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Abstract

One of the main methods for computational in-
terpretation of a text is mapping it into a vector
in some embedding space. Such vectors can
then be used for a variety of textual process-
ing tasks. Recently, most embedding spaces
are a product of training large language models
(LLMs). One major drawback of this type of
representation is their incomprehensibility to
humans. Understanding the embedding space
is crucial for several important needs, includ-
ing the need to debug the embedding method
and compare it to alternatives, and the need
to detect biases hidden in the model. In this
paper, we present a novel method of under-
standing embeddings by transforming a latent
embedding space into a comprehensible con-
ceptual space. We present an algorithm for
deriving a conceptual space with dynamic on-
demand granularity. We devise a new evalua-
tion method, using either human rater or LLM-
based raters, to show that the conceptualized
vectors indeed represent the semantics of the
original latent ones. We show the use of our
method for various tasks, including comparing
the semantics of alternative models and tracing
the layers of the LLM. The code is available
online1.

1 Introduction

Recently, there has been significant progress in
Natural Language Processing thanks to the devel-
opment of Large Language Models (LLMs). These
models are based on deep neural networks and
are trained on extensive volumes of textual data
(Devlin et al., 2019; Raffel et al., 2020; Liu et al.,
2019).

While these powerful models show excellent per-
formance on a variety of tasks, they suffer from a
significant drawback. Their complex structure hin-
ders our ability to understand their reasoning pro-

1https://github.com/adiSimhi/Interpreting-Embedding-
Spaces-by-Conceptualization

cess. This limitation becomes crucial in several im-
portant scenarios, including the need to explain the
decisions made by a system that employs the model,
the necessity to debug the model and compare it
with alternatives, and the requirement to identify
any hidden biases within the model (Burkart and
Huber, 2021; Ribeiro et al., 2016b; Madsen et al.,
2022).

Current LLMs process text by projecting it into
an internal embedding space. By understanding
this space, we can therefore gain an understanding
of the model. Such understanding, however, is
challenging as the dimensions of the embedding
space are usually not human-understandable.

The importance of interpretability has been rec-
ognized by many researchers. Several works
present methods for explaining the decision of a
system that uses the embedding (mainly classifiers)
(e.g. Ribeiro et al., 2016a; Lundberg and Lee,
2017a). Some works (Senel et al., 2022; Faruqui
et al., 2015) perform training or retraining for gen-
erating a new model that is interpretable, thus de-
touring the problem of understanding the original
one. Another line of work assumes the availability
of an embedding matrix and uses it to find orthogo-
nal transformations, such that the new dimensions
will be more understandable (Dufter and Schütze,
2019; Park et al., 2017). Probing methods utilize
classification techniques to identify the meaning as-
sociated with individual dimensions of the original
embedding space (Clark et al., 2019; Dalvi et al.,
2019).

In this work, we present a novel methodology
for interpretability of LLMs by conceptualizing the
original embedding space. Our algorithm enables
the mapping of any vector in the original latent
space to a vector in a human-understandable con-
ceptual space. Importantly, our approach does not
assume that latent dimension corresponds to an
explicit and easily-interpretable concept.

Our method can be used in various ways:
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1. Given an input text and its latent vector, our
algorithm allows understanding of the seman-
tics of it according to the model.

2. It can help us to gain an understanding of the
model, including its strengths and weaknesses,
by probing it with texts in subjects that are of
interest to us. This understanding can be used
for debugging a given model or for comparing
alternative models.

3. Given a decision system based on the LLM,
our algorithm can help to understand the de-
cision and to explain it using the conceptual
representation. This can also be useful in de-
tecting biased decisions.

Our contributions are:

1. We present a model-agnostic method for in-
terpreting embeddings, which works with any
model without the need for additional training.
Our approach only requires a black box that
takes a text fragment as input and produces a
vector as output.

2. We present a novel algorithm that, given an on-
tology, can generate a conceptual embedding
space for any desired size and can be selec-
tively refined to specialize in specific subjects.

3. We introduce a new method for evaluating
algorithms for embedding interpretation using
either a human or an LLM-based evaluator.

2 The Conceptualization Algorithm

Let T be a space of textual objects (sentences, for
example). Let L = L1 × . . . × Lk be a latent
embedding space of k dimensions. Let f : T → L
be a function that maps a text object to a vector in
the latent space. Typically, f will be an LLM or
LLM-based.

Our method requires two components: A set
of concepts C = c1, . . . , cn defining a conceptual
space C = c1 × . . .× cn, and a mapping function
τ : C → T that returns a textual representation for
each concept in C.

In the pre-processing stage, we map each con-
cept c ∈ C to a vector in L by applying f on τ(c),
the textual representation of c. We thus define n
vectors in L, ĉ1, . . . , ĉn such that ĉi ≡ f(τ(ci)).

Given a vector l ∈ L (that typically represents
some input text), we measure its similarity to each

vector ĉi (that represents the concept ci) using any
given similarity measure sim. The algorithm then
outputs a vector in the conceptual space, using the
similarities as the dimensions.

We have thus defined a meta-algorithm CES
(Conceptualizing Embedding Spaces) that, for any
given embedding method f , a set of concepts C
and a mapping function τ from concepts to text,
takes a vector in the latent space L and returns a
vector in the conceptual space C:

CESf,C,τ (l) = ⟨sim(l, ĉ1), . . . , sim(l, ĉn)⟩T

A graphical representation of the process is de-
picted in Figure 1.

If we use cosine similarity as sim, and use a
normalised f function, we can implement CES
as matrix multiplication, which can accelerate our
computation. First, observe that, under these re-
strictions, cosine similarity is equivalent to the dot
product between vectors. Let U = u1, . . . , uk
be the standard basis in k dimensions as a base
of L. We can look at the projection of U
in the C space, by using function ϕ such that
ϕ(ui) =

〈
ϕ(u1i ), . . . , ϕ(u

n
i )
〉T where ϕ(uji ) =

cosine(ui, cj) = ui · ĉj . We can now create a
n×k matrix M = ⟨ϕ(u1), . . . , ϕ(uk)⟩. Using this
matrix, we get CESf,C,τ (l) = M · l.

2.1 Generating Conceptual Spaces
To allow a conceptual representation in various lev-
els of abstraction, we have devised a method that,
given a hierarchical ontology, generates a concep-
tual space of desired granularity.

For the experiments described in this paper, we
chose Wikipedia category-directed graph as our
ontology, as it provides a constantly- updated, wide
and deep coverage of our knowledge, but any other
knowledge graph can be used instead. Since the
edges in the Wikipedia graph are not labeled, we
performed an additional step of assigning a score
to each edge, based on its similarity to its siblings,
which we named siblings score (see Appendix A).

