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Abstract

Despite being the world’s fourth-most popu-
lous country, the development of spoken lan-
guage technologies in Indonesia still needs im-
provement. Most automatic speech recognition
(ASR) systems that have been developed are
still limited to transcribing the exact word-by-
word, which, in many cases, consists of ambigu-
ous sentences. In fact, speakers use prosodic
characteristics of speech to convey different
interpretations, which, unfortunately, these sys-
tems often ignore. In this study, we attempt
to resolve structurally ambiguous utterances
into unambiguous texts in Indonesian using
prosodic information. To the best of our knowl-
edge, this might be the first study to address
this problem in the ASR context. Our contri-
butions include (1) collecting the Indonesian
speech corpus on structurally ambiguous sen-
tences1; (2) conducting a survey on how people
disambiguate structurally ambiguous sentences
presented in both text and speech forms; and (3)
constructing an Indonesian ASR and meaning
interpretation system by utilizing both cascade
and direct approaches to map speech to text,
along with two additional prosodic information
signals (pause and pitch). The experimental
results reveal that it is possible to disambiguate
these utterances. In this study, the proposed cas-
cade system, utilizing Mel-spectrograms con-
catenated with F0 and energy as input, achieved
a disambiguation accuracy of 79.6%, while the
proposed direct system with the same input
yielded an even more impressive disambigua-
tion accuracy of 82.2%.

1 Introduction
Ambiguity is one of the challenges in natural lan-
guage processing. It has been observed that nearly

∗*This work was conducted while the first author was
doing internship at HA3CI Laboratory, JAIST, Japan under
JST Sakura Science Program.

1Our corpus is available at https://github.com/
ha3ci-lab/struct_amb_ind

Figure 1: An example of a structurally ambiguous sen-
tence in Indonesian and English.

every utterance contains some degree of ambigu-
ity, even though alternate interpretations may not
always be obvious to native speakers (Russell and
Norvig, 2009). Hurford et al. (2007) categorized
ambiguity into two main types: lexical ambiguity
and structural ambiguity. Lexical ambiguity arises
when a word has multiple meanings, as seen in the
word "bank," which can refer to a financial insti-
tution or the side of a river. On the other hand,
structural or syntactic ambiguity occurs when a
phrase or sentence can be parsed in more than one
way. For instance, in the sentence "I saw some-
one on the hill," the prepositional phrase "on the
hill" can modify either (1) the verb "saw" or (2) the
noun "someone." This structural ambiguity gives
rise to semantic ambiguity, resulting in different
possible meanings. An example of this is illustrated
in Figure 1.

Efforts have been made to address the issue of
ambiguity in natural language. However, the res-
olution of lexical ambiguity is more commonly
studied than structural ambiguity. There is even
a specific task dedicated to its resolution, namely
word-sense disambiguation. Furthermore, most
studies on the resolution of structural ambiguity are
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Figure 2: The disambiguation system.

focused on parsing tasks (Shieber, 1983; Li et al.,
2014; Tran et al., 2018). To the best of our knowl-
edge, there have been no studies directly yielding
disambiguated sentences as output in the field of
structural ambiguity resolution.

Speech is the most natural form of human-to-
human communication. It is also considered the
richest form of human communication in terms
of bandwidth, conveying valuable supplementary
information not found in text, particularly the
prosodic structure (Tran et al., 2018), which lis-
teners can use to resolve structural ambiguities
(Price et al., 1991). Therefore, understanding spo-
ken language is one of the earliest goals of natural
language processing (Jurafsky and Martin, 2022).
Today, automatic speech recognition (ASR) tech-
nology has advanced and is widely used. Unfortu-
nately, most ASR systems do not typically address
issues of ambiguity.

Consequently, in this work, we have made the
first attempt to create a system capable of disam-
biguating structurally ambiguous utterances into
unambiguous text by using the provided prosodic
information. We propose to build the system by
adapting both the cascade and direct approaches to
speech-to-text mapping. The proposed cascade sys-
tem combines two components: ASR and a novel
text disambiguation (TD) model, while the pro-
posed direct system utilizes another novel speech
disambiguation (SD) model. The TD model is
specifically designed to transform the ASR output,
which is the transcription of structurally ambiguous
utterances, into the intended unambiguous text. An
illustration of the disambiguation system is shown
in Figure 2.

