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Abstract

Recent Language Models (LMs) have shown
impressive capabilities in generating texts with
the knowledge internalized in parameters. Yet,
LMs often generate the factually incorrect re-
sponses to the given queries, since their knowl-
edge may be inaccurate, incomplete, and out-
dated. To address this problem, previous works
propose to augment LMs with the knowledge
retrieved from an external knowledge source.
However, such approaches often show subop-
timal text generation performance due to two
reasons: 1) the model may fail to retrieve the
knowledge relevant to the given query, or 2) the
model may not faithfully reflect the retrieved
knowledge in the generated text. To overcome
these, we propose to verify the output and the
knowledge of the knowledge-augmented LMs
with a separate verifier, which is a small LM
that is trained to detect those two types of errors
through instruction-finetuning. Then, when the
verifier recognizes an error, we can rectify it
by either retrieving new knowledge or gener-
ating new text. Further, we use an ensemble
of the outputs from different instructions with
a single verifier to enhance the reliability of
the verification processes. We validate the ef-
fectiveness of the proposed verification steps
on multiple question answering benchmarks,
whose results show that the proposed verifier
effectively identifies retrieval and generation
errors, allowing LMs to provide more factu-
ally correct outputs. Our code is available at
https://github.com/JinheonBaek/KALMV.

1 Introduction

Recent Language Models (LMs) (Brown et al.,
2020; Chowdhery et al., 2022; Chung et al., 2022),
which have a large number of parameters and are
further instruction-finetuned on massive datasets,
have achieved remarkable successes on various lan-
guage tasks. For example, they are able to perform
closed-book zero-shot question answering, which
aims to provide an answer to a user’s query without

updating the LM parameters while using only the
knowledge internalized in their parameters. How-
ever, while the generated answers from LMs look
plausible and sound, they are often factually incor-
rect, which is a problem widely known as halluci-
nation (Rohrbach et al., 2018; Bang et al., 2023;
Zheng et al., 2023). Hallucination is a critical prob-
lem when deploying LMs, since it poses a risk of
spreading misinformation, potentially misleading
users who rely on the information.

To mitigate hallucination of LMs, recent works
have proposed to augment LMs with the knowledge
retrieved from external knowledge sources (e.g.,
Wikipedia and Wikidata) (Lazaridou et al., 2022;
Mallen et al., 2023; Baek et al., 2023). Moreover,
some other works have proposed to check the factu-
ality of generated texts and refine them by using the
knowledge in LMs themselves or from the external
knowledge sources (Madaan et al., 2023; Gao et al.,
2023; Jiang et al., 2023; Gou et al., 2023; Xu et al.,
2023; Feng et al., 2023). However, while the afore-
mentioned knowledge-augmentation strategies are
effective in reducing hallucinations, we find that
there still exists a couple of challenges: 1) the re-
trieved knowledge may not be relevant to the given
question from the user, and 2) the generated answer
may not be grounded in the retrieved knowledge,
as illustrated in Figure 1 and shown in Figure 2.

In this work, we aim to overcome these subop-
timalities of knowledge-augmented LMs. In other
words, our goal is to verify whether the retrieved
knowledge used for augmenting LMs is related to
generating the answers for the given questions and
whether the generated answers include the relevant
parts of the retrieved knowledge. To this end, we
propose to train a small, tailorable LM that is able
to verify the aforementioned two failure cases of
knowledge-augmented LMs in retrieval and gen-
eration steps. More specifically, we first automati-
cally construct the training labels by categorizing
the failure of knowledge-augmented LMs into two
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Question: Where was Michael F. Phelps born?

Generated Answer:

Michael F. Phelps is a swimmer and was 

married to Nicole Johnson on Jun 13, 2016.

Knowledge

Base (KB)

(Michael F. Phelps, occupation, Swimmer) 

(Michael F. Phelps, spouse, Nicole Johnson)

Retrieval Error

RetrievalInput Prompt: Below are facts that might be

meaningful to answer the given question. 

Question: Where was Michael F. Phelps born?

Answer:

Generated Answer:

Michael F. Phelps was born on July 16, 1997, 

in Los Angeles, California, United States

(Michael F. Phelps, place of birth, Baltimore) 

(Michael F. Phelps, date of birth, Jun 30, 1985)

Grounding Error

Input Prompt: Below are facts that might be 

meaningful to answer the given question. 

Question: Where was Michael F. Phelps born?

