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Abstract

Generative AI models exhibit remarkable po-
tential; however, hallucinations across vari-
ous tasks present a significant challenge, par-
ticularly for longer inputs that current ap-
proaches struggle to address effectively. We in-
troduce SCALE (Source Chunking Approach
for Large-scale inconsistency Evaluation), a
task-agnostic model for detecting factual in-
consistencies using a novel chunking strategy.
Specifically, SCALE is a Natural language in-
ference (NLI) based model that uses large text
chunks to condition over long texts. This ap-
proach achieves state-of-the-art performance in
factual inconsistency detection for diverse tasks
and long inputs. Additionally, we leverage the
chunking mechanism and employ a novel algo-
rithm to explain SCALE’s decisions through
relevant source sentence retrieval. Our evalu-
ations reveal that SCALE outperforms exist-
ing methods on both standard benchmarks and
a new long-form dialogue dataset ScreenEval
we constructed. Moreover, SCALE surpasses
competitive systems in efficiency and model
explanation evaluations. We have released our
code and data publicly to GitHub1.

1 Introduction

Large Language Models (LLMs) have shown im-
mense promise in various applications, but deploy-
ing them in real-time presents certain challenges
such as hallucinations (Cao et al., 2018; Falke et al.,
2019; Kryściński et al., 2019; Fabbri et al., 2021a;
Honovich et al., 2022). Hallucinations, or factual
inconsistencies generated by a model relative to
a source document, can mislead the user and un-
dermine trust in LLMs. Thus, detecting factual
inconsistency in LLM generations is crucial for
the future of LLMs, especially with the growing
popularity of platforms like ChatGPT.

∗Work done while at ASAPP.
1https://github.com/asappresearch/scale-score

Prior research on inconsistency detection has
predominantly dealt with short documents in of-
fline settings (Laban et al., 2022; Schuster et al.,
2022; Utama et al., 2022) and relied heavily on
sentence-level text matching techniques. Conse-
quently, these methods exhibit slow performance
in processing longer documents and suffer from
poor calibration. Such characteristics pose sub-
stantial challenges in implementing them in real-
world online environments, where incorporating
inconsistency detection could potentially result in
a substantial increase in latency. Additionally, the
absence of well-calibrated scores complicates the
balancing act between mitigating the risk of in-
corporating hallucinations and excluding pertinent
information from the model output. Given the expo-
nential growth in context sizes (maximum allowed
tokens of an input) of contemporary large language
models (LLMs),2 there is an increasing urgency
to develop efficient and effective approaches for
inconsistency detection in lengthy documents.

In addressing the challenges, we introduce
SCALE (Source Chunking Approach for Large-
scale inconsistency Evaluation), a method designed
for efficient detection of factual inconsistencies in
generated sentences by identifying related source
text snippets. SCALE consists of two crucial com-
ponents. First, it builds on a Natural language in-
ference (NLI) based method, integrating a novel
chunking mechanism for rapid and accurate online
performance in diverse natural language genera-
tion (NLG) tasks. Second, model explanation is
essential for real-time deployment of inconsistency
detection systems, facilitating swift human inspec-
tion to determine model configurations. We show
that our chunking mechanism improves calibration
scores and enables the use of a binary search tree
algorithm for rapidly locating relevant source text
snippets for a target sentence, ultimately enhancing

2For instance, OpenAI GPT-4 and Anthropic Claude sup-
port context sizes up to 32k and 100k tokens, respectively.
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the explanation of model behaviors.
Current benchmark datasets for factual inconsis-

tency detection predominantly feature short docu-
ments. In order to evaluate SCALE using a more
realistic dataset with long documents, we intro-
duce ScreenEval — a novel dataset designed to
assess the factual inconsistency of summary sen-
tences generated by humans, Longformer, and GPT-
4 in comparison to actual long-form dialogues.
ScreenEval encompasses 52 dialogues, averaging
over 6,000 tokens per dialogue. The use of dia-
logue in this dataset poses a considerable unique
challenges such as long-distance coreference res-
olution and significant noise between utterances.
To the best of our knowledge, ScreenEval is the
longest dialogue based dataset for factual inconsis-
tency detection presently available.

In our experiments, we first show that
SCALE outperforms and is better calibrated than
baseline methods across various NLG tasks on the
standard factual inconsistency detection benchmark
TRUE (Honovich et al., 2022). We then assess ac-
curacy, speed, and model explanation (via relevant
text retrieval evaluation) on the new ScreenEval
dataset for long document factual inconsistency
detection. Our findings indicate that SCALE sur-
passes strong competitors in the majority of tests.
The key contributions of this paper are:

• We introduce SCALE, a reference-free, NLI
based factual inconsistency detection method
with a novel chunking strategy for versatility
across domains and extended documents.

