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Abstract

Knowledge graph (KG) embedding is a fun-
damental task in natural language processing,
and various methods have been proposed to ex-
plore semantic patterns in distinctive ways. In
this paper, we propose to learn an ensemble by
leveraging existing methods in a relation-aware
manner. However, exploring these semantics
using relation-aware ensemble leads to a much
larger search space than general ensemble meth-
ods. To address this issue, we propose a divide-
search-combine algorithm RelEns-DSC that
searches the relation-wise ensemble weights
independently. This algorithm has the same
computation cost as general ensemble methods
but with much better performance. Experimen-
tal results on benchmark datasets demonstrate
the effectiveness of the proposed method in
efficiently searching relation-aware ensemble
weights and achieving state-of-the-art embed-
ding performance. The code is public at https:
//github.com/LARS-research/RelEns. 1

1 Introduction

Knowledge graph (KG) embedding is a popular
method for inferring latent features and making
predictions in incomplete KGs (Ji et al., 2021).
This technique involves transforming entities and
relations into low-dimensional vectors and using
a scoring function (Bordes et al., 2013; Wang
et al., 2017) to assess the plausibility of a triplet
(consisting of a head entity, a relation, and a tail
entity). Well-known scoring functions, such as
TransE (Bordes et al., 2013), ComplEx (Trouillon
et al., 2017), ConvE (Dettmers et al., 2018), and
CompGCN (Vashishth et al., 2020), have demon-
strated remarkable success in learning from KGs.

Ensemble learning is a well-known technique
that improves the performance of machine learning
tasks by combining and reweighting the predic-
tions of multiple models (Breiman, 1996; Wolpert,

1L. Yue and Y. Zhang made equal contributions, Corre-
spondence is to Q. Yao.

1992; Dietterich, 2000). Its effectiveness has also
been verified in KG embedding by previous stud-
ies (Krompaß and Tresp, 2015; Wang et al., 2022b;
Rivas-Barragan et al., 2022).

While designing different scoring functions to
model various relation properties (Ji et al., 2021;
Sun et al., 2019; Li et al., 2022), such as symme-
try, inversion, composition and hierarchy, is crucial
for achieving good performance, existing ensem-
ble methods do not reflect the relation-wise char-
acteristics of different models. This motivates us
to propose specific ensemble weights for differ-
ent relations, named as RelEns problem, in this
paper. By doing so, different KG embedding mod-
els can specialize in different relations, leading to
improved performance. However, the number of
parameters to be searched will linearly increase,
which can significantly complicate the ensemble
construction process especially for KGs with many
relations. To alleviate the difficulty of searching for
relation-wise ensemble weights, we propose DSC,
an algorithm that Divide the overall ensemble ob-
jective into multiple sub-problems, Search for the
ensemble weights for each relation independently,
and then Combine the results. This approach sig-
nificantly reduces the size of the search space and
evaluation cost for individual sub-problems, com-
pared to the overall objective.

In summary, we propose RelEns-DSC, a novel
relation-aware ensemble learning method for
KG embedding that searches different ensemble
weights independently for different relations, us-
ing a divide-concur strategy. Empirically, RelEns-
DSC significantly improves the performance on
three benchmark datasets (WN18RR, FB15k-237,
NELL-995) and achieves the first place on the large-
scale leaderboards ogbl-biokg and ogbl-wikikg2.
Our approach is more effective than general en-
semble techniques, and it is more efficient with the
divide-concur strategy under parallel computing.
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2 Proposed Method

Denote a KG as G = (V,R,D), where V contains
V entities (nodes), R contains R types of rela-
tions between entities, and D = {(h, r, t) : h, t ∈
V, r ∈ R} contains the triplets (edges). D is split
into three disjoint sets Dtra,Dval,Dtst for training,
validation and testing, respectively.

The learning objective of a KG embedding
model is to rank positive triplets higher than neg-
ative triplets, in order to accurately identify the
potential positive triplets missed in the current
graph (Wang et al., 2017; Ji et al., 2021).