Answer:
Knowledge

Base (KB)

Retrieval

KALMV (Ours)

Question

Retrieved Knowledge

Generated Answer

Retrieval Error

Grounding Error

Correct Answer Return the generated answer

Verification Action

Refuse / Do generation again

Refuse / Do retrieval again

Figure 1: Existing knowledge-augmented language models first retrieve the relevant knowledge to the given query from the
external knowledge base and then augment the LMs with the retrieved knowledge to generate the factually correct responses.
However, there are two types of common errors: 1) the retrieved knowledge might be irrelevant to the given query (retrieval
error); 2) the generated answer might not be grounded in the retrieved knowledge (grounding error). Our proposed KALMV can
detect those two types of errors in knowledge retrieval and grounding, and also iteratively rectify them, reducing hallucinations.

cases: retrieval error and generation error, based
on the triplet of the input question, retrieved knowl-
edge, and generated answer. Then, we instruction-
finetune the LM with pairs of a certain verification
instruction and its associated label, during verifier
training. At the inference step, we validate the
generated texts through our verifier, to filter out
potentially incorrect generations due to retrieval
or generation failures, to prevent the generation of
texts with inaccurate information. Note that there
exists a concurrent work (Peng et al., 2023) that
proposes to check whether the generated answers
from LMs are grounded in the knowledge provided
to LMs, by using API calls to proprietary LLMs
or a heuristic measure (F1). However, this work
clearly differs from our method, since we further
verify the relevance of the retrieved knowledge
in addition to the answer groundedness, through
instruction-finetuning of LMs.

In addition, we further propose refining the out-
put from knowledge-augmented LMs if our ver-
ifier identifies the error in either the knowledge
retrieval or the knowledge reflection. Specifically,
we repeat the answer generation process until the
model retrieves the knowledge relevant to the given
question and incorporates the correctly retrieved
knowledge into the generated answer, based on
the verifier outcome. Also, since detecting errors
of knowledge-augmented LMs with a single in-
struction given to the verifier might be inaccurate,
we further construct an ensemble over multiple
outputs from different instructions with a sin-

gle verifier. Notably, one extra advantage of our
verifier is that it is a plug-and-play module that
works with any public or proprietary LMs, since
we only require input-output pairs of LMs for verifi-
cation without any architectural changes. We refer
to our proposed method as Knowledge-Augmented
Language Model Verification (KALMV).

We experimentally validate the effectiveness of
our KALMV on two different Question Answering
(QA) tasks, namely open-domain QA and knowl-
edge graph QA. The experimental results show
that our KALMV can effectively verify the failure
cases of knowledge-augmented LMs in knowledge
retrieval and answer generation steps, contributing
to significant reduction of the hallucination. Also,
further analyses demonstrate the effectiveness of
our error-rectifying and ensemble strategies.

Our findings and contributions are threefolds:
• We point out the underexplored challenges

of knowledge-augmented LMs, which are re-
trieval of irrelevant knowledge and unfaithful
knowledge grounding.

• We introduce a novel verifier that identifies
whether the retrieved knowledge is relevant to
the question and reflected in the answer, and
further present useful strategies for rectifying
incorrect answers as well as improving the
effectiveness of the verifier via ensembling.

• We validate our KALMV on open-domain and
knowledge graph question answering tasks,
demonstrating its effectiveness in verifying
the errors of knowledge-augmented LMs.
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2 Background and Related Work
Language Models Pre-trained Language Models
(LMs) (Devlin et al., 2019; Liu et al., 2019; Radford
et al., 2018; Raffel et al., 2020), which are trained
on a large corpus with self-supervised learning,
show impressive performances across diverse natu-
ral language tasks and are used as the base architec-
ture. Recently, large language models (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al., 2023)
having billions of parameters are able to respond
to a user’s query without any model training on the
target task. On the other hand, finetuning LMs on
a massive collection of natural language datasets
phrased as instructions (Wei et al., 2022; Chung
et al., 2022; Sanh et al., 2022), which is known
as instruction finetuning, also enables the LMs to
attain reasonable zero-shot learning abilities with-
out focused training on the target task. However,
while large and instruction-finetuned LMs show
performance improvement on factual tasks (e.g.,
question answering), they are still suboptimal since
they cannot memorize all the world knowledge and
may contain distorted facts. To overcome this chal-
lenge, recent studies propose augmenting LMs with
external knowledge, which we discuss below.

Knowledge-Augmented LMs Early works aim
to incorporate knowledge from external knowledge
sources (e.g., Wikipedia) into LMs, in order to en-
hance their performances on tasks that require fac-
tual knowledge, such as question answering. While
such previous knowledge-augmented LMs (Zhang
et al., 2019; Guu et al., 2020; Yamada et al., 2020;
Qin et al., 2021; Borgeaud et al., 2022) show per-
formance improvements on knowledge-intensive
tasks, in order to integrate the external knowledge,
they utilize the specific pre-training but also require
changing the model architecture, which are not eas-
ily generalizable across different LMs and tasks.
Similarly, while some recent works (Lewis et al.,
2020; Kang et al., 2022; Li et al., 2022; Izacard
et al., 2022) propose augmenting LMs with exter-
nal knowledge during finetuning, they also require
specific training on each target task and dataset, and
often require architecture modifications. However,
training the task- and data-specific LMs with model
updates are computationally prohibitive as the size
of LMs increases exponentially. Also, previous ap-
proaches involving architecture changes are not ap-
plicable to black-box LMs (e.g., ChatGPT), which
are accessible only through API. Considering these
challenges, recent methods (Lazaridou et al., 2022;