Therefore, our contributions include: (1) con-
structing the first Indonesian structural ambigu-
ity corpus; (2) proposing both cascade and direct
approaches for speech-to-text mapping to build
the disambiguation system; (3) performing experi-
ments by developing the disambiguation systems
using the Indonesian structural ambiguity corpus
created with four proposed audio input combina-
tions: Mel-spectrogram, Mel-spectrogram concate-

nated with F0, Mel-spectrogram concatenated with
energy, and Mel-spectrogram concatenated with F0
and energy; (4) conducting human assessments to
examine how individuals resolve structurally am-
biguous sentences in written and spoken formats.

2 Related Work

Indonesia has one of the largest populations in the
world (Cahyawijaya et al., 2021), yet the availabil-
ity of resources and the progress of NLP research in
Indonesian lag behind (Wilie et al., 2020; Cahyawi-
jaya et al., 2022). Nevertheless, research on Indone-
sian, both speech and text, is gradually progress-
ing despite the challenges mentioned earlier. Even
though the majority of research and existing data
in Indonesian comes from the text modality, sev-
eral works have attempted some speech processing
tasks in Indonesian. To date, some speech corpora
have also been developed (Sakti et al., 2004; Lestari
et al., 2006; Sakti et al., 2008a, 2013), as well as
the development of ASR (Sakti et al., 2004, 2013;
Ferdiansyah and Purwarianti, 2011; Prakoso et al.,
2016; Cahyawijaya et al., 2022) and TTS (Sakti
et al., 2008b; Azis et al., 2011; Mengko and Ayun-
ingtyas, 2013; Azizah et al., 2020). Most Indone-
sian ASRs and TTSs have achieved good results.
However, specifically for ASR tasks, most ASR
that has been developed in Indonesian and also in
other languages is still limited to transcribing the
exact word-by-word, ignoring ambiguities in the
transcription.

A number of attempts have also been made to
address the issue of ambiguity in Indonesian, par-
ticularly in the text domain. With regard to word-
sense disambiguation, several studies have been
conducted (Uliniansyah and Ishizaki, 2006; Faisal
et al., 2018; Mahendra et al., 2018). Nevertheless,
research on structural ambiguity resolution, espe-
cially in speech, is far less common, and there is a
notable gap in this area.

On the other hand, some studies have attempted
to utilize prosodic information in speech to resolve
ambiguity across various tasks. For example, Tran
et al. (2018) developed a dependency parser that
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Type Ambiguous sentences Disambiguation sentences

4
The book on the chair
I just bought is good.

(1) The book on the chair is good. I just bought the book.
(2) The book on the chair is good. I just bought the chair.

5
They buried the treasure
they found in the park.

(1) They buried the treasure they found. They buried it in the park.
(2) They buried the treasure they found. They found it in the park.

6
I saw someone on the
hill.

(1) I saw someone. I saw on the hill.
(2) I saw someone. The person is on the hill.

10
I eat spicy chicken and
eggs.

(1) I eat chicken and eggs. The chicken is spicy.
(2) I eat chicken and eggs. The chicken and eggs are both spicy.

Table 1: Examples of structurally ambiguous sentences and the results of their disambiguation for each adopted
type.

incorporates acoustic-prosodic features, including
pauses, duration, fundamental frequency (F0), and
energy. Cho et al. (2019) attempted to classify
structurally ambiguous sentences into seven cate-
gories of intentions using both acoustic and textual
features. For the acoustic features the work com-
bined root mean square energy (RMS energy) with
Mel-spectrograms by concatenating them frame-
wise. Tokuyama et al. (2021) addressed sentences
with ambiguous intensity by adding an intensifier
based on word emphasis. However, it’s worth not-
ing that most of these studies were conducted for
major languages (e.g. English, Japanese, etc.). Fur-
thermore, to the best of our knowledge, no stud-
ies have attempted to exploit prosodic information
to disambiguate structurally ambiguous utterances
that directly produce unambiguous texts. There-
fore, we will address this issue in our study. Al-
though our focus is on the Indonesian language,
the approach can potentially be applied to other
languages as well.