Specifically, formulated as a tail prediction prob-
lem2, the KG embedding model aims to rank the
tail entity t of a given triplet x = (h, r, t), which
belongs to either Dval or Dtst, higher than a set of
negative entities. The set of negative entities is
defined as Nt = {e ∈ V : (h, r, e) /∈ D}. The
model F (x) computes a score vector s for each
entity e ∈ {t} ∪ Nt, which indicates the degree of
plausibility that the triplet (h, r, e) is true.

A ranking function Γ
(
s
)

is used to convert the
scores s into a ranking list p = (p1, . . . , pC) for
the C=1+|Nt| entities. A smaller rank value im-
plies the higher prediction priority. Following (Bor-
des et al., 2013; Trouillon et al., 2017; Sun et al.,
2019; Vashishth et al., 2020), we adopt mean re-
ciprocal ranking (MRR) as the evaluation metric.
Larger MRR indicates better performance.

2.1 Relation-wise Ensemble Problem

We observe that embedding models may exhibit
varying strengths in modeling different types of
relations (see Appendix A.2 for details). To ac-
count for this, we propose a novel approach that
learns distinct weights for each relation, based on
the performance of models on validation set Dval.
Specifically, given N trained KG embedding mod-
els, i.e., F1, F2, . . . , FN , and a set of relations R.
We introduce a weight αr

i ≥ 0 assigned to model
Fi for relation r and M(p, x) = 1/pt for the re-
ciprocal ranking of a given data point x = (h, r, t).
Let Dr

val denote as the subset of validation triplets
whose relations are r. The objective of relation-

2Head prediction is conducted in the same way with neg-
ative entities Nh = {e ∈ V : (e, r, t) /∈ D}. For simplicity,
we only use tail prediction as an example to introduce our
method.

wise ensemble can be written as follows:

max
{αr

i }
r=1,...,R
i=1,...,N

∑
r∈R

∑
xj∈Dr

val

M
(
Γ(pr

j), x
r
j

)
, (1)

s.t. pr
j = −

∑N

i=1
αr
iΓ

(
Fi(x

r
j)
)
, αr

i ≥ 0.

For each triplet xrj with relation r, we apply the
ensemble weights αr

i to the ranking list Γ(Fi(x
r
j))

generated by the i-th model. The scales of scores
vary significantly. Optimizing scores directly may
be more challenging. Additionally, since ranks
have similar scales, the searched weights can better
indicate the importance of the corresponding base
model. Specifically, we obtain the ensembled score
pr
j = −∑N

i=1 α
r
iΓ

(
Fi(x

r
j)
)
, where “−” turns the

ranks to scores, indicating higher prediction prior-
ity with a higher value in pr

j .
In particular, if the ensemble weights assigned

for each model Fi for all relations are identical,
i.e., α1

i = α2
i = · · · = αR

i for i = 1, . . . , N , the
objective in equation (1) (denoted as RelEns-Basic)
reduces to the general ensemble method (denoted
as SimpleEns). By optimizing the values of αr

i , the
goal is to achieve higher MRR performance on the
validation set Dval =

∑
r∈RDr

val.

2.2 Divide Search and Combine

Comparing with SimpleEns, RelEns-Basic requires
searching for NR parameters. As MRR is a non-
differential metric, zero-order optimization tech-
niques, like random search and Bayesian optimiza-
tion (Bergstra et al., 2011), are often used to solve
Eq. (1). However, these algorithms usually involve
sampling candidates in the search space, the com-
plexity of which can grow exponentially with the
search dimension due to the curse of dimension-
ality (Köppen, 2000). As a result, optimizing Eq.
(1) can be challenging. To address this issue, we
propose Proposition 1, which enables the separa-
tion of the big problem Eq. (1) into R independent
sub-problems. In the divided problem r, there are
only N parameters {αr

i }i=1,...,N to be searched.

Proposition 1 (separable optimization problem).
The optimal values of {αr

i }r=1,...,R
i=1,...,N that are

searched on Dval in (1) can be equated to the values
of {αr

i }i=1,...,N that are independently optimized
on Dr

val for each r ∈ R via the following problem

max
{αr

i }i=1,...,N

∑
xj∈Dr

val

M(Γ(pr
j), x

r
j), (2)

s.t. pr
j = −

∑N

i=1
αr
iΓ

(
Fi(x

r
j)
)
, αr

i ≥ 0.
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The complete divide-search-and-combine proce-
dures are outlined in Algorithm 1. By separably
searching the divided problems, we can determine
the optimal values of {αr

i }i=1,...,N for each r on
the validation data Dr

val.
Finally, we combine the searched values

of {αr
i }r=1,...,R

i=1,...,N to compute the scores pr
j =

−∑N
i=1 α

r
iΓ

(
Fi(x

r
j)
)

for xrj ∈ Dtst in order to
evaluate the performance.

