLEU v.s. AL on different p.

to be greater than 10 for high quality teachers.

D.4 Why are all predicted features discarded?

In FAI strategy, all the output representations cor-
responding to the m = 50 masking tokens will
be discarded, because we have demonstrated that
the representations at the ending positions are in-
ferior. However, as shown in 11, the first 10 pre-
dicted representations are not as bad as the next 40.
Therefore, on the EnDE test set, we also conduct
another streaming ST inference by appending dif-
ferent numbers of predicted context to the original
speech representations. We use discard rate p to
measure the number of appending features. When
p = 1.0, all predicted features are discarded and
it reduces to the standard FAI inference. In Figure
12, we compare the streaming speech translation
quality between regular FAI and its variant. It is
concluded that the predicted future context is too
noisy and harmful to the performance.
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D.5 Additional Results on EnDe/Es and EnFr
In this section, we evaluate our methods with other
latency metrics AP and DAL. The AP-BLEU and
DAL-BLEU curves on the MuST-C EnDe, EnEs,
and EnFr tst-COMMON sets are shown in Figure
13. For three language pairs, our methods can con-
sistently improve the baseline by a large margin.

E Numeric Results for the Figures

We also provide the numeric results for Figures 4
and 13 in Tables 3, and for Figures 5 in Table 4,
and for Figures 4 in Table 5, for Figure 6 in Table
6.

16616



0.2 0.4 0.6 0.8 1
0

4

8

12

16

20

24

Average Proportion

B
L

E
U

offline (greedy)
Baseline (B)

B + FAI
B + FAD + FAI (FAST)

(a) EnDe

2,000 4,000 6,000
0

4

8

12

16

20

24

Differentiable Average Lagging

offline (greedy)
Baseline (B)

B + FAI
B + FAD + FAI (FAST)

(b) EnDe

0.4 0.6 0.8 1

4

8

12

16

20

24

28

Average Proportion

B
L

E
U

offline (greedy)
Baseline (B)

B + FAI
B + FAD + FAI (FAST)

(c) EnEs

1,000 2,000 3,000 4,000 5,000

4

8

12

16

20

24

28

Differentiable Average Lagging

offline (greedy)
Baseline (B)

B + FAI
B + FAD + FAI (FAST)

(d) EnEs

0.4 0.6 0.8

6

12

18

24

30

Average Proportion

B
L

E
U

offline (greedy)
Baseline (B)

B + FAI
B + FAD + FAI (FAST)

(e) EnFr

1,000 2,000 3,000 4,000

6

12

18

24

30

Differentiable Average Lagging

offline (greedy)
Baseline (B)

B + FAI
B + FAD + FAI (FAST)

(f) EnFr

Figure 13: The translation quality (BLEU) against the latency metrics (AP, DAL) on the tst-COMMON set of
MuST-C EnDe, EnEs and EnFr dataset.
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Model Lagging (k)
En-De En-Es En-Fr

AL AP DAL BLEU AL AP DAL BLEU AL AP DAL BLEU

Baseline

1 178 0.13 359 0.02 295 0.34 1007 2.39 288 0.35 997 3.27
3 483 0.32 656 1.68 543 0.40 1054 4.09 463 0.38 1016 3.62
5 659 0.42 821 4.34 882 0.55 1239 11.37 693 0.46 1092 6.95
7 867 0.51 1032 7.79 1361 0.70 1700 20.31 1028 0.59 1300 15.10
9 1295 0.65 1531 13.31 1848 0.79 2215 24.62 1406 0.69 1630 21.66

12 1939 0.78 2234 18.72 2572 0.87 2947 27.04 1972 0.79 2222 27.40
15 2505 0.85 2788 20.67 3171 0.91 3513 27.74 2495 0.86 2741 29.89
20 3312 0.92 3559 22.33 3988 0.96 4260 27.88 3245 0.92 3462 31.70
30 4410 0.97 4576 23.16 5012 0.99 5157 27.76 4283 0.97 4435 33.09

+ FAI

1 150 0.30 494 5.94 347 0.35 641 8.38 285 0.44 632 14.45
3 475 0.53 928 12.65 775 0.59 1181 17.86 505 0.54 852 17.61
5 796 0.63 1223 16.10 1162 0.70 1589 22.71 805 0.61 1127 20.63
7 1143 0.70 1559 19.19 1608 0.78 2037 25.92 1154 0.69 1456 25.87
9 1534 0.76 1928 21.15 2076 0.83 2500 27.15 1498 0.76 1810 28.95

12 2109 0.83 2476 22.23 2736 0.89 3114 27.80 2060 0.83 2362 31.47
15 2647 0.88 2974 23.15 3301 0.93 3630 28.04 2559 0.88 2838 32.68
20 3404 0.93 3678 23.65 4072 0.96 4328 27.88 3280 0.93 3515 33.11
30 4457 0.97 4625 23.42 5045 0.99 5181 27.71 4297 0.97 4454 33.54