A major strength of the hierarchical representa-
tion of concepts is its multiple levels of abstrac-
tion. For our purpose, that means that we can re-
quest a concept space with a given level of gran-
ularity. Given a concept graph G, we can define
d(c), the depth of each concept (node) as the length
of the shortest path from the root. We designate by
Ci = {c ∈ C|d(c) = i} as the set of all concepts
with a depth of exactly i. For example, MATHE-
MATICS and HEALTH are concepts from C1, and
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Latent Space

Conceptual Space

<latexit sha1_base64="ZKTeDPQOOArN+c8MJCVt+cJBMXc=">AAAB6nicdVDLSgMxFM34rPVVLbhxEyyCuBiSlql1V9SFy4r2Ae1QMmnahmYeJBmhDP0ENy4UcevGP/AzxJ1/Y6ZVUNEDFw7n3Ms993qR4Eoj9G7NzS8sLi1nVrKra+sbm7mt7YYKY0lZnYYilC2PKCZ4wOqaa8FakWTE9wRreqPT1G9eM6l4GFzpccRcnwwC3ueUaCNd0i7u5grIRmWndOxAZDsIV4opKToYoRLENpqiUN15OXvNPx/Wurm3Ti+ksc8CTQVRqo1RpN2ESM2pYJNsJ1YsInREBqxtaEB8ptxkGnUC943Sg/1Qmgo0nKrfJxLiKzX2PdPpEz1Uv71U/Mtrx7pfcRMeRLFmAZ0t6scC6hCmd8Mel4xqMTaEUMlNVkiHRBKqzXey5glfl8L/SaNo47KNL3ChegJmyIBdsAcOAAZHoArOQQ3UAQUDcAPuwL0lrFvrwXqctc5ZnzN58APW0wdYJ5DS</latexit>c1

<latexit sha1_base64="MqQRBW+dAgKayoxtYpUmZmXsV7c=">AAAB6nicdVDLSgMxFM34rPVVLbhxEyyCuBgyU6bWXVEXLivaB7RDyaSZNjTzIMkIZegnuHGhiFs3/oGfIe78GzOtgooeuHA4517uudeLOZMKoXdjbn5hcWk5t5JfXVvf2CxsbTdllAhCGyTikWh7WFLOQtpQTHHajgXFgcdpyxudZn7rmgrJovBKjWPqBngQMp8RrLR0SXp2r1BCJqo45WMHItNBVtXOiO1YCJWhZaIpSrWdl7PX4vNhvVd46/YjkgQ0VIRjKTsWipWbYqEY4XSS7yaSxpiM8IB2NA1xQKWbTqNO4L5W+tCPhK5Qwan6fSLFgZTjwNOdAVZD+dvLxL+8TqL8qpuyME4UDclskZ9wqCKY3Q37TFCi+FgTTATTWSEZYoGJ0t/J6yd8XQr/J03btCqmdWGVaidghhzYBXvgAFjgCNTAOaiDBiBgAG7AHbg3uHFrPBiPs9Y543OmCH7AePoAWauQ0w==</latexit>c2

<latexit sha1_base64="nfh/JTN0ukTH3q4AawWY8QvaCiM="></latexit> bc1 = f(⌧(c1))

<latexit sha1_base64="KSvpUzUaFuj8j3Ifrc9GT1a1ASQ="></latexit> bc2 = f(⌧(c2))

<latexit sha1_base64="LefjIgHmGDQ9SsDWbCngS5OI7Go=">AAAB6HicdVDLSgMxFM3UV62vqktBgkVwNWRqX7Oy6MZlC/YBdSiZNNPGZh4kGaEMXbpy40IRt36Fv6E7v0E/wrRVUNEDFw7n3Ms997oRZ1Ih9Gqk5uYXFpfSy5mV1bX1jezmVlOGsSC0QUIeiraLJeUsoA3FFKftSFDsu5y23OHJxG9dUiFZGJypUUQdH/cD5jGClZbqqpvNIRMV7UI5D5FZRJZdONTEtiuFUhFaJpoid/T8drX7VH+vdbMv572QxD4NFOFYyo6FIuUkWChGOB1nzmNJI0yGuE87mgbYp9JJpkHHcF8rPeiFQleg4FT9PpFgX8qR7+pOH6uB/O1NxL+8Tqy8ipOwIIoVDchskRdzqEI4uRr2mKBE8ZEmmAims0IywAITpX+T0U/4uhT+T5p50yqZVt3KVY/BDGmwA/bAAbBAGVTBKaiBBiCAgmtwC+6MC+PGuDceZq0p43NmG/yA8fgBipeR6A==</latexit>

t

<latexit sha1_base64="A5kP4LTsHiAhYEPw6e5DwfLcc+s=">AAAB7XicdVC7SgNBFJ2NrxijRi1thgQhNstuzLMQgjaWEcwDkjXMTmaTMbOzy8ysEJZ8gzYWitja+CHWdv6Nk0RBRQ9cOJxzL/fc64aMSmVZ70ZiaXlldS25ntpIb25tZ3Z2WzKIBCZNHLBAdFwkCaOcNBVVjHRCQZDvMtJ2x6czv31NhKQBv1CTkDg+GnLqUYyUllrs2Murw34mZ5lWqVasFKBlliy7VjzSpFarFsslaJvWHLl69ubyNS1fGv3MW28Q4MgnXGGGpOzaVqicGAlFMSPTVC+SJER4jIakqylHPpFOPE87hQdaGUAvELq4gnP1+0SMfCknvqs7faRG8rc3E//yupHyqk5MeRgpwvFikRcxqAI4Ox0OqCBYsYkmCAuqs0I8QgJhpR+U0k/4uhT+T1oF0y6b9rmdq5+ABZJgH2RBHtigAurgDDRAE2BwBW7BPXgwAuPOeDSeFq0J43NmD/yA8fwBlxySKQ==</latexit>

l = f(t)
<latexit sha1_base64="h1Sd4yaHcXVqE7wSHH3bgEK7vos=">AAAB/XicdVDJSgNBEK2JW4xbXG4ebAxCBBl6NOtFAl48RjALJCH0dDqmSc9Cd48Sh+CvePGgiFf/w5t/YydRUNEHBY/3qqiq54aCK43xu5WYm19YXEoup1ZW19Y30ptbdRVEkrIaDUQgmy5RTHCf1TTXgjVDyYjnCtZwh2cTv3HNpOKBf6lHIet45MrnfU6JNlI3vaO4lxVH7RveYwOiY9p1xofddAbbuJDD5TzCdh47pRNnRsrFInJsPEWmsgdTVLvpt3YvoJHHfE0FUarl4FB3YiI1p4KNU+1IsZDQIbliLUN94jHViafXj9GBUXqoH0hTvkZT9ftETDylRp5rOj2iB+q3NxH/8lqR7pc6MffDSDOfzhb1I4F0gCZRoB6XjGoxMoRQyc2tiA6IJFSbwFImhK9P0f+kfmw7BTt34WQqp7M0IAm7sA9ZcKAIFTiHKtSAwi3cwyM8WXfWg/VsvcxaE9bnzDb8gPX6AcM1lXo=</latexit>

sim(l, bc1)