Algorithm 1 RelEns-DSC: Divide-search-combine
algorithm for relation-wise ensemble.

Require: Base models F1, . . . , FN , ensemble pa-
rameters {αr

i , i = 1, . . . , N, r ∈ R}, dataset
Dval, ranking functions Γ(·) and M(·, ·).

1: Divide: divide Dval and {αr
i , i=1, . . . , N, r∈

R} into
{
Dr

val, {αr
i , i=1, . . . , N},r∈R

}
.

2: Search:
3: for r in R (can work in parallel) do
4: search the values of {αr

i }i=1,...,N by solving
(2);

5: end for
6: Combine: Combine the optimal values of

{αr
i }r=1,...,R

i=1,...,N for evaluation;
7: return MRR and Hit@k on testing data Dtst.

2.3 Complexity Analysis

Assuming that the evaluation cost of Γ(·) and
M(Γ(·), x) on a single data sample x is a constant,
the time complexity of ensemble learning is deter-
mined by two factors: (i) the number of data sam-
ples to be evaluated; (ii) the number of ensemble
parameters to be sampled. For SimpleEns, the com-
plexity is O(|Dval|eN ). On the other hand, RelEns-
Basic in Eq. (1) requires O(|Dval|eRN ) since the
sampling complexity increases exponentially with
the search dimension. In comparison, the complex-
ity of RelEns-DSC in Algorithm 1 is O(|Dval|eN ),
which is on par with SimpleEns.

3 Experiments

The experiments were implemented using Python
and run on a 24GB NVIDIA GTX3090 GPU.

As the ranking function Γ(·) and MRR are non-
differentiable, We chose the widely used Bayesian
optimization technique, Tree-Parzen Estimator
(TPE) (Bergstra et al., 2015), to solve the max-
imization problems in Eq. (1) and Eq. (2), the
details of which are provided in the Appendix B.3.

3.1 Datasets

We conduct experiments on commonly studied
datasets for KG, including WN18RR (Dettmers
et al., 2018), FB15k-237 (Toutanova and Chen,
2015), and NELL-995 (Xiong et al., 2017). Addi-
tionally, we apply the RelEns-DSC on OGB (Hu
et al., 2020) datasets ogbl-biokg and ogbl-wikikg2.
Details of statistics are in Appendix B.1.

3.2 Experimental Setup

Base models. We select some representative em-
bedding models as our base models Fi, including:
(i) translational distance models TransE (Bordes
et al., 2013), RotatE (Sun et al., 2019), HousE (Li
et al., 2022); (ii) bilinear model ComplEx (Trouil-
lon et al., 2017); (iii) neural network model ConvE
(Dettmers et al., 2018); and (iv) GNN based model
CompGCN (Vashishth et al., 2020). For the OGB
datasets, we select the top-3 methods from the
OGB leaderboard3 up to October 1st in 2023.

Evaluation Metric. Four evaluation metrics
(MRR and Hit@{1,3,10}) are reported for the
benchmarks WN18RR, FB15k-237 and NELL-995.
For OGB datasets ogbl-biokg and ogbl-wikikg2,
we report MRR results to keep consistent with the
leaderboard.

Hyperparameters. To compare on the general
benchmarks, we use the fine-tuned hyperparam-
eters reported by KGTuner (Zhang et al., 2022b).
For top three methods on OGB leaderboard, we use
their reported hyperparameters. Details of these set-
tings are in Appendix B.2.

3.3 Performance Comparison

Table 1 and Table 2 present the testing performance
comparison. SimpleEns is the variant introduced
in Section 2.1. We observe that SimpleEns consis-
tently outperforms the base models by weighting
different models according to their learning abil-
ity. The proposed method RelEns-DSC surpasses
SimpleEns by a large margin, verifying the effec-
tiveness of considering relation-specific ensemble
weights for KG embedding.