3 Proposed Method

3.1 Corpus construction

Because of the limited availability of documen-
tation on structural ambiguity in the Indonesian
language, we turned to English-language litera-
ture. Specifically, we drew upon the work of Taha
(1983), who classified structural ambiguity in En-
glish into twelve types. However, we chose to
adopt only four of these types, focusing on those
most relevant to Indonesian linguistic characteris-
tics:

1. Type 4: noun + noun + modifier. This type
of sentence becomes ambiguous because the
modifier can be considered to modify either
the first noun or the second noun.

2. Type 5: verb + verb + adverbial modifier.
Sentences of this type become ambiguous be-
cause the adverbial modifier can be considered
to modify either the first or the second verb.

3. Type 6: verb + noun + modifier. In this case,
the modifier can be interpreted as an adverb
linked to the verb or as an adjective associated
with the noun.

4. Type 10: modifier + noun + conjunction +
noun. This type of sentence becomes ambigu-
ous because the modifier can be applied to
either the first noun or the second noun.

Through crowdsourcing, we created 100 struc-
turally ambiguous sentences for each adopted type,
with each ambiguous sentence having two possi-
ble interpretations. These interpretations were then
transformed into unambiguous texts, consisting of
two sentences each. The first sentence remained
the same for interpretations derived from the same
ambiguous sentence, while the second sentence
differed to provide clarification for the intended
interpretation. As a result, we obtained a total of
800 pairs of ambiguous sentences and unambigu-
ous texts. Table 1 presents examples of ambiguous
sentences and their corresponding unambiguous
texts for each adopted type.

After validation by an Indonesian linguist, the
800 pairs of ambiguous sentences and their corre-
sponding unambiguous texts were divided into 10
groups: 8 groups for training, 1 group for valida-
tion, and 1 group for the testing set. This division
ensured that no sentences overlapped between the
training, development, and test sets.

The utterances of 400 structurally ambiguous
sentences were recorded in a controlled, low-noise
office environment. The recording involved 22
speakers, consisting of 11 males and 11 females.
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Figure 3: Proposed approaches for building the disambiguation system.

Each speaker was assigned to different groups of
ambiguous sentences to ensure that neither speak-
ers nor sentences overlapped across the training,
development, and testing sets. For each pair of
ambiguous sentences and their interpretations, the
speaker was instructed to read the ambiguous sen-
tence in a way that conveyed the intended inter-
pretation naturally, without overemphasis. Before
the recording session, we provided the speakers
with the structurally ambiguous texts they would
read, allowing them to study in advance. During
the recording session, we closely monitored each
speaker and requested corrections if their speech
sounded unnatural due to overemphasis. The com-
plete recording resulted in a total of 4,800 utter-
ances.

3.2 Disambiguation of structurally ambiguous
sentences in Indonesian

To develop a system capable of disambiguat-
ing structurally ambiguous utterances based on
prosodic information, two key considerations arise:
determining the necessary prosodic features for dis-
ambiguation and developing the disambiguation
system.

3.2.1 Utilization of prosodic information for
disambiguation

According to Taha (1983), several prosodic sig-
nals that can be used to disambiguate structurally
ambiguous sentences include emphasis, pitch, and
juncture. Emphasis encompasses changes in pitch,
duration, and energy during speech, as noted by
Tokuyama et al. (2021). The term ’juncture’ refers
to speech features that allow listeners to detect
word or phrase boundaries. Specifically, junctures
that can be used to disambiguate structurally am-

biguous sentences are terminal junctures, character-
ized by a pitch change followed by a pause. Tran
et al. (2018) mentioned four features that are widely
used in computational prosody models: pauses, du-
ration, fundamental frequency, and energy. There-
fore, in this work, we focus specifically on two
prosodic cues for disambiguating structurally am-
biguous utterances: pauses and pitch variation. In
addition to these features, we also extracted Mel-
spectrogram for speech recognition.