Trivedi et al., 2022; Baek et al., 2023; Shi et al.,
2023; Peng et al., 2023) use the large or instruction-
finetuned LMs to incorporate the external knowl-
edge, which allows us to design only the input text
to LMs without requiring additional training thanks
to their strong generalization capabilities. Follow-
ing this trend, we focus on knowledge-augmented
instruction-finetuned LMs, while exploring their
two underrepresented challenges: incorrect knowl-
edge retrieval and unfaithful knowledge reflection.

Knowledge-Augmented Fact Checking Similar
to the motivation of the aforementioned knowledge-
augmented LMs, recent works (Mallen et al., 2023;
Gao et al., 2023; Peng et al., 2023; Jiang et al.,
2023; Xu et al., 2023) propose to check the factu-
ality of the answers generated by LMs using the
external knowledge. Typically, these approaches
generate the answer in response to the user’s query
with LMs, and then identify whether the generated
answer aligns with the retrieved knowledge. How-
ever, there are significant differences between our
work and the existing methods. First of all, they
assume that the retrieved knowledge is pertinent,
which is yet unrelated and unhelpful sometimes,
making the model generate incorrect predictions.
In contrast, our proposed verifier can recognize the
relevance of the retrieved knowledge before incor-
porating it into the LMs. Second, previous works
suppose that the retrieved knowledge used for fact-
checking is accurately reflected in the generated an-
swer; however, LMs often ignore the given knowl-
edge and hallucinate the answer, whereas we can
detect and rectify such the grounding error. Lastly,
unlike most fact-checking methods that always pro-
vide the answer with its refinement, our method can
further decline to provide answers unless they are
validated as correct. These differences highlight
the novel contributions of our verification approach,
compared against previous fact-checking methods.

3 Method
We now formally describe knowledge-augmented
LMs, and present our method, Knowledge Aug-
mented Language Model Verification (KALMV).

3.1 Knowledge-Augmented Language Models
We begin with the explanation of language models.

Language Models In our problem setup, the goal
of Language Models (LMs) is to generate a factu-
ally correct answer in response to an input query
from a user, which is formally defined as follows:
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ŷ = LM(x), where x and ŷ are the input and out-
put pair, each of which consists of a sequence of
tokens, and LM is the language model. We assume
that LMs are already trained on massive instruction-
finetuning datasets, which are capable of perform-
ing diverse tasks (e.g., question answering) (Wei
et al., 2022; Chung et al., 2022), and also not fur-
ther trainable since we sometimes cannot update
the parameters of LMs due to their huge sizes or
inaccessibility (OpenAI, 2023; Anil et al., 2023).

Note that, while previous works (Petroni et al.,
2019; Roberts et al., 2020) show that LMs are capa-
ble of memorizing the knowledge seen during train-
ing, such naive LMs encounter several challenges
when dealing with factual questions. In particular,
LMs cannot memorize all the factual knowledge
due to their limited number of parameters. Also,
some knowledge is changed and updated over time;
however, LMs remain static unless they are further
trained while training them is also very expensive.

Knowledge-Augmented LMs In order to tackle
the aforementioned challenges of naive LMs, some
works (Lazaridou et al., 2022; Mallen et al., 2023;
Baek et al., 2023) propose to augment LMs with
the knowledge retrieved from the external knowl-
edge base, called knowledge-augmented LMs. For-
mally, let K be the external knowledge base, which
could be an encyclopedia (Wikipedia) consisting
of millions of documents or a knowledge graph
(Wikidata) consisting of billions of facts. Then,
we first retrieve the pertinent knowledge k from
the knowledge base K based on its relevance score
to the input query x, by using the retriever model
denoted as follows: k = Retriever(x,K) where
k ∈ K. After that, the retrieved knowledge k is in-
corporated into the input of the LM along with the
input query, as follows: ŷ = LM(x,k). This knowl-
edge augmentation strategy brings impressive per-
formance improvements on factual language tasks
by reducing the hallucination issue of LMs.

However, despite the enormous successes of the
aforementioned knowledge-augmented LMs, there
exist remaining issues that have largely underex-
plored. First, the knowledge retrieved to augment
LMs might be irrelevant to answer the given ques-
tion, since the retrieval is not always accurate in
real-world scenarios. Second, even if the retrieved
knowledge is useful, LMs sometimes reflect the
irrelevant part of the retrieved knowledge, or might
completely ignore the knowledge and generate the
answer based on their incorrect knowledge. In par-

ticular, as shown in Figure 2, there are significant
occurrences of retrieval and grounding errors.