The top models on ogbl-biokg are more diverse
than ogbl-wikikg2. On ogbl-biokg, AutoBLM and
ComplEx are bilinear models, while TripleRE is
a translational model. The training framework of

3https://ogb.stanford.edu/docs/leader_
linkprop/.
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Table 1: Performance comparison on WN18RR, FB15k-237 and NELL-995 datasets.

Dataset WN18RR FB15k-237 NELL-995

Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.2337 0.0329 0.3993 0.5440 0.3277 0.2284 0.3687 0.5229 0.5072 0.4242 0.5593 0.6482
RotatE 0.4772 0.4236 0.4982 0.5799 0.3406 0.2468 0.3746 0.5284 0.5260 0.4658 0.5605 0.6260
HousE 0.5103 0.4644 0.5258 0.6023 0.3612 0.2658 0.3991 0.5504 0.5193 0.4581 0.5559 0.6178

ComplEx 0.4833 0.4403 0.5029 0.5613 0.3506 0.2606 0.3877 0.5283 0.5069 0.4423 0.5406 0.6107
ConvE 0.4370 0.3993 0.4483 0.5163 0.3333 0.2404 0.3667 0.5227 0.5294 0.4517 0.5782 0.6595

CompGCN 0.4609 0.4285 0.4698 0.5265 0.3355 0.2435 0.3715 0.5157 0.5167 0.4493 0.5617 0.6286

SimpleEns 0.5121
±0.0007

0.4670
±0.0004

0.5289
±0.0015

0.6021
±0.0017

0.3621
±.0.0011

0.2683
±0.0013

0.3977
±0.0018

0.5525
±0.0012

0.5416
±0.0032

0.4758
±0.0005

0.5823
±0.0026

0.6601
±0.0048

RelEns-DSC 0.5201
±0.0005

0.4770
±0.0003

0.5375
±0.0009

0.6039
±0.0015

0.3680
±0.0008

0.2746
±0.0014

0.4046
±0.0012

0.5554
±0.0010

0.5499
±0.0017

0.4823
±0.0013

0.5901
±0.0022

0.6609
±0.0035

Relative ↑ 1.56% 2.14% 1.63% 0.3% 1.63% 2.35% 1.73% 0.52% 1.53% 1.37% 1.34% 0.44%

Table 2: Comparison of MRR performance on ogbl-biokg and ogbl-wikikg2 datasets.

Dataset ogbl-biokg ogbl-wikikg2

Model name Valid Test Model name Valid Test

Top1 AutoBLM (Zhang
et al., 2022a) 0.8548 0.8543 StarGraph+TripleRE

+Text (Yao et al., 2023) 0.7439 0.7302

Top2 ComplEx-RP
(Chen et al., 2021) 0.8497 0.8494 InterHT+ (Wang et al.,

2022a) 0.7420 0.7309

Top3 TripleRE (Yu et al.,
2022) 0.8361 0.8348 StarGraph+TripleRE (Li

et al.) 0.7291 0.7193

SimpleEns – 0.9117±0.0002 0.9112±0.0003 – 0.7509±0.0009 0.7392±0.0011

RelEns-DSC – 0.9627±0.0004 0.9618±0.0002 – 0.7541±0.0007 0.7430±0.0010
Relative ↑ – 5.59% 5.55% – 0.43% 0.51%

the three models are also different. In compari-
son, the top three methods on ogbl-wikikg2 are
all translational models with similar approaches of
sharing entity embeddings. As a result, the varia-
tions of relation-wise performance of the top three
models on ogbl-biokg are larger than ogbl-wikikg2
(with std 0.0452 vs. 0.0261). This can explain why
the relation-wise ensemble is more significant on
ogbl-biokg than ogbl-wikikg2.

Furthermore, we illustrate the ensemble weights
of SimpleEns and RelEns-DSC on the WN18RR
dataset in Figure 1, which shows that RelEns-DSC
learns relation-specific ensemble weights, which
contributes to its superior performance.