The features extracted for pause in this work
were Mel-spectrogram and energy. These features
were chosen because they indirectly reflect the pres-
ence of pauses. In a low-noise environment, when a
pause occurs, all channels in the Mel-spectrogram
and energy exhibit values close to zero. To repre-
sent pitch, we extracted F0. These features were
then concatenated with the Mel-spectrogram frame-
wise, following a similar approach as described
by Cho et al. (2019). Therefore, in this work,
four input combinations were proposed: (1) Mel-
spectrogram only; (2) Mel-spectrogram concate-
nated with F0; (3) Mel-spectrogram concatenated
with energy (root mean square energy / RMS en-
ergy); and (4) Mel-spectrogram concatenated with
F0 and energy (RMS energy).

3.2.2 Development of disambiguation system
The disambiguation system functions as a speech-
to-text mapping, taking structurally ambiguous ut-
terances as input and producing unambiguous text
as output. Similar to other speech-to-text map-
ping tasks, the disambiguation system can be im-
plemented using two approaches: the cascade ap-
proach, which combines two or more components,
and the direct approach, which transforms struc-
turally ambiguous utterances into unambiguous
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text without any intermediate representation. In
this study, as we described earlier, we propose the
cascade disambiguation system, which consists of
two components: the automatic speech recognition
(ASR) model and a novel model known as the text
disambiguation (TD) model. Additionally, we in-
troduce the direct disambiguation system, featuring
another novel model called the speech disambigua-
tion (SD) model.

It is evident that the disambiguation system ap-
proaches bear a resemblance to the approaches used
in speech-to-text translation, which involves the
automatic translation of utterances from one lan-
guage to texts in another language (Bentivogli et al.,
2021). The key difference lies in the replacement
of the machine translation model (MT) with the
text disambiguation model (TD). While the MT
model was responsible for translating the transcrip-
tion of ASR output, the TD model was specifically
designed to convert the ASR output, consisting of
structurally ambiguous sentences, into unambigu-
ous text in the same language.

The proposed cascade approach may encounter
challenges when standard ASR is applied without
modification, leading to the loss of crucial prosodic
information needed for disambiguating structurally
ambiguous utterances. This prosodic information
loss prevents TD from generating the desired un-
ambiguous texts. Hence, to build the disambigua-
tion system, modifications must be made so that
the TD knows not only the structurally ambigu-
ous transcription but also which interpretation is
intended by the utterance based on the prosodic
information given. In this work, we propose to do
this by adding a special ’meaning tag’ indicating
the intended interpretation based on the utterance’s
prosodic information. Thus, in the proposed cas-
cade approach, the ASR generates not only the
transcription of structurally ambiguous utterances
but also the special tags. Since each structurally
ambiguous sentence in this work was limited to
having exactly two interpretations, we proposed
to add a ’meaning tag’ for each sentence: < 0 >
for unambiguous sentences and < 1 > or < 2 >
for structurally ambiguous sentences. The tagging
as ’1’ or ’2’ must be uniform for each structurally
ambiguous sentence of the same type:

1. Type 4: noun + noun + modifier: tag < 1 >
was given if the modifier was interpreted as
modifying the first noun; tag < 2 > was given
if the modifier was interpreted as modifying

the second noun.

2. Type 5: verb + verb + adverbial modifier:
tag < 1 > was given if the modifier was inter-
preted as modifying the first verb; tag < 2 >
was given if the modifier was interpreted as
modifying the second verb.

3. Type 6: verb + noun + modifier: tag < 1 >
was given if the modifier was interpreted as
modifying the verb; tag < 2 > was given if
the modifier was interpreted as modifying the
noun.

4. Type 10: modifier + noun + conjunction +
noun: tag < 1 > was given if the modifier
was interpreted as modifying only one noun;
tag < 2 > was given if the modifier was inter-
preted as modifying both nouns.

For comparison, we also developed the disam-
biguation system using the original cascade ap-
proach (with no tag addition) as a baseline. Regard-
ing the proposed direct approach, which inherently
preserves all the necessary information for gener-
ating unambiguous text, it required no significant
modifications from the standard direct approach.
Hence, the proposed architectures are illustrated in
Figure 3.