• We show SCALE’s broad applicability in
NLG domains by attaining state-of-the-art per-
formance on the TRUE benchmark.

• We build ScreenEval, a novel dataset designed
for factual inconsistency detection in long di-
alogues, and then demonstrate SCALE’s su-
periority in accuracy, efficiency, and model
explanation evaluations on the dataset.

2 Related Work

Factual Inconsistency Detection There are two
main directions in factual inconsistency detection:
Natural language inference (NLI) based and ques-
tion answering (QA) based methods. In NLI based
methods, pretrained NLI models can be utilized
to determine whether a given "premise" factually
entails a "hypothesis." Although initial attempts

encountered challenges (Khot et al., 2018), recent
advancements have shown that NLI models can ef-
fectively assess the factual consistency of generated
text (hypothesis) with respect to a source (premise)
(Utama et al., 2022). This progress can largely be
attributed to addressing the granularity problem,
which arises from the abundance of current NLI
datasets predominantly comprised of short, single-
sentence premises and hypotheses (Williams et al.,
2017; Nie et al., 2019; Thorne et al., 2018a; Schus-
ter et al., 2021a).

SCALE is an NLI based method and our find-
ings indicate that utilizing larger premise chunks
enhances efficiency and outperforms sentence de-
composition. Although SeNtLI (Schuster et al.,
2022) extended NLI based methods to longer doc-
uments, it adhered to the sentence decomposition
assumption and focused solely on summarization
tasks. SummaC (Laban et al., 2022) investigated
various aggregation techniques for NLI scores ob-
tained from sentence decomposition to generate
overall summary scores. Meanwhile, SWING
(Huang et al., 2023) developed a loss function to
train models for improved NLI performance, yield-
ing mixed outcomes.

In QA based methods, a question is first gen-
erated based on a summary sentence, and a QA
system is used to give an answer. A summary is
considered factually consistent if the generated an-
swer significantly overlaps with the original sum-
mary (Durmus et al., 2020). Prior research focused
on using different question generation strategies
(Scialom et al., 2019) or overlap measures (Deutsch
and Roth, 2021). In the experiments, we consider
the most competitive QuestEval (Scialom et al.,
2021a) and QAFactEval (Fabbri et al., 2021b).

Detecting Factual Inconsistencies in Long Docu-
ments Prior work on factual inconsistency perfor-
mance in long source documents has been limited
in scope. For example, ContractNLI (Koreeda and
Manning, 2021) concentrates on legal documents,
which differ significantly from dialogues in terms
of challenges. Likewise, LongEval (Krishna et al.,
2023) emphasizes human evaluation strategies for
scoring, without considering dialogues. To our
knowledge, this paper presents the first dataset for
evaluating factual inconsistency in long-form dia-
logues, ScreenEval, thus addressing a substantial
gap in the literature.
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Figure 1: Chunking mechanism for SCALE to produce a score given a source document and generated text. The
source document is broken into chunks (represented by dashed lines) and each chunk is fed into to a prompt as the
premise. The highlighted generated text is fed into all prompts as the hypothesis. Each prompt is then run through
Flan-T5 and the resulting logits are used to compute the entailment score.

3 SCALE

In this section we elaborate on our approach taken
for our inconsistency detection model SCALE.
Firstly, we formally define the use of chunks and
NLI in SCALE, aiming at improving the accuracy
and efficiency of the system. Secondly, we propose
to explain the model output by retrieving the rele-
vant source sentence for a target, and show how the
relevant sentence retrieval can be improved through
the use of chunks.

3.1 Chunking Mechanism for NLI based
Model

Our approach uses NLI (Dagan et al., 2006) as
a building block for factual inconsistency detec-
tion. An NLI model M provides the relationship
between a premise p and a hypothesis h, M(p, h)
with probabilities of three labels: entailed, neu-
tral, and contradictory. For example, given an NLI
model M(p, h), source document D with a set of
facts FD, and a generated text G with a set of facts
FG, if FG ⊆ FD we would expect M(D,G) to
produce high entailment probability.