3.2 KALMV: Learning to Verify
Knowledge-Augmented Language Models

To overcome the challenges of existing knowledge-
augmented LMs, we propose a novel verification
method that identifies not only the relevance of the
retrieved knowledge to the input question but also
the reflection of the knowledge in the generated an-
swer, which we refer to as Knowledge-Augmented
Language Model Verification (KALMV).

Verification of Retrieved Knowledge Given the
triplet of the input query, the retrieved knowledge,
and the generated answer (x,k, ŷ), we aim to
verify whether the retrieved knowledge k is rel-
evant to the input query x. Since recent LMs (Wei
et al., 2022; Chung et al., 2022) can contextual-
ize multiple sentences and understand their un-
derlying relationships, we use such a small and
instruction-finetuned LM to identify the related-
ness between the input query and the knowledge.
To be specific, we prompt the verifier LM to deter-
mine the relevance based on the verification instruc-
tion i as well as the input, knowledge, and gener-
ated answer triplet (x,k, ŷ), formalized as follows:
ok = Verifierk(i,x,k, ŷ), where Verifierk de-
notes the LM for retrieved knowledge verification,
and ok denotes its output. Note that we formulate
the verification task as a multiple-choice question-
answering task, i.e., the verifier should produce
either "A" for incorrect retrieval or "B" for correct.

Verification of Generated Answer Our next ob-
jective is to identify whether the generated answer
from LM is grounded in the retrieved knowledge.
To achieve this, similar to the retrieved knowledge
verification process explained in the above para-
graph, we use the separate, small-size, instruction-
finetuned LM for answer verification. Formally,
given the input query, retrieved knowledge, and
generated answer triplet (x,k, ŷ), as well as the in-
struction i describing the task of generated answer
verification, the verifier LM produces the output to-
ken, namely "A" or "B" where "A" represents that
the retrieved knowledge is not reflected in the gen-
erated answer and "B" represents the vice versa, for-
malized as follows: oy = Verifiery(i,x,k, ŷ).

Thus far, we propose to detect the errors of
knowledge-augmented LMs in knowledge retrieval
and answer generation by using distinct LM-based
verifiers. However, it is inefficient to perform two
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individual verification processes, since both verifi-
cation formulations are identical. Also, the knowl-
edge retrieval and answer generation processes are
sequential, which means that verifying the gener-
ated answer is unnecessary if the retrieved knowl-
edge is irrelevant. Therefore, we further combine
two verification procedures into one by changing
the task instruction accordingly with the single ver-
ification LM (Verifier). Specifically, Verifier
produces one among the following three options: A.
the retrieved knowledge is not helpful to answer the
question; B. the generated answer is not grounded
in the retrieved knowledge; C. all the other cases.

Instruction-Finetuning for Verifier While re-
cent instruction-finetuned LMs might be capable of
performing the proposed verification task, it may
be more beneficial to tailor the LM to the verifica-
tion task through additional instruction-finetuning.
To perform this, we require the following input-
output pairs: {(x,k,y), o}, where the input con-
sists of the given question, retrieved knowledge,
and true answer, and the output is the verification la-
bel which we automatically generate. In particular,
we first examine whether the retrieved knowledge
includes the correct answer, y ⊆ k, as annotated in
the training data, and then label it as a retrieval error
when the knowledge does not include the correct
answer. Similarly, if the retrieval is correct yet the
generated answer ŷ from LM(x,k) does not have
overlapping tokens with the retrieved knowledge k,
we label it as the generation error. Finally, for all
cases where the generated answer is correct, we la-
bel it as correct1. Then, by using the inputs phrased
as instructions and their corresponding labels, we
instruction-finetune the proposed Verifier.

Ensemble Verification To identify retrieval and
generation errors in knowledge-augmented LMs,
we forward the instruction along with the query,
knowledge, and generated answer to the verifier.
However, it might be inaccurate to determine the
errors only with a single instruction, since recent
LMs are sensitive even to minor changes in the
input prompt (Zhao et al., 2021; Lu et al., 2022;
Zhou et al., 2022) and also our small-size verifier
LM might not fully understand the given input con-
text. Therefore, we design various instructions,
forward them to our single verifier, and ensemble
the multiple outputs from the verifier with average.

1There might be more sophisticated techniques to automat-
ically assign verifier labels, which we leave as future work.

3.3 Strategies for Rectifying Errors of
Knowledge-Augmented Language Models

Our verification method provides a distinct advan-
tage in contrast to existing knowledge-augmented
LMs and knowledge-augmented fact-checking ap-
proaches. That is, existing approaches always pro-
vide the answers to users even if they are not re-
liable; however, our method can withhold the an-
swers if errors are detected by the proposed verifier,
which can enhance the reliability and trustworthi-
ness of LM-based systems. However, instead of
simply refraining from responding to user queries,
it is more worthwhile to rectify errors in the knowl-
edge retrieval and answer generation stages. Thus,
we further propose simple yet effective strategies,
iteratively correcting errors detected by our verifier.