To effectively train the ASR and SD models, re-
lying solely on the structural ambiguity corpus we
created is insufficient. These models require more
data to recognize speech accurately. Therefore, in
addition to using the structural ambiguity corpus,
we incorporated another speech corpus for training
both ASR and SD. The structural ambiguity cor-
pus we created was also insufficient for training
the TD model. To overcome this limitation, we
employed the transfer learning technique, utiliz-
ing a pre-trained model for the TD. Specifically,
we used BART (Lewis et al., 2020), a well-known
pre-training model suitable for TD tasks due to its
sequence-to-sequence architecture.

4 Experiment
4.1 Human assessment
We conducted a survey involving 20 participants
to investigate how people disambiguate structural
ambiguity in Indonesian. This investigation encom-
passed two conditions: one in which the sentences
were presented as text only and another in which
they were presented as speech. To evaluate how
individuals disambiguate structurally ambiguous
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Figure 4: How unambiguous the sentences per type to
humans in text and speech.

sentences in text form, each participant was pre-
sented with 40 ambiguous sentences and asked to
select the most probable interpretation for each one.
The disambiguation result for text-only sentences
was determined by the interpretation chosen most
frequently. To evaluate how people disambiguate
structurally ambiguous sentences in speech form,
each participant was asked to listen to 80 struc-
turally ambiguous utterances and choose the most
appropriate interpretation based on the recording.
Participants were also given the opportunity to add
their own interpretations if they believed they could
provide a more precise representation than the two
given options.

Figure 4 illustrates the degree of ambiguity per-
ceived by the survey participants for each sentence
type, both in text form and as speech. According
to the survey results, structurally ambiguous sen-
tences are difficult to disambiguate for people when
presented in text form. The limited information
conveyed solely through text often leads to sub-
jective interpretations that vary among individuals.
On the other hand, the majority of structurally am-
biguous utterances can be correctly disambiguated
by people when presented in speech. This suggests
the presence of additional information in speech
that may not be available in text alone, aiding indi-
viduals in disambiguating structurally ambiguous
sentences. One source of this additional informa-
tion is prosody.

4.2 Machine Evaluation
4.2.1 Experimental set-up
All models utilized in this study were based on
the Transformer architecture (Vaswani et al., 2017).
We utilized the Speech-Transformer architecture
(Dong et al., 2018) for both the ASR and SD mod-
els. The ASR component received audio input and
generated transcriptions along with the meaning

Indo-
LVCSR

Type
4

Type
5

Type
6

Type
10

Total

Train 41500 1040 1040 1040 1040 45660
Dev 160 80 80 80 80 480
Test 160 80 80 80 80 480

Table 2: Data used for training, development, and testing
of ASR and SD models.

LVCSR
(tag = 0)

Struct. amb
tag = 1 tag = 2

Train 320 80 x 4 types 80 x 4 types
Dev 40 10 x 4 types 10 x 4 types
Test 40 10 x 4 types 10 x 4 types

Table 3: Data used for training, development, and testing
of TD models.

tags, as mentioned earlier. The SD model also ac-
cepted audio input but produced unambiguous text
as its output.

As mentioned previously, our training for both
the ASR and SD models involved not only the
structural ambiguity corpus we created but also
an additional speech corpus. Specifically, we uti-
lized the Indonesian LVCSR news corpus (Sakti
et al., 2008a, 2004, 2013)2. This corpus consists of
400 speakers, each reading 110 sentences, resulting
in more than 40 hours of speech. The sentences
in the Indonesian LVCSR were unambiguous, so
the additional meaning tag for the sentences was
< 0 >, while the target output for the SD model for
these sentences was the sentences themselves with-
out any modifications. To ensure that there were
no speakers or sentences that overlapped in the
training, development, and test sets, we selected a
subset of the LVCSR data. The specifics regarding
the amount of data used for training, development,
and testing of both the ASR and SD models can be
found in Table 2.

In this work, we constructed the TD system by
fine-tuning the IndoBART model (Cahyawijaya
et al., 2021)3. The TD took the meaning tag out-
putted by the ASR concatenated with the ASR tran-
scription, which is the structurally ambiguous sen-
tence, as input and then outputted the unambiguous
sentence.