We define factual consistency between a gen-
erated text and source document as FG ⊆ FD.
Canonical NLI models cannot be properly used
for factual inconsistency detection because both p
and h are commonly single sentences in NLI mod-
els, however in the factual inconsistency task their
equivalents D and G almost always contain multi-
ple sentences which M cannot effectively handle,
leading to an issue known as the granularity prob-

lem (Utama et al., 2022). To bypass the granularity
problem, a natural generalization is to split both
D and G into sentences and run M pairwise on
each of those sentences then using an aggregation
function f to generate the final entailment proba-
bility. Numerous papers have used this approach to
generate competitive results (Schuster et al., 2022;
Laban et al., 2022) however this generalization is
hindered by a few shortcomings.

First, the sentence decomposition of D and G
does not properly capture the context provided in
D. By decomposing D and G into single sen-
tences D = (d1, d2, . . . , di, . . . , d|D|) and G =
(g1, g2, . . . , gj , . . . , g|G|) and put into the model to
evaluate as M(di, gj), the context and long term
dependencies present in D that may have factu-
ally supported gj very likely could not be repre-
sented in di. Multiple sentences (e.g., ∪i∈{1,3,6}di)
together in unison may be needed to support a
single claim gj . However, evaluating gj against
each sentence individually M(d1, gj), M(d3, gj),
M(d6, gj) would likely lead to artificially low
scores. Second, evaluating pairwise sentences of
D and G is slow. It requires |D| · |G| model runs
to obtain a final score for one sentence gj .

SCALE poses a different solution to the granu-
larity problem by decomposing D into much larger
chunks, which can be visualized in Figure 1. For-
mally, SCALE decomposes document D into a
set of N chunks C = c1, c2, . . . , cN such that
∪c∈C = D. SCALE can handle chunks of ar-
bitrary length only limited by memory require-
ments, thus drastically increasing the context win-
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Figure 2: Visualization of SCALE’s in context retrieval
using chunks to find the most relevant source utterance
given a sentence. Each chunk is scored by SCALE, as
shown by the gray boxes.

dow provided to the model through the premise.
The generated text G is broken into sentences
G = (g1, g2, . . . , gj , . . . , g|G|). We propose that
decomposing D using chunks rather than sentences
does not negatively affect the granularity problem
but rather enables superior contextual capture in
model M , boosts accuracy, and requires signifi-
cantly less model runs.

SCALE uses Flan-T5 (Chung et al., 2022) as
a backbone NLI model M . SCALE obtains the
probability that a chunk ci entails a generated sen-
tence gj through the following steps. First, log-
its are obtained by prompting M with the follow-
ing: logits = M(“{ci} Question: does this imply
‘{gj}’? Yes or no?”). The entailment probability
between gj and ci is then calculated by

Pentail = SoftMax(logits["Yes"], logits["No"])[0].

To obtain the overall entailment score for a gener-
ated sentence gj , the results are aggregated over all
possible ci by,

SCALE(C, gj) = max
i=1...N

(Pentail(ci, gj))

to obtain a final measure of factual consistency.

3.2 Model Explanation via Relevant Source
Text Retrieval

To produce explainable and interpretable scores
for factual consistency and empower necessary hu-
man inspection, it is important to justify the score
by retrieving relevant text from the source. For-
mally, the retrieval task involves finding the most
relevant sentence di in document D with respect

to a hypothesis h. Using a new search tree ap-
proach enabled by chunking, SCALE is able to
retrieve di in context while using far fewer model
runs than previous approaches. We use a greedy
search tree approach that evaluates a hypothesis us-
ing SCALE against progressively smaller chunks
to find the highly relevant text from the source doc-
ument. For the following example, assume we use
a binary search tree (BST) at each level, dividing
the text into two chunks. This process can be vi-
sualized in Figure 2. Given a hypothesis h, we
want to find the most relevant utterance di in the
source text. We begin by dividing the entire source
document into two large chunks. SCALE is used
to calculate the score between both chunks and the
hypothesis h and then use the higher scoring chunk
as the new source text. The new source text is
then divided into two chunks, and continues to de-
scend in this manner until the chunk size becomes
a single sentence or utterance di. The best scoring
chunk is then chosen to be the supporting proof of
the hypothesis from the source document.

This retrieval approach is able to significantly
reduce the number of model calls needed to find
the relevant text from a source document. Previous
approaches commonly break the source document
down by sentence which requires O(n) model calls
for a source document with n sentences. Whereas
our BST approach only needs O(log(n)) model
calls in order to find the most relevant utterance in
the same source document of n sentences.

Notice that we proposed the binary search
scheme due to its simplicity and its connection
to the popular binary search tree. In practice, div-
ing the source text into only two chunks might
cause out of GPU memory issues. In this case, we
could generalize the proposed approach into dif-
ferent chunk splits. For example, we could divide
the remaining tokens into three chunks or larger
for the search of each block until the model fits the
chunk. We could also use different chunk sizes for
different layers so long as it fits in the memory.