Rectifying Errors in Knowledge Retrieval The
retrieved knowledge from the external knowledge
base might be irrelevant to answer the question due
to the retrieval error, which may mislead LMs to
generate an incorrect answer. To overcome this is-
sue, we retrieve the new knowledge iteratively until
our verifier confirms that the retrieved knowledge
is related to answering the question, for a certain
number of times (e.g., ten times). Specifically, the
knowledge with the highest relevance score to the
question is retrieved, while excluding any knowl-
edge that has been used in the previous iterations.

Rectifying Errors in Answer Generation Even
though the retrieved knowledge is pertinent to the
given question, LMs sometimes ignore the knowl-
edge augmented to them and then generate the
answer based on their inaccurate knowledge. To
tackle this issue, similar to what we previously did
on knowledge retrieval, we iteratively generate the
answer until the answer is confirmed by the verifier,
for the specific number of times. Note that, in order
to generate the answer differently across different
trials, we leverage the top-k sampling (Fan et al.,
2018) that enables stochastic generation processes.

4 Experimental Setups
In this section, we describe the datasets, models,
evaluation metrics, and implementation details. We
provide the additional details in Appendix A.

4.1 Tasks and Datasets
We evaluate our Knowledge-Augmented Language
Model Verification (KALMV) on factual Open-
Domain Question Answering (ODQA) and Knowl-
edge Graph Question Answering (KGQA) tasks.
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Open-Domain Question Answering The goal
of open-domain question answering (ODQA) task
is to generate answers in response to factual ques-
tions usually with the relevant knowledge retrieved
from the external knowledge source. As the knowl-
edge source, we use Wikipedia which is an open
encyclopedia consisting of millions of documents.
For datasets, we use Natural Questions2 (Lee et al.,
2019) that is modified from Kwiatkowski et al.
(2019) for ODQA and HotpotQA3 (Yang et al.,
2018), both of which are designed with Wikipedia.

Knowledge Graph Question Answering In ad-
dition to ODQA, we evaluate our KALMV method
on knowledge graph question answering (KGQA),
whose goal is to answer the questions that are an-
swerable by the facts over knowledge graphs. For
datasets, we use WebQSP (Yih et al., 2016) that
is modified from Berant et al. (2013) to filter out
unanswerable questions, and Mintaka (Sen et al.,
2022). Further, for the knowledge source, we use
Wikidata which includes billions of facts that are
represented as the triplet: (subject, relation, object),
and we follow the standard preprocessing setup for
KGQA (Saffari et al., 2021; Baek et al., 2023).

4.2 Baselines and Our Model

We compare our KALMV against relevant base-
lines that augment LMs with external knowledge
and have strategies to reduce hallucinations. Note
that models including verification can refrain from
providing answers if the verifier identifies errors.

Naive Language Models This baseline uses only
the LMs without incorporating external knowledge.

Knowledge-Augmented LMs This baseline aug-
ments LMs with the knowledge retrieved from the
external knowledge base (Wikipedia or Wikidata).

Adaptive Retrieval This baseline (Mallen et al.,
2023) adaptively augments the LMs by retrieving
the knowledge only when the external knowledge is
necessary. In particular, if the entity that appeared
in the question is less frequent, they retrieve the
knowledge and provide it to the LMs. This model,
namely Adaptive Retrieval with Entity, is appli-
cable to questions that have pre-annotated entities
(i.e., KGQA); therefore, we also include its variant,
namely Adaptive Retrieval with Confidence, that
augments LMs with retrieval only when the answer
generation probability of naive LMs is low.

2https://huggingface.co/datasets/nq_open
3https://huggingface.co/datasets/hotpot_qa

LLM-Augmenter This baseline (Peng et al.,
2023) first augments LMs with knowledge retrieval,
and then verifies whether the retrieved knowledge
is reflected in the generated answer with Knowl-
edge F1 (Shuster et al., 2021) that measures over-
lapping terms between the knowledge and the an-
swer. Yet, unlike our KALMV, it cannot identify re-
trieval errors but also uses a heuristic metric for ver-
ification. In addition to the aforementioned LLM-
Augmenter w/ Knowledge F1, we also include the
LLM-Augmenter w/ Confidence that verifies the
answer based on its generation probability.

KALMV This is our Knowledge-Augmented
Language Model Verification (KALMV) method,
which not only verifies both the retrieval and gener-
ation errors with the instruction-finetuned tailored
verifier, but also iteratively rectifies errors.