3.4 Efficiency Comparison

We compare the learning curves (highest MRR yet
searched vs. running time) of SimpleEns, RelEns-
Basic, and RelEns-DSC on NELL-995 in Figure 2
(the curves of other datasets are in Appendix C.1).
The ensemble weights for all three methods are ini-
tialized as 1/N . We denote the number of parameter
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Figure 1: Ensemble weights of SimplEns and RelEns-
DSC on the WN18RR dataset.

configurations for TPE to search as Q, and show
the results of Q = 50 and Q = 100.

Based on the results, RelEns-Basic is much
worse than SimpleEns, since the search complex-
ity of RelEns-Basic increases exponentially. At
the beginning of searching, RelEns-DSC is inferior
to both SimpleEns and RelEns-Basic since it only
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Figure 2: Learning curves of different ensemble methods on NELL-995. RelEns-DSC2/5 indicates the number of
threads (2/5) used for parallel computing.

searches the weights on a few relations, while oth-
ers are unchanged. Over time, the performance of
RelEns-DSC has improved significantly as more
and more relations have found their optimal values.
Increasing Q from 50 to 100 did not lead to any
improvement in the performance of SimpleEns and
RelEns-Basic. However, RelEns-DSC was able to
achieve better overall performance since increasing
Q allows the sub-problems to be more sufficiently
solved with more iterations. In addition, RelEns-
DSC can be benefited by parallel computing on the
relation level, further improving efficiency.

3.5 Ablation Study

Table 3: Ablation study on WN18RR, FB15k-237 and
NELL-995 dataset. “H@10” is short for Hit@10.

Dataset WN18RR FB15k-237 NELL-995

Model MRR H@10 MRR H@10 MRR H@10

Mean .4963 .5746 .3572 .5457 .5412 .6622
Stacking .4952 .5751 .3563 .5433 .5365 .6669

SimpleEns .5121 .6021 .3621 .5525 .5416 .6601
MRR-Mean .5143 .6028 .3645 .5547 .5460 .6604
RelEns-DSC .5201 .6039 .3680 .5554 .5499 .6609

Table 3 shows the performance comparison of
multiple variants of RelEns-DSC on the three
benchmark datasets. Due to space limit, results of
Hit@{1,3} and the implementation details of the
variants are provided in Appendix B.2. The stack-
ing method (Stacking), arithmetic mean method
(Mean) and MRR-based weighted mean method
(MRR-Mean) have poorer performance compared
to RelEns-DSC. This indicates the importance of
searching for ensemble weights with TPE tech-

nique. Stacking performs the worst since the non-
differentiable metric MRR cannot directly opti-
mized. In particular, considering relation-specific
ensemble weights, RelEns-DSC can lead to better
performance than the general ensemble methods.

4 Conclusion

This paper introduces a novel ensemble method,
Relation-aware Ensemble with Divide-Search-
Combine (RelEns-DSC) for KG embedding. The
proposed RelEns-DSC learns relation-specific en-
semble weights for different models and efficiently
searches the weights using the divide-concur strat-
egy. Empirical results demonstrate that our pro-
posed method outperforms existing ensemble meth-
ods for KG embedding, in both effectiveness and
efficiency.

Limitations. The proposed method mainly ad-
dresses the ensemble problem for entity prediction
tasks in knowledge graph completion. However, it
does not effectively address the other graph learn-
ing tasks, such as entity/node classification, relation
prediction, and graph classification. In addition, the
significance of RelEns-DSC is under the case of
multi-relational graphs like knowledge graph and
heterogeneous graph, thus is not well adapted to
homogeneous graph with single edge type.
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A Supplementary Materials for the Method

A.1 Relation-wise Ensemble
An overview of the relation-wise ensemble problem is provided

in Figure 3. First, the dataset D is split into multiple sub-sets D1,D2, . . . ,DR according to the relations.
For each sample xrj from Dr, the models F1, F2, . . . , FN output the scores and the ranking function Γ(·)
provides ranking lists for the C entities according to their scores. The relation-wise ensemble weights
αr
1, α

r
2, . . . , α

r
N re-weight the rank lists as the new scores pr

j of xrj and re-rank the new scores to evaluate
the perfomance.
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Figure 3: An overview of the relation-wise ensemble problem.