4 ScreenEval Dataset

We introduce a novel dataset for evaluating incon-
sistency detection on long form dialogues called
ScreenEval. This dataset uses TV scripts and sum-
maries pulled from the SummScreen (Chen et al.,
2021) dataset. In addition to the provided human
summaries, we generate summaries using Long-
former and GPT-4 on 52 scripts from the Summ-
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Metric Count
# of documents 52

# of summary sentences 624
avg. # of utterances per doc 309

avg. # of sentences per summary 4
avg. # of tokens per doc 6073

avg. # of tokens per summary 101
avg. # of tokens per summary sentence 26

# factually consistent sentences 168
# factually inconsistent sentences 58

avg. # of relevant utterances 5

Table 1: Statistics for the ScreenEval dataset. These
statistics use the Flan-T5 tokenizer

Screen test set. We then hire human annotators
to classify the factual inconsistency of each sum-
mary sentence and identify relevant supporting
utterances for factually consistent summary sen-
tences. ScreenEval is released publicly. Details
of how we use Longformer and GPT-4 and collect
human annotation can be found in the Appendix A.

The SummScreen dataset is comprised of 2
sub datasets pulled from different sources Forever-
Dreaming and TVMegaSite. We use the Forever-
Dreaming subset of SummScreen, (SummScreen-
FD) to create ScreenEval due to its manageable
summary size and diversity of shows and gen-
res, spanning a total of 21 genres. SummScreen-
FD uses human-written gold summaries from
Wikipedia and TVMaze. Table 1 shows statistics
related to ScreenEval. Notably, the average num-
ber of tokens in a source document is 6,073, which,
to the best of our knowledge, makes ScreenEval
the longest dialogue based inconsistency detection
dataset created. We provide 52 documents with an
associated 624 summary sentences, 455 of which
are artificially generated using Longformer and
GPT-4. Summaries are kept at a high level, cover-
ing major plot points and character developments.
This leads to shorter and more concise summaries
that on average only run 101 tokens.

5 Experiments

5.1 Datasets

TRUE The TRUE benchmark contains 11
datasets from 4 different NLG tasks. We compare
our approach to others on this dataset to show how
SCALE performs across a multitude of NLG tasks
on inconsistency detection. Notably, the average
number of tokens per example in the TRUE bench-
mark is small, generally less than 512. Each dataset

in the TRUE benchmark is condensed down into a
source document, generated text, and factual incon-
sistency label. The datasets are distributed across
different tasks as shown in Table 2.

Task Examples Datasets
Summarization 5,245 5
Dialogue 10,613 3
Fact Verification 81,263 2
Paraphrasing 8,000 1

Table 2: Number of examples and datasets for each task
in the TRUE benchmark.

Summarization datasets are from FRANK
(Pagnoni et al., 2021), SummEval (Fabbri et al.,
2021a), MNBM (Maynez et al., 2020), QAGS-
CNNDM (Wang et al., 2020), and QAGS-XSum
(Wang et al., 2020). Dialogue datasets include BE-
GIN (Dziri et al., 2022), Q2 (Honovich et al., 2021),
and DialFact (Gupta et al., 2021). Fact Verification
datasets are FEVER (Thorne et al., 2018b) and Vi-
taminC (Schuster et al., 2021b). The Paraphrasing
dataset is PAWS (Zhang et al., 2019b).

ScreenEval Our datasest ScreenEval compares
the inconsistency detection ability of methods on
long form dialogue. Details can be found in Sec. 4

5.2 Competitive Systems
TRUE provides 9 inconsistency detection base-
lines from 4 different inconsistency detection styles,
namely n-gram based methods (token level F1),
model based methods (BERTScore (Zhang et al.,
2019a), BLEURT (Sellam et al., 2020), FactCC
(Kryscinski et al., 2020), BARTScore (Yuan et al.,
2021), CTC (Deng et al., 2021)), NLI based meth-
ods (ANLI (Honovich et al., 2022), SummaC
(Laban et al., 2022)), and question answering
(QA) based methods (Q2 (Honovich et al., 2021),
QuestEval (Scialom et al., 2021b)).