<latexit sha1_base64="PwHF9JgMpHHWs6SEOzhYT4ZZxRk=">AAAB/3icdVDLSgNBEOz1bXytCl48OBiECGGZjdHoRQJePCoYIyQhzE4myZDZBzOzSlhz8Fe8eFDEq7/hzb9xsqugogUNRVU33V1eJLjSGL9bE5NT0zOzc/O5hcWl5RV7de1ShbGkrEZDEcorjygmeMBqmmvBriLJiO8JVvcGJ2O/fs2k4mFwoYcRa/mkF/Aup0QbqW1vKO4XRLF5wzusT3RC26XRbrPYtvPYwQdlfLSPsLOP3cM9NyNHlQpyHZwiX92CFGdt+63ZCWnss0BTQZRquDjSrYRIzalgo1wzViwidEB6rGFoQHymWkl6/wjtGKWDuqE0FWiUqt8nEuIrNfQ90+kT3Ve/vbH4l9eIdfewlfAgijULaLaoGwukQzQOA3W4ZFSLoSGESm5uRbRPJKHaRJYzIXx9iv4nlyXHPXDK526+epylAXOwCdtQABcqUIVTOIMaULiFe3iEJ+vOerCerZesdcL6nFmHH7BePwDsWpYX</latexit> si
m
(l
,
bc 2
)

<latexit sha1_base64="NsI1zHK3VCPuAIdQGTZkONM34v4=">AAAB7XicdVDLSgMxFM3UV61Vqy7dhBahboaM2teuWASXFe0D2rFk0kwbm3mQZIQy9Bt040IRt278ENfu/BvTVkFFD1w4nHMv99zrhJxJhdC7kVhYXFpeSa6m1tLrG5uZre2mDCJBaIMEPBBtB0vKmU8biilO26Gg2HM4bTmj2tRvXVMhWeBfqHFIbQ8PfOYygpWWmrWT8zzf72VyyETFI1QpQGQWkFU+tOakUipBy0Qz5KrZm8vXtHyp9zJv3X5AIo/6inAsZcdCobJjLBQjnE5S3UjSEJMRHtCOpj72qLTjWdoJ3NNKH7qB0OUrOFO/T8TYk3LsObrTw2oof3tT8S+vEym3bMfMDyNFfTJf5EYcqgBOT4d9JihRfKwJJoLprJAMscBE6Qel9BO+LoX/k+aBaRVN68zKVY/BHEmwC7IgDyxQAlVwCuqgAQi4ArfgHjwYgXFnPBpP89aE8TmzA37AeP4AH+mR2g==</latexit>

CES(l)

Figure 1: An outline of our methodology.

MATHEMATICAL TOOLS and PUBLIC HEALTH are
their direct children and are concepts from C2.

2.2 Selectively Refined Conceptual Spaces

One problem with fix-depth conceptual spaces is
the large growth in the number of nodes with the
increase in depth. For example, in our implemen-
tation, |C1| = 37, |C2| = 706 and |C3| = 3467.
Another problem arises in domain-specific tasks,
where high-granularity concepts are needed in spe-
cific subjects but not in others. Lastly, it is often
difficult to know ahead of time what is the required
granularity for the given task.

We have therefore developed an algorithm that,
given a contextual text T ′ ⊆ T of input texts and
the desired concept-space size, generates a con-
cept space of that size with granularity tailored to
T ′. The main idea is to refine categories that are
strongly associated with T ′, thus enlarging the dis-
tances between the textual objects, allowing for
more refined reasoning. We use the symbol C∗ to
indicate a concept space that is created this way.

The algorithm (1) starts with C1 as its initial con-
cept space. It then iterates until the desired size is
achieved. At each iteration, the contextual text T ′

is embedded into the current space using CES. The
concept with the largest weight after the projection
to CES is then selected for expansion. The intu-
ition is that this concept represents a main topic of
the text, and will therefore benefit the most from a
more refined representation. The algorithm selects
its best p% children for some p, judged by their
siblings score, and adds them to the current con-
ceptual space. In addition, the algorithm utilizes
a flag removeP to decide whether to remove the
expanded concept. We observed that retaining the
parent can often improve the quality of the model
interpretation.

If the embedding is used for a classification task,

Algorithm 1 Selective Refinement
Input:T ′, size, removeP
Output:C∗

C ← C1

while |C| < size do
emb← AV Gt∈T ′

(
CESf,C,τ (f(t))

)

ĉ← concept in C with max weight in emb
best ← p% of children(ĉ) with highest sib-
lings score
C ← C ∪ best
if removeP is True then
C ← C \ ĉ

end if
end while
return C

we can utilize the labels of the training examples
alongside their text. We assign to each concept
the set of examples for which it is the top concept.
The entropy of this set is then combined linearly
with the text-based weight described above to de-
termine its final value. As before, the node with
the maximal value is chosen for expansion. The
underlying intuition is that concepts representing
texts from different classes require refinement to
allow a better separation.

2.3 Mapping Concepts to Text

The function τ maps concepts to text. When the
concepts in the ontology have meaningful names,
such as in the case of Wikipedia categories, we
can just use τ that maps into these names. We
have also devised a more complex function, τ̂ , that
maps a concept to a concatenation of the concept
name with the names of its children2. Given a
concept c with name tc and children names tc1
and tc2 , τ̂(c) = ”tc such as tc1 and tc2”. This

2We take the two best children (the highest siblings score)
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approach has two advantages: It exploits the elab-
orated knowledge embedded in the ontology for
potentially more accurate mapping, and it produces
full sentences, which may be a better fit for f that
was trained on sentences.

3 Empirical Evaluation

It is not easy to evaluate an algorithm whose task
is to create an understandable representation that
matches the original incomprehensible embedding.
We performed a series of experiments, including
a human study, that show that our method in-
deed achieved its desired goal. For all the exper-
iments, we have used RoBERTa sentence embed-
ding model3 (Reimers and Gurevych, 2019; Liu
et al., 2019) as our f , unless otherwise specified.
All models used in this work were applied with
their default parameters. Whenever the concept
space C∗ was used, we set size = 768 to match
the size used by SRoBERTa, but we observed that
using much smaller values yielded almost as good
results. The default value for removeP is false.
For τ , the function that maps concepts to text, we
have just used the text of the concept name (with a
length of 4.25 words on average in G). 4

3.1 Qualitative Evaluation

We first show several examples of conceptual repre-
sentations created by CES to get some insight into
the way that our method works. We have applied
SRoBERTa to 3 sentences from 3 different recent
CNN articles to get 3 latent embedding vectors. We
have used the first 10 sentences of each article as
the contextual text T ′ for generating C∗.