The data used for the TD model consisted of
800 pairs of previously constructed structurally am-

2This corpus is publicly available at https://github.
com/s-sakti/data_indsp_news_lvcsr

3https://github.com/IndoNLP/indonlg
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CER WER Tag acc.
Mel
Baseline 0.0621 0.2358 -
ASR + tag 0.0609 0.2140 0.9729
Mel + F0
Baseline 0.0574 0.2157
ASR + tag 0.0626 0.2294 0.975
Mel + RMS energy
Baseline 0.0617 0.2247
ASR + tag 0.0691 0.2375 0.9708
Mel + F0 + RMS energy
Baseline 0.0638 0.2279
ASR + tag 0.0575 0.2061 0.9875

Table 4: Comparison of CER, WER, and tag accuracy
of the proposed ASR model with the baseline using four
different input combinations.

biguous sentences, along with 400 unambiguous
sentences taken from the transcription of the In-
donesian LVCSR corpus. The development and
test sets in TD shared the same sentences as ASR
and SD, while the training set in TD only included
a subset of sentences from the ASR and SD train-
ing data to ensure a balance of the meaning tags in
the TD training data. Details about the amount of
data used for TD training, validation, and testing
can be found in Table 3.

The hyperparameter configurations used in this
study are provided in detail in Appendix A.

4.2.2 Experiment result
Table 4 displays the evaluation results for base-
line ASR models and ASRs augmented with tags
in four input combinations: (1) Mel-spectrogram;
(2) Mel-spectrogram concatenated with F0; (3)
Mel-spectrogram concatenated with RMS energy;
and (4) Mel-spectrogram concatenated with F0 and
RMS energy. The transcription produced by the
ASRs was evaluated using CER (character error
rate) and WER (word error rate), while the tags
generated by the ASRs were assessed for accu-
racy. As shown in the table, most ASRs exhib-
ited similar CERs and WERs, approximately 0.06
and 0.22, respectively, indicating satisfactory tran-
scription performance. Similarly, the tagging ac-
curacy showed a consistent trend, with accuracy
surpassing 0.9, even for input Mel-spectrograms.
This suggests that pauses, already captured in the
Mel-spectrograms, already provide valuable infor-
mation for disambiguating structurally ambiguous
sentences. However, ASR with additional tags and

Baseline TD + tag
BLEU 65.6 73.5

ROUGE-1 91.7 96.3
ROUGE-2 83.8 91.4
ROUGE-L 91.7 96.2

Disam-
biguati-
on acc.

Based on
WER scores

0.65 0.875

Based on
BLEU
scores

0.658 0.908

Based on
ROUGE-1
scores

0.642 0.917

Based on
ROUGE-2
scores

0.642 0.883

Based on
ROUGE-L
scores

0.642 0.925

Table 5: Comparison of BLEU, ROUGE, and disam-
biguation accuracy of the proposed TD model with the
baseline.

input Mel-spectrograms concatenated with F0 and
RMS energy achieved slightly better WER and tag
accuracy compared to other ASRs.

In this work, the evaluation of the TD models in-
volved three types of metrics: BLEU, ROUGE, and
the accuracy of the disambiguation results. BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
were selected due to the similarity of the TD task
in this work to paraphrasing. The disambiguation
results in this work were determined by classifying
the unambiguous texts generated by the TD models
based on their most suitable interpretation. The
interpretation of an unambiguous text was deter-
mined using WER, BLEU, ROUGE-1, ROUGE-
2, and ROUGE-L scores in comparison to three
other texts: the non-disambiguated text, the disam-
biguated text with interpretation < 1 >, and the
disambiguated text with interpretation < 2 >. This
classification method is based on the intuition that
the true TD output will exhibit the highest sentence
similarity with the intended unambiguous text.