Two metrics are used in this paper: (i) Mean reciprocal ranking (MRR):

MRR =
1

2 |D|
∑

(h,r,t)∈D

( 1

ph
+

1

pt

)
;

and (ii) Hit@k: ratio of ranks no larger than k, i.e.,

Hit@k =
1

2 |D|
∑

(h,r,t)∈D

(
I(ph ≤ k) + I(pt ≤ k)

)
,

where I(a) = 1 if a is true, otherwise 0, ph is the rank of head entity h in the head-prediction sub-task
(the same for pt and t). The larger the MRR or Hit@k, the better is the embedding.

A.2 Relation Properties
In the main text, we claim that the different models work properly for different relations. In this part, we
summarize the types of relations that different models can handle in Table 4.

Table 4: The pattern modeling and inference abilities of selected score functions.

Model Symmetry Antisymmetry Inversion Composition Hierarchy

TransE % ! ! ! %

RotatE ! ! ! ! %

HousE ! ! ! ! %

ComplEx ! ! ! % !

ConvE ! ! % % !

CompGCN ! ! ! % %

In addition, we show the performance of various base models for specific relations on WN18RR.
Among the total of eleven relations considered, we present the results based on the following four

representative relations:
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• membe_meronym: translational models such as TransE and RotatE exhibit the highest performance.

• synset_domain_topic_of: bilinear models like ComplEx achieve the best results.

• has_part: while traditional scoring functions perform well on this relation, neural network-based
models such as ConvE and CompGCN exhibit suboptimal performance.

• verb_group: in contrast to has_part, neural network models such as ConvE and CompGCN perform
better, whereas traditional scoring functions show inferior performance.

These results demonstrate that KG embedding models may specialize in different relations, leading to
significant variation in their performance across relations.

member_meronym synset_domain_topic_of has_part verb_group

Base Model
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Figure 4: MRR of selected base models for specific relations on the WN18RR dataset.

B Supplementary Materials for the Experimental Settings

B.1 Statistics of Datasets
We use the following datasets for evaluation: (i) WN18RR is a link prediction dataset which is a subset of
WordNet (Dettmers et al., 2018); (ii) FB15k-237 contains triplets of knowledge base relationships and
textual mentions of Freebase entity pairs (Toutanova and Chen, 2015); (iii) NELL-995 is a dataset built
from the web via an intelligent agent called Never-Ending Language Learner that reads the web over
time (Xiong et al., 2017); (iv) ogbl-biokg is a KG, which was created using data from a large number of
biomedical data repositories (Hu et al., 2020); and (v) ogbl-wikikg2 is a KG extracted from the Wikidata
knowledge base (Hu et al., 2020). Statistics of these datasets are provided in Table 5.

Table 5: Statistics of the datasets.

Dataset |V| |R| |Dtra| |Dval| |Dtst|
WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466
NELL-995 74,536 200 149,678 543 2,818
ogbl-biokg 93,773 51 4,762,678 162,886 162,870

ogbl-wikikg2 2,500,604 535 16,109,182 429,456 598,543
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B.2 Hyperparameter Setting

We list the hyperparameters for base models in KGTuner (Zhang et al., 2022b)4 on the WN18RR,
FB15k-237 and NELL-995 datasets in Table 6 and Table 7.

Table 6: Hyperparameters for the WN18RR dataset.

HP/Model ComplEx ConvE TransE RotatE

# negative samples 32 512 128 2048

loss function BCE_mean BCE_adv BCE_adv BCE_adv
gamma 2.29 12.16 3.50 3.78

adv. weight 0.00 0.78 1.14 1.66

regularizer NUC DURA FRO FRO
reg. weight 1.21× 10−3 9.79× 10−3 4.19× 10−4 5.13× 10−8

dropout rate 0.28 0.02 0.00 0.00

optimizer Adam Adam Adam Adam
learning rate 6.08× 10−4 6.88× 10−4 1.02× 10−4 1.24× 10−3

initializer x_uni x_uni norm norm

batch size 1024 512 512 512
dimension size 2000 1000 1000 1000
inverse relation False False False False

Table 7: Hyperparameters for the FB15k-237 and NELL-996 datasets.