Table 1 shows the conceptual embeddings gen-
erated by CES. We show only the 3 top concepts
with their associated depth. Observe that the con-
ceptual vectors are understandable and intuitively
capture the semantics of the input texts. Note that
the representations shown are not based on some
new embedding method, but reflect SRoBERTa’s
understanding of the input text. In Appendix E, we
study, using the same examples, the effect of the
concept-space granularity on the conceptual repre-
sentation, using a fixed-depth concept space instead
of C∗. Lastly, in Appendix F, we study, using the

3Model all-distilroberta-v1 from Hugging Face. For sim-
plicity we refer to it as SRoBERTa

4The total runtime for the experiments described here was
24 hours on 8 cores of Intel Xeon Gold 5220R CPU 2.20GHz.
The graph creation from the full Wikipedia dump of 2020 took
several days with a maximal memory allocation of 100GB.

same examples, the difference in the representation
of two additional models (SBERT and ST5).

3.2 Evaluation on Classification Tasks

To show that our representation matches the origi-
nal one generated by the LLM, we first show that
learning using the original embedding dimensions
as features and learning using the conceptual fea-
tures yield similar classifiers. Most works try to
show such similarity by comparing accuracy re-
sults. This method, however, is prone to errors.
Two classifiers might give us an accuracy of 80%,
while agreeing only on 60% of the cases. Instead,
we use a method that is used for rater agreement,
reporting two numbers: the raw agreement and
Cohen’s kappa coefficient (Cohen, 1960).

We use the following datasets (all in English):
AG News 5, Ohsumed and R8 6, Yahoo (Zhang
et al., 2015), BBC News (Greene and Cunning-
ham, 2006), DBpedia 14 (Zhang et al., 2015) and
20Newsgroup 7. We use only topical classifica-
tion datasets, as the concept space we use does not
include the necessary concepts needed for tasks
like sentiment analysis. If a dataset has more than
10,000 examples, we randomly sample 10,000. The
results are averaged over 10 folds. We use a ran-
dom forest (RF) learning algorithm with 100 trees
and a maximum depth of 5. The conceptual space
used by CES is C∗, using the training set as the
contextual text T ′.

Table 2 shows the agreement between a random
forest classifier trained on the LLM embedding and
a classifier trained on the conceptual embedding
generated by CES. For reference, we also show
the agreement between the LLM-based classifier
and a random classifier. We report raw agreement
and kappa coefficient (with standard deviations).
We can see that all the values are relatively high,
indicating high agreement between the LLM em-
bedding and CES’s embedding. Note that Kappa
can range from -1 to +1 with 0 indicating random
chance. For the sake of completeness, we also re-
port the accuracies of the two classifiers which are
proved to be quite similar.

We repeated the experiment using a KNN clas-
sifier (n=5) with cosine similarity. The results are
shown in Table 3. We can see much higher agree-

5Available online:http://groups.di.unipi.it/∼gulli/AG_cor
pus _of_news_articles.html

6Available online:https://www.kaggle.com/weipengfei/
ohr8r52 used for Ohusmed and R8 datasets

7taken from sklearn datasets python library

1707



sentence c1 c2 c3

This is now a very contagious virus VIRUSES (3) DISEASE OUTBREAKS
(3)

VIRUS TAXONOMY (4)

The search for life on Mars and ocean
worlds in our solar system

LIFE IN SPACE (2) HYPOTHETICAL LIFE
FORMS (2)

DISCOVERIES BY
ASTRONOMER (3)

The bias in these AI systems presents
a serious issue

ARTIFICIAL
INTELLIGENCE (3)

MACHINE LEARNING
(3)

COMPUTING AND
SOCIETY (3)

Table 1: Example of the model outputs on the sentences. The number in parenthesis is the depth of the concept.

ment between the LLM-based and CES-based clas-
sifiers.

We tested the sensitivity of our algorithm to the
values of the removeP = True and τ̂ parameters.
The results are shown in Appendices B and C. We
can see that both parameters have little effect on
performance.

Appendix D includes additional positive results
on the triplets dataset (Ein-Dor et al., 2018).

3.3 Evaluating Understandability

While these results look promising, they may not
be sufficient to indicate that CES indeed reflects the
semantics of the text according to the LLM. Con-
sider the following hypothetical algorithm. Let D
be the size of the LLM embedding space. The algo-
rithm selects D random English words and assigns
each to an arbitrary dimension. This hypotheti-
cal algorithm satisfies two requirements: Using it
for the classification tasks will always be in 100%
agreement with the original (as we merely renamed
the features), and its generated representation will
be understandable by humans, as we use words in
natural language. However, it is clear that it does
not convey to humans any knowledge regarding
the LLM representation. In the next subsections,
we describe a novel experimental design with hu-
mans and with other models. This design aims to
validate our assertion that CES produces compre-
hensible representations that genuinely capture the
semantics of the LLM embedding.

3.3.1 Evaluation By Humans

We have designed a human experiment with the
goal of testing the human understandability of the
latent representation by observing only its concep-
tual mapping. The experiment tests the agreement,
given a set of test examples, between two raters:

1. A classifier that was trained on a training set
using the LLM embeddings.

2. A human rater that does not have access to the
training set and does not have access to the test
text. The only data presented to the human is
the top 3 concepts of the CES representation
of the LLM embedding. 3 graduate students
were used for rating.

We claim that if there is a high agreement between
the two, then the conceptual representation indeed
reflects the meaning of the LLM embedding.

To allow classification by the human raters, out
of the 7 datasets described in the previous subsec-
tion, we chose the 4 that have meaningful names
for the classes. To make the classification task less
complex for the raters, we randomly sampled two
classes from each dataset, thus creating a binary
classification problem. For each binary dataset, we
set aside 20% of the examples for training a classi-
fier based on the LLM embedding, using the same
method and parameters as in the previous subsec-
tion. The resulting classifier was then applied to
the remaining 80% of the dataset.