Table 5 presents the evaluation results of two
TD models: the baseline TD with no tag addition
and the TD with additional tags. The table clearly
illustrates a significant improvement in TD per-
formance achieved through the addition of tags,
particularly in terms of disambiguation accuracy,
which reaches approximately 90%. This under-
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Disambiguation accuracy
BLEU ROUGE-

1
ROUGE-

2
ROUGE-

L
Based

on
WER
scores

Based
on

BLEU
scores

Based
on

ROUGE-
1

scores

Based
on

ROUGE-
2

scores

Based
on

ROUGE-
L

scores
Mel
Cascade baseline 33.7 71.0 52.0 70.3 0.571 0.56 0.569 0.558 0.556
Cascade + tag 42.8 76.1 59.0 75.9 0.785 0.763 0.815 0.777 0.817
Direct 41.3 74.8 57.2 74.2 0.802 0.783 0.844 0.806 0.842
Mel + F0
Cascade baseline 36.9 72.7 53.5 72.2 0.588 0.575 0.573 0.575 0.573
Cascade + tag 40.8 74.8 56.7 74.7 0.773 0.733 0.817 0.773 0.815
Direct 39.6 74.3 56.1 73.4 0.788 0.765 0.829 0.769 0.802
Mel + RMS energy
Cascade baseline 35.2 71.7 53.1 71.2 0.59 0.592 0.583 0.585 0.579
Cascade + tag 39.4 73.7 55.7 73.5 0.781 0.742 0.817 0.771 0.815
Direct 41.2 74.4 56.6 73.5 0.821 0.765 0.84 0.8 0.827
Mel + F0 + RMS energy
Cascade baseline 34.7 71.7 51.8 71.4 0.61 0.588 0.598 0.588 0.598
Cascade + tag 41.7 76.8 60.0 76.6 0.798 0.763 0.827 0.798 0.827
Direct 42.0 75.8 58.4 75.0 0.825 0.769 0.856 0.817 0.844

Table 6: Comparison of BLEU, ROUGE, and the disambiguation accuracy between the proposed cascade and direct
models.

scores the crucial role of prosodic information, pre-
served by the tags, in enabling the TD model to
generate the intended unambiguous text. The TD
model achieves commendable scores, especially
in ROUGE-1, ROUGE-2, and ROUGE-L, high-
lighting the positive impact of the transfer learning
method. These high scores indicate a close align-
ment between the generated disambiguation text
and the desired unambiguous text.

The cascade and direct systems were evaluated
with the same metrics as TD: BLEU, ROUGE, and
disambiguation accuracy. Table 6 shows the com-
parison between the cascade and direct systems
built with four combinations of input. As can be
seen in the table, both cascade and direct systems
with the best performance use mel spectrograms
combined with F0 and RMS energy as input, as in
the case of ASR. Then, similar to the case of TD,
the cascade systems with additional tags exhibit
significantly better performance than the baseline
cascade systems that do not include any additional
tags.

As can be seen in Table 6, cascade mod-
els slightly outperform direct systems in terms
of BLEU, ROUGE-1, ROUGE-2, and ROUGE-
L scores. This makes sense considering that in
the cascade approach, SD, which has a more chal-

lenging task, is trained using the same model and
data as ASR without any transfer learning methods,
while in the cascade approach, the task is divided
between ASR and TD, and the TD models were
pre-trained beforehand. However, the difference
between both systems is not significant. This is
because the output text from the disambiguated
results is not considerably different from the am-
biguous transcriptions, making it not very hard to
learn. On the other hand, in terms of the accu-
racy of the disambiguation results, the direct sys-
tems demonstrate better performance, showing a
difference of approximately 2.5%. This is due to
the error propagation within the cascade system.
The errors generated by the ASR, including tran-
scription and tagging errors, result in a decrease
in disambiguation accuracy of approximately 10%
compared to the scenario where TD receives error-
free transcription and tagging, as shown in Table
5.

In summary, in terms of average BLEU,
ROUGE-1, ROUGE-2, and ROUGE-L scores, the
proposed cascade system with Mel-spectrograms
concatenated with F0 and energy (RMS energy)
as input achieves a slightly higher score of 63.8.
On the other hand, the proposed direct approach
system with Mel-spectrograms concatenated with
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F0 and RMS energy as input significantly improves
disambiguation accuracy to 82.2%. Since our pri-
mary focus in this study is disambiguation, we can
conclude that the direct system is the best in this
case.