For ScreenEval we compare SCALE to 8 mod-
els which use NLI, QA, modern GPT systems, and
older n-gram and semantic similarity methods. The
baseline models consist of two NLI based sentence
decomposition approaches seNtLI (Schuster et al.,
2022), and SummaCconv (Laban et al., 2022), a
state-of-the-art QA based model QAFactEval (Fab-
bri et al., 2022), a multidimensional QA model
UniEval (Zhong et al., 2022), a semantic similar-
ity model based method BERTScore (Zhang et al.,
2019a), an n-gram overlap method ROUGE (Lin,
2004), and the two recent OpenAI models Chat-
GPT, and GPT-4.
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We also compare the performance of SCALE’s
search tree based relevant utterance retrieval with
other recent retrieval models. We compare
SCALE to the retrieval performance of Super-
Pal (Ernst et al., 2020) which was shown to have
superior retrieval capabilities in LongEval. We
also compare against seNtLI (Schuster et al., 2022)
which was designed to perform retrieval to identify
factual inconsistencies over long documents.

For SCALE , we include three variants of Flan-
T5 as the backbone, namely base, XL, and XXL.

5.3 Metrics

Accuracy Evaluation We compare the perfor-
mance of methods primarily using four met-
rics, ROC_AUC score, Pearson correlation,
Kendall_Tau correlation, and F1_Macro score. We
employ the ROC_AUC score to quantify the abil-
ity of different methods in accurately identifying
true positives and true negatives. Pearson and
Kendall_Tau correlations show the relationship be-
tween methods and labels by measuring the cor-
relations between the two. Finally the F1_Macro
score is used to compare the continuous outputs
of SCALE to the discrete outputs of GPT-4 and
ChatGPT. To obtain an F1 score for SCALE we
use the optimal threshold to convert its continuous
output into discrete values.

Efficiency Evaluation We measure wall clock
time in seconds for all of our experiments on
ScreenEval. Wall clock time demonstrates how
SCALE can be used efficiently in an online setting
especially when compared to other models.

Model Explanation Evaluation We evaluate
Calibration and Relevant Source Text Retrieval for
model explanation.

Calibration is the measure of how close the
pseudo-probability outputs of a model are to the
actual probability of a correct prediction. For ex-
ample, a well calibrated model that produces a
score of 0.2 would have a 20% probability of being
classified as 1. In this paper, we use Expected Cali-
bration Error (ECE) (Guo et al., 2017) to compare
the calibration of SCALE to other commonly used
models.

Given model outputs spanning from 0 to 1, ECE
separates the outputs into K equally sized bins Bk

between 0 and 1 and takes the difference between
accuracy acc and confidence conf in each one.
The accuracy of a bin Bk is the average amount

of predicted labels that match true class labels in a
bin, formally defined as

acc(Bk) =
1

|Bk|
∑

i∈Bk

1(ŷi = yi), (1)

where ŷi and yi are the predicted and true class la-
bels for sample i. Confidence in a bin Bk shows the
average predicted score in a bin, formally defined
as

conf(Bk) =
1

|Bk|
∑

i∈Bk

p̂i, (2)

where p̂i is the model output score for sample i.
Then the following equation is used to calculate

ECE,

ECE =
K∑

k=1

|Bk|
n

|acc(Bk)− conf(Bk)|, (3)

using equation (1) and (2). A lower ECE indicates
a better calibration.

Relevant Source Text Retrieval tests if each
model could return the correct utterance identified
as relevant by human labelers. We report the recall
of retrieval results.

6 Results

6.1 TRUE
We first evaluate SCALE on the TRUE benchmark
to confirm SCALE is NLG task agnostic and gen-
eralizes well to the factual inconsistency detection.

Accuracy Evaluation Results For the TRUE
benchmark as shown in Table 3, SCALEXXL pro-
vides superior performance in 10 out of the 11
datasets, and SCALEXL achieves superior per-
formance in 8 datasets compared to other non-
SCALE models. Notably, other models were not
previously able to perform well across all tasks,
with Q2

metric having superior performance across
3 datasets and ANLI having superior performance
across 5. These results demonstrate SCALE’s abil-
ity to perform well across domains and against a
large variety of model types.

Model Explanation Evaluation Results Not
only does SCALE provide superior performance
on the TRUE benchmark, but it is also highly
calibrated across NLG tasks. Table 4 shows the
ECE of multiple methods across the TRUE bench-
mark datasets. Note that a lower ECE is bet-
ter. SCALElarge provides the best calibration on
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Metric FRANK SummEval MNBM QAGS-C QAGS-X BEGIN Q2
ds DialFact PAWS FEVER VitC Avgw/o VitC,FEVER