Out of this test set, we sample 10 examples on
which the LLM-based classifier was right and 10
on which it was wrong8. This is the test set that
is presented to the human raters. Each test case is
represented by the 3 top concepts of the CES em-
bedding, after applying feature selection on the full
embedding to choose the top 20% concepts. As be-
fore, the conceptual space is C∗ with size = 768
and with the training set used as contextual text
T ′. The instruction to the human raters was: "A
document belongs to one of two classes. The doc-
ument is described by the following 3 key phrases
(topics): 1, 2, and 3. To which of the two classes
do you think the document belongs to?". The final
human classification of a test example was com-
puted by the majority voting of 3 raters. For the
LLM-based classification, we used two learning al-
gorithms. The first is Random Forest (RF) with the

8except for the Ohsumed dataset where only 7 wrong an-
swers were found
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dataset Rand/LLM
raw

agreement

CES/LLM
raw agreement

CES/LLM
kappa
coefficient

CES
accuracy

LLM
accuracy

accuracy
diff

20 Newsgroup 0.05 0.61 ± 0.02 0.58 ± 0.02 56.4 68.0 11.6

AG News 0.25 0.87 ± 0.01 0.83 ± 0.02 84.9 85.7 0.8

DBpedia 14 0.07 0.85 ± 0.01 0.84 ± 0.01 87.0 88.4 1.4

Ohsumed 0.10 0.69 ± 0.01 0.58 ± 0.01 40.4 41.5 1.1

Yahoo 0.10 0.63 ± 0.02 0.59 ± 0.02 57.9 61.5 3.6

R8 0.23 0.87 ± 0.01 0.76 ± 0.02 79.9 79.8 -0.1

BBC News 0.19 0.96 ± 0.01 0.95 ± 0.02 95.8 97.0 1.2

Table 2: Agreement (raw and kappa) between LLM- and CES-based RF classifiers.

dataset Rand/LLM
raw

agreement

CES/LLM
raw agreement

CES/LLM
kappa
coefficient

CES
accuracy

LLM
accuracy

accuracy
diff

20 Newsgroup 0.05 0.82 ± 0.02 0.81 ± 0.02 78.9 86.9 8.0

AG News 0.25 0.92 ± 0.01 0.90 ± 0.01 87.9 89.7 1.8

DBpedia 14 0.07 0.93 ± 0.01 0.92 ± 0.01 94.1 94.0 -0.1

Ohsumed 0.10 0.75 ± 0.02 0.73 ± 0.02 65.2 72.4 7.2

Yahoo 0.10 0.75 ± 0.01 0.73 ± 0.02 65.2 69.2 4.0

R8 0.23 0.92 ± 0.01 0.87 ± 0.02 89.4 93.6 4.2

BBC News 0.19 0.98 ± 0.01 0.97 ± 0.01 97.1 97.7 0.6

Table 3: Agreement (raw and kappa) between LLM- and CES-based KNN classifiers.

dataset raw agreement
with RF

raw agreement
with NC

AG News 0.85 0.80
BBC News 0.80 0.75
Ohsumed 0.65 0.82

Yahoo 0.65 0.75

Table 4: Human-RF and human-NC raw agreement.

same parameters as in Section 3.2. The second is
Nearest-Centroid Classifier (NC) which computes
the centroid of each class and returns the one clos-
est to the test case.

Table 4 shows the raw agreement between the
LLM-based and the human classification, for the
two learning algorithms. Kappa coefficient was not
computed as the test set is too small. The results
are encouraging as they show quite a high agree-
ment. Note that the learning algorithm had access
to the full training set, while the human could see
the conceptual representation of only the test case.
Indeed, we can see that the agreement with the less
sophisticated NC classifier is higher on average
than the agreement with the RF classifier.

3.3.2 Evaluation by Other Models
We repeated the experiments of the last subsection,
with the same test sets, but instead of using human
raters, we used a LLM rater. The LLM rater re-
ceives the top 3 concepts, just like the human raters,
and makes a decision by computing cosine similar-
ity between its embedding of each class name to
its embedding of the textual representation of the 3
concepts. The 3 LLMs used for rating are SBERT
(Reimers and Gurevych, 2019) 9, ST5 (Ni et al.,
2022) 10 and SRoBERTa. Note that the two uses
of SRoBERTa are quite different. The one used for
the original classification is based on a training set
and a learning algorithm, while the model used for
rating just computes similarity between the class
name and the 3 concepts.

An alternative approach to ours is to assign a
meaning to each dimension of the latent space. We
denote this approach by Dimension Meaning As-
signment (DMA). We have designed two competi-
tors that represent the DMA approach.

The first one, termed DMAwords, is based on a

9Model bert-base-nli-mean-tokens from Hugging Face
10Model sentence-t5-large from Hugging Face
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vocabulary of 10K frequent words 11. We represent
each word by our LLM, yielding 10K vectors of
size 768. We now map each dimension to the word
with the highest weight for it. We make sure that
the mapping is unique. The second one, which
we call DMAconcepts, is built in the same way, us-
ing, instead of words, the concepts in C3. Lastly,
DMAC∗

is added as an ablation experiment where
the transformation part of our method is turned off.
Table 5 shows the results expressed in raw agree-
ment. We can see that CES method performs better
than the alternatives (except for two test cases).

The previous two subsections (3.3.1 and 3.3.2)
have presented evidence supporting our fundamen-
tal claim that the conceptual representation gen-
erated by CES accurately captures the semantic
content of the input text based on the LLM model.

4 CES Application

4.1 Using CES for Comparing Models

One major feature of our methodology is that it
allows us to gain an understanding of the semantics
of trained models. This allows us when considering
alternative models, to compare their semantics, to
understand the differences between their views of
the world, and compare their potential knowledge
gaps. We demonstrate this by comparing the views
of three LLMs, SBERT, ST5, and SRoBERTa on
two example texts, by observing their conceptual
representations in C3 generated by CES.

Table 6 shows the top 3 concepts of the vector
generated by CES for the 3 LLMs given the text
"FC Barcelona". We can see that while SRoBERTa
and ST5 give high weight to the sport aspect of the
input text, SBERT does not.

To validate this observation, we compare, for
each of the 3 models, the cosine similarity in the
latent space between "FC Barcelona" and the sport-
related phrase "Miami Dolphin", to its similarity to
the city-related phrase "Politics in Spain".

The results support our observation. SBERT
embedding is more similar to the city aspect em-
bedding while the two others are more similar to
the sports text embedding.

In Table 7, for the input "Manhattan Project", we
can see that ST5 gives high weight to the military
project while SBERT gives high weight to concepts
related to New York and to theater. SRoBERTa
recognizes both aspects.

11https://www.mit.edu/ ecprice/wordlist.10000

4.2 Using CES for LLM Tracing

Another application of CES is analyzing the layers
of the LLM, in a similar way to the Logit lens
method (nostalgebraist, 2020). This can be very
useful for debugging the model. We show here an
example of tracing the changes of the embedding
through the layers of BERT and GPT212.

We create a representation for each layer by
calculating the average of the token embeddings
within that layer13. We then use CES to map these
vectors to the conceptual space. We then trace
the relative weight of each concept throughout the
layers to gain an understanding of the modeling
process.