4.3 Evaluation Metrics
Following the standard evaluation protocol of gen-
erative QA (Mallen et al., 2023; Baek et al., 2023),
we use F1 which measures the number of overlap-
ping words between the generated answer and the
labeled answer with precision/recall, EM which
measures whether the generated answer is exactly
the same as the labeled answer, and accuracy which
measures whether the generated answer includes
the labeled answer. For KGQA, following Baek
et al. (2023), we further consider a set of alternative
names of the labeled answers available in Wikidata.

4.4 Implementation Details
We use the same retriever across different models
for fair comparisons. In particular, for ODQA, we
use BM25 (Robertson et al., 1994) that considers
the term-based matching, following Mallen et al.
(2023). Also, for KGQA, we use MPNet (Song
et al., 2020) that is based on the dense retrieval,
following Baek et al. (2023). For the input prompt
to LMs for all baselines and our model, we fol-
low the existing works (Mallen et al., 2023; Baek
et al., 2023) which use the simple prompt, such as
"Context: {Context}. Question: {Question}. An-
swer: ". Regarding the LMs to generate answers,
we use FLAN (Chung et al., 2022) with three dif-
ferent sizes: Base, Large, and XL having 250M,
780M, and 3B parameters, respectively. In our
KALMV, we use the FLAN Base as the verifica-
tion LM, and we instruction-finetune it with the
batch size of 8 and the learning rate of 5e-5 with
AdamW (Loshchilov and Hutter, 2019) as the op-
timizer. In addition, we set the maximum number

1725



Table 1: Results on Natural Questions and HotpotQA for open-domain question answering and WebQSP and Mintaka
for knowledge graph question answering, with FLAN of different sizes as the LM. We emphasize the best results in bold.

Base (250M) Large (780M) XL (3B)

Datasets Methods F1 EM Acc F1 EM Acc F1 EM Acc

Natural Questions
w/ Wikipedia

Naive Language Models 7.53 3.24 4.57 11.09 6.29 7.81 16.89 11.16 12.94
Knowledge-Augmented LMs 18.06 12.30 15.26 18.61 13.74 16.40 19.03 14.13 16.90
Adaptive Retrieval w/ Confidence 16.70 11.02 14.07 18.16 13.07 15.60 20.89 15.76 18.28
LLM-Augmenter w/ Knowledge F1 19.58 13.56 16.81 28.53 21.22 25.32 31.00 23.06 27.59
LLM-Augmenter w/ Confidence 19.91 14.14 17.19 20.19 14.97 18.29 22.88 17.17 20.49

KALMV (Ours) 52.98 42.36 50.43 56.80 46.13 53.57 67.43 58.06 63.17

HotpotQA
w/ Wikipedia

Naive Language Models 14.25 9.68 10.36 16.80 11.78 12.41 21.97 15.06 16.22
Knowledge-Augmented LMs 31.20 22.77 25.13 33.46 25.29 27.37 35.47 27.08 29.14
Adaptive Retrieval w/ Confidence 26.82 19.10 21.11 26.80 19.65 21.23 29.41 21.55 23.54
LLM-Augmenter w/ Knowledge F1 32.89 23.24 26.12 39.40 28.55 31.60 46.97 34.54 37.72
LLM-Augmenter w/ Confidence 34.75 25.67 28.20 35.78 27.29 29.38 40.57 31.35 33.71

KALMV (Ours) 64.06 52.31 55.84 63.74 52.39 55.98 67.21 54.99 58.07

WebQSP
w/ Wikidata

Naive Language Models 32.53 21.35 25.78 40.33 30.08 32.74 46.20 36.43 40.11
Knowledge-Augmented LMs 53.57 43.25 53.68 42.37 26.13 62.28 49.45 36.02 59.28
Adaptive Retrieval w/ Entity 49.13 37.79 46.32 47.81 35.68 49.32 51.99 41.54 51.16
Adaptive Retrieval w/ Confidence 46.76 36.49 43.66 48.32 36.56 51.98 53.17 43.32 53.89
LLM-Augmenter w/ Knowledge F1 56.42 45.95 56.26 44.41 27.79 64.56 51.95 38.12 61.96
LLM-Augmenter w/ Confidence 56.62 47.33 56.36 44.35 28.79 64.47 50.63 36.62 60.67

KALMV (Ours) 74.31 63.92 77.78 54.79 45.46 82.71 67.10 50.81 83.21

Mintaka
w/ Wikidata

Naive Language Models 16.16 8.53 10.59 20.90 12.83 14.46 26.99 19.08 21.22
Knowledge-Augmented LMs 24.28 15.46 19.15 24.57 15.39 23.77 27.74 18.23 22.92
Adaptive Retrieval w/ Entity 23.66 14.68 17.87 25.96 16.45 22.92 30.34 21.36 24.20
Adaptive Retrieval w/ Confidence 21.46 13.15 16.06 25.34 16.28 22.07 29.00 20.68 23.70
LLM-Augmenter w/ Knowledge F1 27.99 18.18 22.14 28.19 18.07 27.15 34.23 22.77 28.05
LLM-Augmenter w/ Confidence 28.16 18.74 22.26 28.46 18.88 27.42 33.24 22.55 27.31

KALMV (Ours) 59.29 51.52 59.13 53.15 42.30 62.87 58.15 48.44 59.11

Table 2: Results on WebQSP and Mintaka, where we use
Wikipedia as the knowledge source and report results with F1.