Q2
metric 87.8 78.8 68.7 83.5 70.9 79.7 80.9 86.1 89.7 88.4 81.4 80.7

ANLI 89.4 80.5 77.9 82.1 83.8 82.6 72.7 77.7 86.4 93.2 88.3 81.5
SCZS 89.1 81.7 71.3 80.9 78.1 82.0 77.4 84.1 88.2 93.2 97.9 81.4
F1 76.1 61.4 46.2 63.8 51.1 86.4 65.9 72.3 51.1 51.8 61.4 63.8
BLEURT 82.8 66.7 64.5 71.6 57.2 86.4 72.4 73.1 68.3 59.5 61.8 71.4
QuestEval 84.0 70.1 65.3 64.2 56.3 84.1 72.2 77.3 69.2 72.6 66.5 71.4
FactCC 76.4 75.9 59.4 76.4 64.9 64.4 63.7 55.3 64.0 61.9 56.3 66.7
BARTscore 86.1 73.5 60.9 80.9 53.8 86.3 64.9 65.6 77.5 64.1 63.2 72.2
BERTscore 84.3 77.2 62.8 69.1 49.5 87.9 70.0 64.2 77.5 63.3 62.5 71.4
SCALElarge 88.0 79.4 74.2 81.0 81.4 79.3 84.3 91.6 96.9 93.9 89.3 84.0
SCALExl 89.8 83.3 73.2 82.1 84.3 77.8 86.3 91.0 91.9 94.5 91.5 84.4
SCALExxl 90.8 91.5 73.1 85.2 85.3 79.2 86.6 93.4 96.7 94.8 92.7 88.1

Table 3: TRUE benchmark results. ROC_AUC scores multiplied by 100 for readability. Since SCZS uses FEVER
and VitC in training, these two datasets are excluded when computing the average.

Metric FRANK SummEval MNBM QAGS-C QAGS-X BEGIN Q2
ds DialFact PAWS FEVER VitC Avg

UniEval 0.333 0.238 0.173 0.26 0.315 0.507 0.153 0.396 0.335 0.084 0.242 0.276
BERTScore 0.2343 0.0730 0.1568 0.3200 0.4783 0.3119 0.1760 0.1388 0.1923 0.4217 0.0648 0.233
SummaCc 0.199 0.322 0.128 0.067 0.043 0.085 0.412 0.116 0.355 0.109 0.185 0.184
SummaCz 0.266 0.082 0.058 0.267 0.196 0.244 0.084 0.08 0.122 0.04 0.074 0.137
SCALExl 0.093 0.243 0.026 0.060 0.116 0.069 0.286 0.071 0.060 0.209 0.150 0.126
SCALElarge 0.179 0.043 0.215 0.144 0.117 0.149 0.103 0.117 0.019 0.058 0.049 0.108

Table 4: TRUE Calibration Results. ECE of each method on TRUE benchmark datasets (lower is better)

average and SCALEXL outperforms other non-
SCALE models in calibration on over half of the
datasets in the TRUE benchmark.

A visual example of the calibration results can
be analyzed with the calibration curves in Figure
3. While most models are severely uncalibrated
and underestimate the fraction of positives in Fig-
ure 3, SCALE is capable of sticking extremely
close to the perfectly calibrated line. The closest
model SummaCConv can be seen overestimating
positive examples before scores reach 0.4. We hy-
pothesize that the large context window is the key
to better calibration in SCALE as it includes more
information. This makes the underlying NLI model
less likely to be biased toward a specific range of
tokens which leads to extreme confidence based
on certain short text. To empirically justify this,
we perform further experiments on the proposed
ScreenEval dataset shown in Figure 4. We can ob-
serve that for chunk size < 400, the calibration
score (the lower the better) is much higher than
larger chunk size 500 to 1000. This shows that a
larger chunk size could enable the NLI model to
extract more useful information to provide appro-
priate confidence when making the prediction. We
also use this knowledge to support our decision to
use 512 tokens as our chunk size for all experiments
in this paper. The enhanced calibration achieved
by SCALE allows it to be more interpretable as a
probability, making it a valuable tool for compari-
son tasks.

Figure 3: Calibration curves on the PAWS benchmark

6.2 ScreenEval

We then evaluate the performance of SCALE’s
chunking capabilities against other models in a
long form dialogue setting using ScreenEval. We
evaluate the factual inconsistency detection and
relevant utterance retrieval of SCALE compared
with other models and explore the unique problems
posed by long form dialogue evaluation.

Accuracy and Efficiency Evaluation Results
We compare the factual inconsistency detection
performance of multiple models on ScreenEval in
Table 5. SCALE significantly outperforms other
methods across all measures. While the state-of-
the-art QA model QAFactEval was able to perform
well on ScreenEval, SCALElarge still showed supe-
rior performance across all metrics. Notably, even
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Figure 4: Effect of different chunk sizes on calibration
performance on ScreenEval dataset.