In this case study, we analyze the text "Govern-
ment" using C3 conceptual space. We follow 6
concepts: the 3 top ones for the initial layer and
the 3 top ones for the final layer. Figure 2 shows
the changes in the weights of the concepts through-
out the modeling process. The y axis shows the
ranking of each concept.

The figure offers a clear visualization of the
changes in the relative weights of these concepts
across the different layers. Notably, in Figure 2a,
the concepts TRANSPORT, MEDICINE, and COR-
RUPTION, which had low rankings in the initial
layer, have significantly ascended to become the
top concepts in the final layer. A similar transition
using different concepts is found in Figure 2b.

5 Related Work

The problem of interpretability has received sig-
nificant attention in recent years. A large body of
research (Ribeiro et al., 2016a; Lundberg and Lee,
2017b; Yeh et al., 2020; Rajani et al., 2020; Ribeiro
et al., 2018; Ebrahimi et al., 2018; Ross et al., 2021;
Wu et al., 2021) is devoted to generate an explana-
tion for the decision of the model (mostly classi-
fication). Many methods utilize nearby examples
or counterfactuals to provide users with reasoning
behind the decision.

Several works set a goal, like ours, of under-
standing the model itself, rather than its decisions.
Most of these works attempt to assign some mean-
ing to the dimensions, either of the original latent
space or of a different space that the original one is
transformed to.

12Model bert-base-uncased and gpt2 from Hugging Face,
including the input initial embedding.

13Other methods, such as using the last token, can be easily
incorporated.
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Evaluation Model Method Yahoo BBC AG News Ohsumed

SBERT DMAwords 0.60 / 0.60 0.55 / 0.80 0.55 / 0.50 0.65 / 0.47
DMAconcepts 0.65 / 0.55 0.55 / 0.70 0.50 / 0.35 0.65 / 0.47
DMAC∗

0.60 / 0.50 0.60 / 0.75 0.65 / 0.70 0.59 / 0.42
CES 0.80 / 0.90 0.70 / 0.85 0.75 / 0.60 0.71 / 0.53

ST5 DMAwords 0.65 / 0.65 0.35 / 0.60 0.45 / 0.50 0.65 / 0.47
DMAconcepts 0.70 / 0.70 0.45 / 0.30 0.55 / 0.60 0.53 / 0.35
DMAC∗

0.60 / 0.60 0.65 / 0.40 0.55 / 0.60 0.53 / 0.35
CES 0.80 / 0.90 0.80 / 0.75 0.60 / 0.55 0.76 / 0.82

SRoBERTa DMAwords 0.50 / 0.70 0.35 / 0.40 0.55 / 0.60 0.59 / 0.41
DMAconcepts 0.60 / 0.40 0.35 / 0.50 0.60 / 0.45 0.71 / 0.53
DMAC∗

0.40 / 0.60 0.55 / 0.40 0.35 / 0.40 0.71 / 0.53
CES 0.85 / 0.85 0.75 / 0.80 0.70 / 0.65 0.82 / 0.76

Table 5: Evaluation by SRoBERTa-RF / SRoBERTa-NC.

Model c1 c2 c3 d(t,"Miami
Dolphins")

d(t,"politics in
Spain")

SBERT GOVERNMENT OF
SPAIN

SPANISH PEOPLE CATALAN CULTURE 0.42 0.57

SRoBERTa TEAMS SPORT BY CITY SAINTS 0.40 0.30

ST5 TEAM SPORTS SPORTS TEAMS PEOPLE IN SPORTS
BY ORGANIZATION

0.79 0.75

Table 6: t="FC Barcelona", FC Barcelona top 3 concepts using CES and validation by the LLM.

Model c1 c2 c3 d(t,"Nuclear
bomb")

d(t,"New
York")

SBERT CITY-STATES NEW YORK CITY
NIGHTLIFE

THEATRE BY CITY 0.49 0.74

SRoBERTa MILITARY
PROJECTS

NEW YORK CITY
NIGHTLIFE

SPACE PROGRAMS 0.36 0.34

ST5 NUCLEAR
TECHNOLOGY

NUCLEAR POWER NUCLEAR ENERGY 0.84 0.79

Table 7: t="Manhattan Project", Manhattan Project top 3 concepts using CES and validation by the LLM.

One relatively early approach tries to find or-
thogonal or close to orthogonal transformations of
the original embedding matrix (Dufter and Schütze,
2019; Park et al., 2017; Rothe and Schütze, 2016)
such that a set of words with high weight in a given
dimension are related and thus hopefully represent
some significant concept. The advantage of these
orthogonal methods is that they do not lose infor-
mation due to the orthogonality. Several of these
works (Arora et al., 2018; Murphy et al., 2012;
Subramanian et al., 2018; Ficsor and Berend, 2021;
Berend, 2020) transform the original embedding to
a sparse one to improve the interpretability of each
dimension. One limitation of these methods is their
reliance on an embedding/dictionary matrix.

Senel et al. (2018) assigns a specific concept to

each dimension. Note that our work is different
as it does not assume that each latent dimension
corresponds to a human-understandable concept.

Recent methods (Dar et al., 2022; nostalgebraist,
2020) assume access to the model’s internals, par-
ticularly the un-embedding matrix, to map a latent
vector to the token space.

Other works (Yun et al., 2021; Molino et al.,
2019) created new tools to help interpret the model.
Yun et al. (2021) uses dictionary learning to view
the transformer model as a linear superposition of
transformer factors. Molino et al. (2019) introduces
a tool for doing simple operations such as PCA and
t-SNE on embedding.

Probing methods try to interpret the model by
studying its internal components. Vig et al. (2020)
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Figure 2: BERT/GPT2 layers for ’Government’ text.

make changes to the input to find out what parts of
the model (specific attention heads) a bias comes
from. Tenney et al. (2019) use probing on BERT
model to find the role of each layer in the text in-
terpretation process. Bau et al. (2019) and Dalvi
et al. (2019) show how linguistic properties are dis-
tributed in the model and in specific neurons. Clark
et al. (2019) create an attention-based probing clas-
sifier to find out what information is captured by
each attention head of BERT. Lastly, Sommerauer
and Fokkens (2018) use supervised classifiers to
extract semantic features.

Some works (Mathew et al., 2020; An et al.,
2022; Bouraoui et al., 2022; Faruqui et al., 2015;
Senel et al., 2022; Şenel et al., 2021) tackle the
problem by training or retraining to create a new
interpretable model. Unlike those methods, our
approach focuses on understanding the original
models while preserving their performance, rather
than using interpretable models as substitutes.

6 Conclusion

In this work, we introduce a novel approach to
LLM interpretation that maps the latent embed-
ding space into a space of concepts that are well-
understood by humans and provide good coverage
of the human knowledge. We also present a method
for generating such a conceptual space with an on-
demand level of granularity.