5 Conclusions

This paper introduces the first Indonesian structural
ambiguity corpus, comprising 400 structurally am-
biguous sentences, each paired with two unambigu-
ous texts, totaling 4800 speech utterances. We also
conducted an evaluation of human performance
in disambiguating written and spoken structurally
ambiguous sentences, highlighting the advantages
of the spoken format. Additionally, we developed
systems for disambiguating structurally ambiguous
sentences in Indonesian by adapting both cascade
and direct approaches to speech-to-text mapping,
using two additional prosodic information signals
(pauses and pitch). The experiment demonstrates
that by utilizing prosodic information, structurally
ambiguous sentences can be disambiguated into
unambiguous interpretations. Among the systems
tested, the proposed cascade system achieved aver-
age BLEU, ROUGE-1, ROUGE-2, and ROUGE-
L scores of 63.8 and a disambiguation accuracy
of 79.6%. In contrast, the proposed direct sys-
tem, which uses input Mel-spectrograms concate-
nated with F0 and energy (RMS energy), obtained
slightly lower average BLEU, ROUGE-1, ROUGE-
2, and ROUGE-L scores of 62.8, but it achieved the
highest disambiguation accuracy of 82.2%. This
represents a significant improvement compared to
the proposed cascade system.

Limitations

In this work, the structurally ambiguous sentences
created and handled by the disambiguation systems
were adaptations of types 4, 5, 6, and 10 in the
types of structurally ambiguous sentences in En-
glish by Taha (1983), adapted to Indonesian. Each
structurally ambiguous sentence in this work was
limited to having only two interpretations. Conse-
quently, the sentences were relatively simple, with
a maximum word count of 15. Furthermore, the ut-
terances did not contain any disfluencies and were
recorded in a low-noise environment. However,
this study presents a potential solution for disam-
biguation. Therefore, further improvements will
aim to address the current system limitations, such
as allowing structurally ambiguous sentences to

have more than two interpretations and enabling
the speech recognizer to handle disfluencies. Addi-
tionally, we will further enhance the performance
of ASR, TD, and SD models to improve the disam-
biguation of structurally ambiguous sentences.
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A Hyperparameter Setting

The ASR and SD model training in this study did
not involve hyperparameter tuning since they al-
ready employed almost identical hyperparameters
to those used in the original Speech-transformer
(Dong et al., 2018). The ASR and SD models were
based on the Speech-transformer, which consisted
of 12 encoder blocks, 6 decoder blocks, 4 heads,
and a feed-forward inner dimension of 2048. We
used 80 dimensions for the Mel-spectrogram in-
put. The models were trained using the Adam opti-
mizer (Kingma and Ba, 2014) with β1 = 0.9, β2 =
0.98, ϵ = 10−9 and employed cross-entropy loss
with neighborhood smoothing. The learning rate
varied during training with a warm-up period. De-
coding was performed using beam search with a
beam size of 10. The Speech-transformer model
employed in this study is based on the ASR source
code from the research conducted by Novitasari
et al. (2022).
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Learning rate Max epoch
Baseline 10−4 10

Cascade + tag 10−4 50

Table 7: Hyperparameter tuning results for each TD
model.

For TD, we aligned most hyperparameters with
the optimal settings recommended for fine-tuning
IndoBART, as provided by the IndoNLG paper
(Cahyawijaya et al., 2021). These settings included
a batch size of 8, early stopping after no improve-
ments in 5 batches, a step decay learning rate
scheduler with a step of 1 epoch and a gamma
of 0.9, and fine-tuning with the Adam optimizer
(β1 = 0.9, β2 = 0.999, ϵ = 10−8). However, we
also conducted a simple hyperparameter tuning for
the learning rate and maximum epochs within each
tagging method (baseline and cascade+tag). We
explored three combinations of learning rates and
maximum epochs (learning rate=10−4 and max-
imum epochs=10, learning rate=10−4 and max-
imum epochs=50, learning rate=10−5 and maxi-
mum epochs=10), while keeping the other hyper-
parameters consistent with the settings specified in
the IndoNLG paper. The results of the hyperparam-
eter tuning are presented in Table 7.
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