Metric Pearson Kendall-Tau ROC-AUC Time (s)
Rouge-1 0.120 0.093 57.6 -
BERTScore 0.130 0.076 56.2 -
SummaCc 0.030 0.011 50.9 1153
UniEval 0.066 0.094 57.6 1139
seNtLI 0.005 0.096 42.2 12688
QAFactEval 0.331 0.293 73.5 12132
SCALEbase 0.28 0.24 69.5 678
SCALElarge 0.391 0.322 76.1 1991

Table 5: Factual inconsistency detection results on
ScreenEval. ROC_AUC is multiplied by 100 for read-
ability.

SummaCconv and seNtLI, which are designed to
deal with long documents, have poor performance
on ScreenEval.

Along with its superior performance, SCALE is
able to run faster than other LLM based methods
on ScreenEval also shown in Table 5. For a fair
comparison, we set the batch size to 1 for all mod-
els and run with all other default settings. We do
not include BERTScore due to it’s truncation of the
document, making timing not comparable. Most
notably QAFactEval, which was closest in perfor-
mance to SCALElarge, was 6 times slower than
SCALElarge in wall clock time. Even faster though
was SCALEbase which was 17 times faster than
QAFactEval while only achieving slightly worse
performance across all metrics on ScreenEval, and
outperforming all non-SCALE methods other than
QAFactEval. The SCALEbase model running at
1.1 seconds per score for long documents could
realistically be used in an online setting to more
accurately evaluate factual inconsistency.

Chunk size proves to have a large effect on the
ability of SCALE’s performance and time as seen
in Figure 5. SCALElarge sees a sharp increase in
performance up until the chunk size is 1000 tokens

Figure 5: Effect of different chunk sizes on
SCALElarge performance and time on ScreenEval
dataset. ROC_AUC score is multiplied by 100 for read-
ability.

long. Similarly, there is a sharp decrease in model
run time up until 1000 tokens. Figure 5 substan-
tiates our approach to the granularity problem by
illustrating that a larger number of tokens in the
premise leads to a more effective method.

Model F1-score macro Cost Time (s)
SCALEXL 73.86 - 5425
SCALElarge 68.74 - 1991
GPT-4 77.95 $102 7255
ChatGPT 56.5 $5 2544

Table 6: Compare SCALE with ChatGPT and GPT-4
on ScreenEval.

We additionally compare SCALE with Chat-
GPT and GPT-4 on ScreenEval in Table 6. Due to
the discrete nature of GPT-4 and ChatGPT’s output,
we choose an ideal threshold for SCALE and com-
pare macro F1-Scores on the ScreenEval dataset.
While GPT-4 is able to outperform SCALEXL in
macro F1-Score, SCALE shows to be significantly
better in terms of time and cost. ChatGPT is more
comparable in terms of time and cost to SCALE;
however, there is a significant performance drop
in macro F1-Score. ChatGPT is also limited by its
4096 token length limit at the time of writing and
must use truncated conversations from ScreenEval.
These results help us conclude that while GPT-4
has superior performance, SCALE is able to pro-
vide a faster, more affordable model that can be
used locally in an online setting to produce contin-
uous scores.
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Metric Recall Time (s)
seNtLIxl 0.343 35.35
SuperPal 0.406 6.13
SCALElarge 0.463 4.67
SCALExl 0.471 12.46

Table 7: Relevant source text retrieval results on
ScreenEval. Time is measured in average number of
seconds taken to retrieve the most relevant utterance on
ScreenEval conversations.

Model Explanation Evaluation Results We
now compare SCALE’s BST retrieval approach
with SuperPal and seNtLI. SCALE outperforms
both in terms of time and performance as shown
in Table 7. SCALEXL identifies the most relevant
utterances correctly 47% of the time compared to
34% for seNtLI and 41% for SuperPal. SCALE’s
BST retrieval requires significantly fewer model
calls, allowing it to pinpoint relevant utterances
without having to score each one individually like
the other methods. This results in higher retrieval
recall for both SCALElarge and SCALEXL. More-
over, because SCALElarge requires far less model
calls it is able to provide faster results than Super-
Pal or seNtLI without comprimising effectiveness.
This enhanced performance shows how SCALE
could be used in an online setting for fast and accu-
rate results.