We evaluate our method by an extensive set of ex-
periments including a novel method for evaluating
the correspondence of the conceptual embedding
to the meaning of the original embedding both by
humans and by other models. Finally, we showed
applications of our method for comparing models,
analyzing the layers of the model, and debugging.

7 Limitations

There are several limitations to the work presented
here:

1. For the tracing application (Section 4.2), we
used a rather limited (but common) approach
of averaging the embedding vectors of each
token.

2. Most of our experiments were performed us-
ing only the SRoBERTa model.

3. We did not include experiments using CES for
explanation and for debugging. Such applica-
tion will be performed in future work

4. Our evaluation was done using only
Wikipedia category graph as an ontology.
Using alternative knowledge graphs can be of
interest.

8 Ethics Statement

The primary objective of our method is to facil-
itate a deeper comprehension of the embedding
space. Our model serves as a tool to enhance un-
derstanding of the underlying model. By utilizing
the model, offensive mappings in the concept space
of CES can be revealed. However, it is important to
note that our model is strictly intended for the pur-
pose of assisting in understanding and debugging
problems in LLMs.
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A Siblings score

Let G = (V,E) be a knowledge graph, where V is
a set of concepts and E ⊆ V × V is a set of links
between concepts. Let Obj(c) be the set of objects
belonging to concept c. We say that c1 is-a c2
if Obj(c1) ⊆ Obj(c2). We define parents(c) =
{c′ ∈ V |(c′, c) ∈ E} and children(c) = {c′ ∈
V |(c, c′) ∈ E}. Given a node c and a parent node
p, we define siblings(c, p) = children(p)− {c}.

The main idea behind our method of detecting
is-a links is that a set of siblings connected to a
specific parent through is-a links should be similar.
We estimate the similarity between a node and its
siblings by the similarity between their set of par-
ents. Instead of using a binary decision, we chose
to assign a continuous value in [0, 1] that will be
used by our algorithms for generating conceptual
spaces.

We can now define the siblings score of an edge
(p, c) as:

AV ERAGEs∈siblings(c,p)
|parents(c)∩parents(s)|

|parents(c)|
We remove from each node λ% (35% in our
experiments) of its parent links with the lowest
siblings score.

B Testing the effect of the removeP
parameter

Our algorithm for generating on-demand concep-
tual spaces 2.2 retains a parent after expanding it
and adding its children. This has several advan-
tages, but we commonly prefer embedding spaces
that are orthogonal. In this section, we test the
performance of our method if we delete the par-
ent after expansion (controlled by the removeP
parameter). We ran the classification task as de-
scribed in Section 3.2 with the only difference that
the removeP parameter is set to True. The results
are shown in Table 8. We can see that the differ-
ences are insignificant.
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dataset raw
agree-
ment

kappa
coef

raw
agree-
ment
removeP
True

kappa
coef
removeP
True

20 News-
group

0.61 ±
0.02

0.58 ±
0.02

0.62 ±
0.02

0.59 ±
0.02

AG
News

0.87 ±
0.01

0.83 ±
0.02

0.87 ±
0.01

0.83 ±
0.02

DBpedia
14

0.85 ±
0.01

0.84 ±
0.01

0.87 ±
0.01

0.86 ±
0.01

Ohsumed 0.69 ±
0.01

0.58 ±
0.01

0.71 ±
0.02

0.59 ±
0.02

Yahoo 0.63 ±
0.02

0.59 ±
0.02

0.64 ±
0.01

0.60 ±
0.01

R8 0.87 ±
0.01

0.76 ±
0.02

0.88 ±
0.01

0.76 ±
0.02

BBC
News

0.96 ±
0.01

0.95 ±
0.02

0.96 ±
0.02

0.95 ±
0.02

Table 8: LLM- and CES-based classifiers’ agreement.
Using removeP as True.

dataset raw
agree-
ment

kappa
coef

raw
agree-
ment τ̂

kappa
coef τ̂

20 News-
group

0.61 ±
0.02

0.58 ±
0.02

0.62 ±
0.01

0.59 ±
0.02

AG
News

0.87 ±
0.01

0.83 ±
0.02

0.87 ±
0.01

0.83 ±
0.01

DBpedia
14

0.85 ±
0.01

0.84 ±
0.01

0.84 ±
0.01

0.83 ±
0.02

Ohsumed 0.69 ±
0.01

0.58 ±
0.01

0.69 ±
0.01

0.58 ±
0.02

Yahoo 0.63 ±
0.02

0.59 ±
0.02

0.64 ±
0.01

0.59 ±
0.02

R8 0.87 ±
0.01

0.76 ±
0.02

0.88 ±
0.01

0.77 ±
0.02

BBC
News

0.96 ±
0.01

0.95 ±
0.02

0.96 ±
0.01

0.95 ±
0.02

Table 9: LLM- and CES-based classifiers’ agreement.
Using τ̂ function.

C Testing the effect of the τ function

One of the major components of our method is the
τ function that maps a concept into a text object
that is then converted to a latent vector. For the
experiments described in this work, we have used τ
that just outputs the concept names. In this section,
we repeat the classification tests with τ̂ (see Section
2.3). Table 9 shows the results. We can see that the
differences are insignificant.

models raw
agree-
ment

kappa
coef

True labels and LLM labels 0.726 0.452
True labels and C3 labels 0.692 0.384
LLM labels and C3 labels 0.820 0.640

Table 10: Raw agreement and kappa coefficient between
SRoBERTa LLM labels, True labels and CES using C3

labels on Wikipedia triplet dataset.

D Evaluation on a Similarity Task

In this section, we use the conceptual representa-
tion in the context of an algorithm that estimates
semantic similarity between sentences by measur-
ing cosine similarity between their embeddings.
Specifically, we evaluate the agreement between us-
ing the latent embedding generated by SRoBERTa
and using the conceptual embedding generated by
CES with C3 (We cannot use C∗ since we do not
have any contextual text to be used as T ′).

The dataset used is the triplet test that was gener-
ated from Wikipedia articles (Ein-Dor et al., 2018).
Each test consists of three sentences, all from the
same Wikipedia article. Two sentences are from
the same section and the third is from a different
section. A sentence is labeled as more similar to
the one from the same section than to the one from
the other section. We used a subset of 1000 triplets
randomly sampled from the full dataset.

The results are shown in Table 10. We can see
that CES embedding and SRoBERTa embedding
have a high raw agreement and Kappa coefficient,
larger than their agreement with the true label.

E A Qualitative Evaluation using
Fixed-Depth Concept Spaces

We ran the same qualitative evaluation, as shown
in Section 3.1, on the sentences taken from CNN.
Instead of using the concept space C∗, we used
fixed-depth spaces, C1, C2, and C3. Our goal is
to study the effect of the granularity of the concept
space on the way the latent vectors are represented.