HP/Model ComplEx ConvE TransE RotatE

# negative samples 512 512 512 128

loss function BCE_adv BCE_sum BCE_adv BCE_adv
gamma 13.05 14.52 6.76 14.46

adv. weight 1.93 0.00 1.99 1.12

regularizer DURA DURA FRO NUC
reg. weight 9.75× 10−3 6.42× 10−3 2.16× 10−4 2.99× 10−4

dropout rate 0.22 0.07 0.02 0.01

optimizer Adam Adam Adam Adam
learning rate 9.70× 10−4 2.09× 10−4 2.66× 10−4 5.89× 10−4

initializer uni norm x_norm norm

batch size 1024 1024 512 1024
dimension size 2000 500 1000 2000
inverse relation False False False False

For CompGCN (Vashishth et al., 2020)5, we use 200-dimensional embeddings for node and relation
embeddings and apply the standard binary cross entropy loss with label smoothing. The number of GCN
layers is 2, and the score function used in CompGCN is ConvE, the learning rate is set to 0.001, the batch
size is 128, and the dropout rate is 0.1.

For HousE (Li et al., 2022)6, we used the default hyperparameters specified in the original paper. Both
node and relation embeddings were set to 800 dimensions. The learning rate was set to 0.0005, and the
batch size was 1000.

For the top three methods on the OGB leaderboard 7, since their code has been officially made public
by OGB, we used their code directly with their corresponding hyperparameters.

4https://github.com/LARS-research/KGTuner
5https://github.com/malllabiisc/CompGCN
6https://github.com/rui9812/HousE
7https://ogb.stanford.edu/docs/leader_linkprop/#ogbl-biokg and https://ogb.stanford.edu/docs/

leader_linkprop/#ogbl-wikikg2
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B.3 Details of Tree-structured Parzen Estimator (TPE)
The TPE (Tree-structured Parzen Estimator) algorithm is a Bayesian optimization (Snoek et al., 2012)
method that aims to efficiently optimize black-box functions with a limited budget of function evaluations.
It was introduced by (Bergstra et al., 2011) as a part of the Hyperopt framework (Bergstra et al., 2015),
which focuses on hyperparameter optimization. Bayesian optimization is a sequential model-based
optimization technique that leverages prior knowledge and data to intelligently search for the optimal
solution. It uses a probabilistic surrogate model, typically a Gaussian process or a tree-based model, to
model the unknown objective function. This model is iteratively updated as new observations are made,
providing an estimate of the function’s behavior and uncertainty.

The TPE algorithm improves upon traditional Bayesian optimization by employing a novel method for
modeling and sampling from the posterior distribution of the objective function. It uses a tree-structured
Parzen estimator to model the distribution of good and bad parameter configurations. The algorithm
maintains two density functions: p (x|y) = ℓ(x) if y < y∗ otherwise p (x|y) = g(x), where ℓ(x) is the
density formed by using observations {x(i)} from past evaluations, such that the corresponding loss (i.e.,
the performance metric for the model) is less than some threshold y∗ that lead to good results, and g(x) is
the density formed by using the remaining observations that lead to bad results.

At each iteration, the TPE algorithm samples promising configurations from the good density and
less promising configurations from the bad density. The algorithm balances the exploration-exploitation
trade-off by dividing the sampled configurations into two groups based on their relative performance. The
better-performing configurations are used to update the density function for good configurations, while
the less successful ones update the density function for bad configurations. This process aims to guide the
search towards promising regions of the parameter space. By iteratively updating the density functions and
adaptively sampling configurations, the TPE algorithm efficiently explores the parameter space, gradually
converging towards the optimal solution. It has been shown to be effective in hyperparameter optimization
for machine learning models and other optimization tasks.

Overall, the TPE algorithm, as a Bayesian optimization method, offers a principled and efficient
approach for optimizing black-box functions with limited resources, making it particularly useful in
scenarios where function evaluations are time-consuming or costly.

C Supplementary Materials for Experimental Results

C.1 Full Results of Learning Curves
We provide the learning curves on WN18RR, FB15k-237 and NELL-995 datasets in this part. Figure 5
confirms that the observations in Section 3.4 are consistent with the results presented here. While
RelEns-Basic exhibits a superior modeling ability compared to SimpleEns by learning relation-specific
weights, enabling different models to specialize in different relations. However, the search complexity of
RelEns-Basic increases exponentially with the number of relations.