7 Conclusion

In this paper, we introduce a cutting-edge NLI
based factual inconsistency detection method
called SCALE. We show that SCALE is an
NLG task agnostic factual inconsistency detection
method by achieving state-of-the-art results across
four distinct NLG tasks and 11 datasets within the
TRUE benchmark. We show that across NLG tasks
SCALE is also superior in calibration, providing
scores that are interpretable and enables accurate
comparison of scores. We introduce a new dataset
called ScreenEval that is the first of its kind for
long form dialogue factual inconsistency evalua-
tion. SCALE is shown to significantly outperform
all models other than GPT-4 in factual inconsis-
tency detection on this dataset. However, we show
that SCALE is significantly more cost effective
and faster than GPT-4 for evaluation on ScreenEval.
Moreover, we introduce a new retrieval strategy en-
abled by SCALE that significantly decreases the
time to retrieve relevant utterances from a long
document with increased recall accuracy.

8 Limitations

While SCALE performs well at inconsistency de-
tection there are some limitations to this approach.

SCALE only uses the "Yes" and "No" logits to
compute it’s entailment score, however only using
those two logits specifically could lead to loss of ac-
curacy due to other information possibly flowing to
similar tokens such as “yes”, “no”. Using logits for
scoring purposes may cause a loss of information
to other similar logits.

Finally, even though SCALE is able to achieve
better calibration in the aggregate, it still struggles
with calibration on certain tasks and this can even
vary by model size. Consistent calibration of scor-
ing methods across NLG tasks should be a goal for
future methods.
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Appendix

A Details of Construction of ScreenEval
Dataset

We create summaries for ScreenEval using two
summarization models, GPT-4 and Longformer, as
well as human generated summaries. The models
that we use for summarization are designed to have
a large token context window, giving them both
the ability to globally attend over the long source
dialogues we provide. Below, we will first explain
how to leverage Longformer, GPT-4 to generate
summaries, and then explain the process and the
cost of human labeling.

A.1 Building the Dataset

We first generated longformer summaries for each
script in the test set. To keep the annotation task rea-
sonable, and to filter out any rambling summaries,
we filter out any TV scripts with a longformer or
human summary that had more than 6 sentences
or only 1 sentence. We still preserve 52 of the
TV scripts by doing this, as the median number of
summary sentences in a longformer summary was
4 and a human summary was 3. In order to meet
GPT-4’s token limit requirements, from the remain-
ing TV scripts we chose all that had less than 8,100
tokens. Our final dataset consists of 52 TV scripts
that have an average length of 6073 tokens with
624 summary sentences.

A.2 Longformer

We use the same baseline model as in Summ-
Screen to generate summaries in ScreenEval, a
Longformer model finetuned on SummScreen-
FD’s training set. This model uses a transformer
based sequence to sequence architecture to globally
attend over the entire dialogue. Longformer is able
to take as many as 16384 tokens as input.

A.3 GPT-4

GPT-4 is a large language model that has shown
near human level performance in a wide variety of
tasks, including summarization. We task GPT-4 to
summarize each document in ScreenEval using the
prompt “Summarize in 5 sentences or less: ”. To
accommodate for the roughly 8k token limit on the
GPT-4 model, we specifically select documents in
ScreenEval that are under 8k tokens.

A.4 Human Annotation
We lable ScreenEval using workers from amazon
mechanical turks with the promtp shown in Fig-
ure 6 and Figure 7. For each task, a worker is
presented with a TV script from ScreenEval along
with a highlighted summary sentence. The worker
is instructed to first read through the source dia-
logue. Then, the worker is instructed to click either
a Yes or No button to indicate whether the high-
lighted summary sentence is consistent with the
source document. Each utterance in the TV script
will be presented alongside a check box where if
the worker chose “Yes” to the consistency question,
they will be asked to select the relevant utterances
that led to their answer.

We had 3 human annotators label each instance,
and 61% of the time all three annotators agreed.
Workers were paid 0.27 per task. We ensured the
quality of annotators through a number of methods.
First, we filtered annotators to just those located
in the US and Canada to increase the chances of
high fluency in English on our reading comprehen-
sion task. Additionally the workers had to have
an MTurk “Master” qualification, greater than a
95% task approval rate, and greater than 5000 tasks
approved. The dataset was labeled in batches of
30 at a time and closely monitored by the authors.
Workers were only rejected if they did not list rele-
vant utterances as instructed or listed non existent
utterances, and these workers were able to dispute
rejection via email.

B Prompts Used for GPT

B.1 ChatGPT/GPT-4

{Dialogue}
Question: does the previous conversation
factually imply "{Summary Sentence}"?
Answer Yes or No.

1702



Figure 6: Prompt provided to mturk labellers 0

Figure 7: Prompt provided to mturk labellers 1
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