The top five concepts of each input sentence for
each concept space are presented in Tables 11, 12
and 13. For comparison, we also include the top
concepts of the C∗ concept space. We can see
the refinement of the top concepts as the depth
grows. Using C1, the conceptual representation
gives a very general and non-specific account of the
text’s meaning. Using the more refined C2 and C3
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concept spaces, we can gain a deeper understanding
of the input text. We can also notice that C∗ has an
advantage over the fixed-depth alternatives as it can
use more refined concepts when needed without
compromising the size.

F A Qualitative Evaluation using
Different Models

We ran the same qualitative evaluation, as shown
in Section 3.1, on the sentences taken from CNN
on all three models: SBERT, ST5, and SRoBERTa.
Our goal is to study the difference between the
models in a qualitative test.

The top five concepts of each input sentence for
each model are presented in Tables 14, 15 and 16.
It seems that all of the models "understood" the
texts similarly. In Table 16 we can see a difference
between SBERT and the other models. It seems
that SBERT gave more weight to the word bias
while the other models gave more weight to the
word AI from the input sentence.
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c C1 C2 C3 C∗

c1 MASS MEDIA ORGANIZATIONS
ASSOCIATED WITH THE
COVID-19 PANDEMIC

VIRUSES VIRUSES (3)

c2 PEOPLE GLOBAL HEALTH INFECTIOUS DISEASES DISEASE OUTBREAKS
(3)

c3 HEALTH HEALTH DISASTERS DISEASE OUTBREAKS VIRUS TAXONOMY (4)

c4 CULTURE REPRODUCTION VACCINATION COVID-19 PANDEMIC
IN EUROPE (5)

c5 WORLD EVOLUTION VIRAL MARKETING COVID-19 PANDEMIC
IN ASIA (5)

Table 11: An example of the top concepts of the model’s output for the input "This is now a very contagious
virus", taken from CNN.

c C1 C2 C3 C∗

c1 LIFE LIFE IN SPACE EXTRATERRESTRIAL
LIFE

LIFE IN SPACE (2)

c2 WORLD HYPOTHETICAL LIFE
FORMS

MESOZOIC LIFE HYPOTHETICAL LIFE
FORMS (2)

c3 SCIENCE AND
TECHNOLOGY

ORIGIN OF LIFE PALEOZOIC LIFE DISCOVERIES BY
ASTRONOMER (3)

c4 GEOGRAPHY COSMOLOGY EXPLORERS ARTIFICIAL LIFE (2)

c5 HUMANITIES FICTIONAL LIFE FORMS POLAR EXPLORATION ASTRONOMICAL
CATALOGUES (2)

Table 12: An example of the top concepts of the model’s output for the input "The search for life on Mars and
ocean worlds in our solar system", taken from CNN.

c C1 C2 C3 C∗

c1 CONCEPTS INTELLECTUAL
COMPETITIONS

ARTIFICIAL
INTELLIGENCE

ARTIFICIAL
INTELLIGENCE (3)

c2 POLICY LEARNING COLLECTIVE
INTELLIGENCE

MACHINE LEARNING
(3)

c3 ETHICS ISSUES IN ETHICS COMPUTER ETHICS COMPUTING AND
SOCIETY (3)

c4 POLITICS SOCIAL SYSTEMS MACHINE LEARNING INTELLECTUAL
COMPETITIONS (2)

c5 SCIENCE AND
TECHNOLOGY

CONCEPTUAL SYSTEMS CLASSIFICATION
SYSTEMS

INFORMATION SYSTEMS
(3)

Table 13: An example of the top concepts of the model’s output for the input "The bias in these AI systems
presents a serious issue", taken from CNN.
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c SBERT ST5 SRoBERTa

c1 DISEASE OUTBREAKS
(3)

VIRUSES (3) VIRUSES (3)

c2 DISASTERS (2) COVID-19 PANDEMIC
IN EUROPE (5)

DISEASE OUTBREAKS
(3)

c3 DOOMSDAY SCENARIOS
(3)

COVID-19 PANDEMIC
IN ASIA (5)

VIRUS TAXONOMY (4)

c4 HAZARDS (3) DISEASE OUTBREAKS
(3)

COVID-19 PANDEMIC
IN EUROPE (5)

c5 CRIMINAL PROCEDURE
(4)

PUBLIC HEALTH
EMERGENCY OF
INTERNATIONAL

CONCERN (3)

COVID-19 PANDEMIC
IN ASIA (5)

Table 14: An example of the top concepts of the model’s output for the input "This is now a very contagious
virus", taken from CNN. The number in parenthesis is the depth of the concept in the concept graph.

c SBERT ST5 SRoBERTa

c1 ATMOSPHERE OF
EARTH (3)

LIFE IN SPACE (2) LIFE IN SPACE (2)

c2 OUTER SPACE (3) DISCOVERIES BY
ASTRONOMER (3)

HYPOTHETICAL LIFE
FORMS (2)

c3 SOLAR SYSTEM IN
FICTION (4)

HUMAN SPACEFLIGHT
(3)

DISCOVERIES BY
ASTRONOMER (3)

c4 DISCOVERIES BY
ASTRONOMER (3)

ASTROBIOLOGY (3) ARTIFICIAL LIFE (2)

c5 ASTRONOMICAL
LOCATIONS IN FICTION

(4)

ASTRONOMICAL
OBJECTS (3)

ASTRONOMICAL
CATALOGUES (4)

Table 15: An example of the top concepts of the model’s output for the input "The search for life on Mars and
ocean worlds in our solar system", taken from CNN. The number in parenthesis is the depth of the concept in the
concept graph.

c SBERT ST5 SRoBERTa

c1 CONFLICTS (2) ARTIFICIAL NEURAL
NETWORKS (4)

ARTIFICIAL
INTELLIGENCE (3)

c2 SEXUALITY AND
GENDER-RELATED

PREJUDICES (3)

MACHINE LEARNING
(3)

MACHINE LEARNING
(3)

c3 GLOBAL CONFLICTS (3) ARTIFICIAL
INTELLIGENCE (3)

COMPUTING AND
SOCIETY (3)

c4 POLITICAL
CORRUPTION (2)

SOCIAL SYSTEMS (2) INTELLECTUAL
COMPETITIONS (2)

c5 ANTI-ISLAM
SENTIMENT (4)

ARTIFICIAL LIFE (2) INFORMATION SYSTEMS
(3)

Table 16: An example of the top concepts of the model’s output for the input "The bias in these AI systems
presents a serious issue", taken from CNN. The number in parenthesis is the depth of the concept in the concept
graph.
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