FAST

1 41 0.54 731 12.69 270 0.58 860 18.34 223 0.54 705 19.15
3 403 0.61 1009 14.78 722 0.65 1232 21.53 554 0.60 985 22.31
5 771 0.67 1327 17.71 1152 0.73 1629 24.78 895 0.67 1293 25.78
7 1135 0.73 1655 19.67 1594 0.79 2056 26.40 1224 0.73 1616 28.70
9 1503 0.78 1991 21.36 2031 0.84 2471 27.24 1570 0.78 1943 30.45

12 2036 0.83 2483 22.51 2650 0.89 3040 28.02 2079 0.84 2418 32.35
15 2539 0.88 2932 22.84 3194 0.92 3550 27.98 2541 0.88 2850 33.03
20 3260 0.92 3581 23.36 3943 0.96 4214 28.23 3212 0.92 3473 33.77
30 4305 0.97 4510 23.55 4928 0.98 5082 28.09 4199 0.97 4376 33.99

Table 3: Numeric results on MuST-C EnDe, EnEs, and EnFr tst-COMMON set (Figure 4 and 13).

Lagging (k)
w/o LW2V2

KD w/o LCIF
KD w/o FAI w/o mask embeds

AL BLEU AL BLEU AL BLEU AL BLEU

1 139 12.00 756 16.78 177 2.56 115 10.13
3 533 13.76 1220 20.01 390 2.80 459 11.86
5 911 16.24 1671 21.52 605 4.49 836 14.01
7 1288 18.17 2112 22.24 888 9.01 1211 15.12
9 1682 19.08 2527 22.41 1247 13.68 1588 15.76

12 2231 19.78 3087 22.68 1812 18.22 2138 16.44
15 2722 20.17 3562 22.73 2338 20.41 2641 16.62
20 3434 20.43 4201 22.84 3105 22.25 3363 16.75
30 4443 20.35 4992 22.73 4217 23.36 4393 16.63

Table 4: Numeric results for ablation study (Figure 5).
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EnDe

MU-ST

AL 1023 1424 1953 2642 3621 4453 5089 5754
BLEU 17.94 20.85 22.78 24.30 24.82 24.99 25.05 25.90

RealTrans

AL 1355 1838 2290 2720 3106
BLEU 16.54 18.49 19.84 20.05 20.41

MoSST

AL 728 862 1021 1689 2088
BLEU 7.07 9.04 11.52 16.44 17.31

ITST

AL 1449 1589 1678 1778 1919 2137 2371
BLEU 17.90 18.47 19.09 19.50 20.09 20.64 21.06
AL 2618 2893 3193 3501 3876 4557 5206
BLEU 21.64 21.80 22.02 22.27 22.51 22.62 22.71

EnEs

SimulSpeech

AL 694 1336 2169 2724 3331
BLEU 15.02 19.92 21.58 22.42 22.49

RealTrans

AL 1047 1554 2043 2514 2920
BLEU 18.54 22.74 24.89 25.54 25.97

ITST

AL 960 1153 1351 1621 1964 2381 2643 2980 3434 3983
BLEU 17.77 18.38 18.71 19.11 19.77 20.13 20.46 20.75 20.48 20.64

EnFr
MMA-SLM

AL 701 1197 1704
BLEU 14.86 19.79 25.16

Table 5: Numeric results for baseline systems (Figure 4). The results of MU-ST are obtained from (Zhang et al.,
2022). The results of SimulSpeech and RealTrans are obtained from (Zeng et al., 2021). The results of MoSST are
obtained from (Dong et al., 2022). The results of ITST are obtained from (Zhang and Feng, 2022b). The results of
MMA-SLM are obtained from (Indurthi et al., 2022).

Lagging (k)
m = 5 m = 10 m = 20 m = 30 m = 50 m = 80 m = 100

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU

1 118 0.49 64 5.67 99 12.67 3 12.44 41 12.69 85 12.78 100 13.18
3 298 8.48 306 12.10 468 15.20 349 14.50 403 14.78 458 15.57 479 15.87
5 629 13.84 660 16.03 858 18.24 717 16.87 771 17.71 835 17.87 845 17.91
7 1003 17.38 1038 18.78 1237 20.23 1083 19.32 1135 19.67 1205 19.97 1225 20.07
9 1389 19.38 1424 20.2 1627 21.56 1466 21.14 1503 21.36 1562 21.61 1587 21.44
12 1957 21.46 1978 21.62 2189 22.45 2001 22.19 2036 22.51 2095 22.38 2109 22.47
15 2479 22.17 2497 22.58 2695 23.02 2507 22.75 2539 22.84 2588 23.08 2599 23.07
20 3228 22.91 3231 23.14 3425 23.29 3234 23.43 3260 23.36 3302 23.55 3311 23.54

Table 6: Numeric results for different lengths future context (Figure 6).
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