• On WN18RR with only 11 relations, RelEns-Basic can slightly outperform SimpleEns since the com-
plexity is not increased much and the relation-wise ensemble problem can have better performance
than the general ensemble problem.

• Nevertheless, on datasets containing hundreds of relations such as FB15k-237 and NELL-995
RelEns-Basic exhibits significantly poorer performance compared to SimpleEns due to high sampling
complexity in the relation-wise ensemble problem.
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(a) WN18RR with Q = 50
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(b) WN18RR with Q = 100
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(c) FB15k-237 with Q = 50
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(d) FB15k-237 with Q = 100
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(e) NELL-995 with Q = 50
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(f) NELL-995 with Q = 100
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(g) ogbl-wikikg2 with Q = 50
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(h) ogbl-wikikg2 with Q = 100
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(i) ogbl-biokg with Q = 50
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(j) ogbl-biokg with Q = 100

Figure 5: Learning curves of different ensemble methods. RelEns-DSC2/5 indicates the number of threads used for
parallel computing.
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C.2 Ablation Study on Ensemble methods
All the variants use the same way to ensemble predictions of base models. The same as mentioned
in Section 2.1, we use the ensemble weights on rankings of base models as the ensemble score, i.e.,
pr
j = −∑N

i=1 α
r
iΓ

(
Fi(x

r
j)
)
. The implementation details of the ensemble variants are provided as follows:

• Mean: This is the most basic ensemble method which directly takes the arithmetic mean of the
predictions made by each individual model.

• Stacking (Wolpert, 1992): The stacking ensemble variant is a more sophisticated approach that
involves training a meta-model to learn how to combine the predictions of multiple base models.
Specifically, the rank lists outputted by the base models are used as features to train the meta-model.
Here, we use a logistic regression model implemented by scikit-learn (Pedregosa et al., 2011) as the
meta-model, with a maximum iteration of 300. Since the ranking metrics on the validation data is
non-differentiable, we use the same loss function during training on the validation data to optimize
the parameters of meta-model.

• SimpleEns: This variant is a degenerated problem of (1) by setting identical ensemble weights of
different relations on a single mode, i.e., α1

i = α2
i = · · · = αR

i for i = 1, . . . , N . In order to keep
consistent with RelEns-Basic and RelEns-DSC, these weights are searched by optimizing (1) with
TPE technique.

• MRR-Mean: The MRR-Mean variant incorporates the Mean Reciprocal Rank (MRR) of the base
model as a weighting factor. In contrast to the Mean variant, it assigns proportionally greater weight
to the superior individual base model.

We conducted an ablation study on the WN18RR, FB15k-237, and NELL-995 datasets, and the results
are shown in Table 8. MRR can provide a general indication of the importance of different models, but
higher MRR does not always correlate with higher model importance due to the crucial role of diversity
among the base models in the ensemble strategy. Additionally, MRR-weight may not be optimal weights,
necessitating further weight searches to enhance performance. The results consistently demonstrate the
superiority of searched methods (RelEns-DSC) over MRR-weighted methods (MRR-Mean).

Table 8: Comparison of ensemble methods on WN18RR, FB15k-237 and NELL-995 datasets.

Dataset WN18RR FB15k-237 NELL-995

Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Mean 0.4963 0.4531 0.5175 0.5746 0.3572 0.2643 0.3918 0.5457 0.5412 0.4661 0.5823 0.6622
Stacking 0.4952 0.4518 0.5169 0.5751 0.3563 0.2639 0.3921 0.5433 0.5365 0.4637 0.5851 0.6669

SimpleEns 0.5121 0.4670 0.5289 0.6021 0.3621 0.2683 0.3977 0.5525 0.5416 0.4758 0.5823 0.6601
MRR-Mean 0.5143 0.4697 0.5311 0.6028 0.3645 0.2702 0.3993 0.5547 0.5460 0.4732 0.5834 0.6604
RelEns-DSC 0.5201 0.4770 0.5375 0.6039 0.3680 0.2746 0.4046 0.5554 0.5499 0.4823 0.5901 0.6609
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