Datasets Methods Base Large XL

WebQSP

Naive Language Models 32.53 40.33 46.20
Knowledge-Augmented LMs 27.96 27.39 26.40
Adaptive Retrieval w/ Confidence 36.15 41.68 44.89
LLM-Augmenter w/ Knowledge F1 28.35 38.14 41.21
LLM-Augmenter w/ Confidence 30.01 28.75 29.70

KALMV (Ours) 56.70 60.63 63.75

Mintaka

Naive Language Models 16.16 20.90 26.99
Knowledge-Augmented LMs 27.10 26.25 28.32
Adaptive Retrieval w/ Confidence 24.74 26.20 28.87
LLM-Augmenter w/ Knowledge F1 29.84 40.30 43.87
LLM-Augmenter w/ Confidence 28.81 27.64 30.91

KALMV (Ours) 65.49 66.48 70.83

of error-rectifying steps in the range of {1, 2, 3},
and filter out answers that are determined to have
errors by our verifier after the maximum step. Fur-
ther, for the ensemble, we use 5 different outputs,
which have the probabilities of three choices (Sec-
tion 3.2), from 5 different instructions, and average
probabilities to select one option for verification.

5 Experimental Results and Analyses

Main Results We conduct experiments on two
question answering tasks: open-domain QA with
Wikipedia and knowledge graph QA with Wikidata.
As shown in Table 1, our proposed KALMV sig-
nificantly improves the performance of knowledge-
augmented LMs on all datasets across different LM
sizes by effectively verifying errors in the knowl-
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Figure 2: Ratios of verification types and verification accu-
racies on them, on each dataset with the FLAN Base as LMs.

edge retrieval and answer generation steps. In addi-
tion, for knowledge graph QA, we also validate our
KALMV on the setting where LMs are augmented
with the documents from Wikipedia in Table 2, on
which it also outperforms baselines substantially.
Note that LLM-Augmenter, which verifies whether
the generated answers are grounded in the retrieved
knowledge, shows decent performance compared
to other baselines. However, KALMV outperforms
it by large margins, which suggests the importance
of verifying the retrieval error and training the sepa-
rate LM compared to using the heuristic measure to
verify only the groundedness in answer generation.

Analyses on Verification To understand how the
proposed verifier works, we analyze it in multiple
aspects. In the first bar of each subplot in Fig-
ure 2, we report the percentages of the knowledge
retrieval error, the knowledge grounding error, and
the correct generation, and we can see that the most
common errors come from the incorrect knowledge
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Figure 3: Varying the number of rectifying steps, on each
dataset with F1, Recall, and Precision as the verifier metrics.

retrieval, which signifies the importance of verify-
ing the retrieved knowledge. Also, on the remain-
ing three bars in Figure 2, we report the verifier
accuracy on each class category and then observe
that our KALMV is able to detect errors in a bal-
anced way across different verification categories.

We also report the performance of our verifier
with regards to F1, recall, and precision scores in
Figure 3, while varying the number of rectifying
steps. In particular, precision denotes the propor-
tion of the correct verification out of all verification
predicted as correct; meanwhile, recall evaluates
the proportion of the correctly predicted verifica-
tion out of all actual correct verification. As shown
in Figure 3, recall and F1 scores reach their almost
highest points around two to three rectifying steps,
while precision scores decrease slightly. These re-
sults suggest that, by increasing the number of rec-
tifying steps, the coverage of our KALMV in deliv-
ering correct answers (i.e., recall) increases much,
albeit with a slight compromise in the proportion
of correct answers delivered (i.e., precision).

Please note that we also provide the case study
on the three verification categories in Table 7.

Ablation & Sensitive Analyses To see how
much our ensemble strategy contributes to the per-
formance gain, and also how sensitive the com-
ponents in KALMV are across different models,
we perform ablation and sensitive analyses on en-
semble, retrieval, verification, and generation parts.
First, as shown in the first row of Table 3, ensemble,
which forwards multiple verification instructions to
the verifier and averages their results, improves the
performance of both the verification and answer
generation steps, demonstrating its efficacy.

For sensitive analyses, we first change the knowl-
edge retriever for open-domain QA from the sparse
(BM25) to the dense (DPR) retriever (Karpukhin
et al., 2020). As shown in Table 3, while the dense
retriever further brings performance improvement
against the sparse retriever on most metrics, our
KALMV consistently detects errors of knowledge-
augmented LMs with high performance regardless

Table 3: Ensemble and Sensitive Analyses on retrieval,
verification, and generation, on the Natural Questions data.

Verification Generation

Categories Types Acc F1 Acc F1

Ensemble Yes 78.39 55.91 50.43 52.98
No 76.45 53.37 48.40 50.68

Retrieval Models BM25 78.39 55.91 50.43 52.98
DPR 69.53 61.53 54.72 55.68

Verification LMs
T5 (250M) 76.23 50.00 42.33 44.63
FLAN (250M) 78.39 55.91 50.43 52.98
ChatGPT 65.71 43.17 33.16 36.68

Generation LMs
T0 (3B) 78.92 54.52 58.87 62.35
FLAN (3B) 79.11 56.76 63.17 67.43
ChatGPT 77.14 55.65 69.42 72.23

Table 4: Results on Transfer Settings, where our KALMV is
trained on the Source dataset and tested on the Target dataset.

Source Target F1 EM Acc

Natural Questions Natural Questions 52.98 42.36 50.43
HotpotQA Natural Questions 56.26 46.70 53.02

HotpotQA HotpotQA 64.06 52.31 55.84
Natural Questions HotpotQA 55.08 42.17 45.56

WebQSP WebQSP 74.31 63.92 77.78
Mintaka WebQSP 69.86 60.00 72.47

Mintaka Mintaka 59.29 51.52 59.13
WebQSP Mintaka 48.06 40.25 46.19

of retrievers. Also, for sensitive analyses on ver-
ification and generation, we further include Chat-
GPT (OpenAI, 2022) as a reference model to under-
stand the proprietary model’s performance. Regard-
ing verification, we observe that our FLAN-based
instruction-finetuned verifier is superior to the Chat-
GPT (Peng et al., 2023), which suggests that cus-
tomizing the available LM to our target verification
task with further training is more worthwhile than
using the general-purpose large LMs. Moreover,
for generation LMs that make answers to the given
questions, large LMs obviously outperform the per-
formance of relatively small LMs, since large LMs
might be more skilled and knowledgeable in an-
swering questions. Note that our KALMV can ac-
curately identify the errors even when coupled with
ChatGPT as well as the other instruction-finetuned
T0 (Sanh et al., 2022), confirming its versatility.

Analyses on Generalization to Unseen Data It
is worthwhile noting that our KALMV can be di-
rectly applicable to other datasets without any fur-
ther training on them. To show this, we first train
the verifier of KALMV on the source data (e.g.,
Natural Questions) and then evaluate KALMV on
the target data (e.g., HotpotQA), with FLAN Base
used as the LM for generation and verification. As
shown in Table 4, we observe that our KALMV
has the capacity to generalize to other data without
much performance degradation. Furthermore, for
the Natural Questions dataset, the verifier trained
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on the HotpotQA might be stronger than the ver-
ifier trained on the same Natural Questions, from
the observation of the KALMV’s performances on
Natural Questions from models trained on each of
HopotQA and Natrual Questions datasets, which
further signifies its generalization ability.

6 Conclusion

In this work, we proposed Knowledge-Augmented
Language Model Verification (KALMV), which
identifies not only the relevance of the retrieved
knowledge to the input query but also the faithful-
ness of the reflection of knowledge in the generated
answers, in order to prevent incorrect answer gen-
erations with knowledge-augmented LMs. To this
end, we developed a verifier that can detect errors
in both the knowledge retrieval and answer genera-
tion stages by instruction-finetuning LMs. Further,
during inference, we proposed to rectify errors by
re-retrieving knowledge and re-generating answers
if our KALMV detects errors, and also perform an
ensemble over multiple verification outputs from
different instructions, to improve the efficacy of the
verifier. We validated KALMV on two question
answering tasks and showed its effectiveness in sig-
nificantly reducing hallucinations. We believe that
KALMV will bring substantial practical impact
in improving the reliability of LM-based systems,
especially since it is a plug-and-play module.

Limitations

In this section, we faithfully discuss the current lim-
itations and potential avenues for future research.

First, we propose to instruction-finetune the veri-
fier LM to customize it to the proposed verification
task that aims to detect errors in knowledge re-
trieval and answer generation steps. Then, through
our experimental results and analyses, we show that
our proposed verifier trained by the automatically
generated input-output pairs (See Section 3.2) is
effective in identifying errors. However, the auto-
matic label-generation processes that we suggest
are indeed simple and they may introduce the po-
tential to incorrectly generate the verification label
in some particular scenarios (e.g., multi-step rea-
soning with multiple sources of knowledge). There-
fore, someone may improve the labels required for
instruction-finetuning verifiers by annotating them
manually with humans or designing more sophisti-
cated strategies, which we leave as future work.

Second, our work initiates a new problem setup

of detecting errors of knowledge-augmented LMs
in two different perspectives: knowledge retrieval
and answer generation. However, each component
and strategy of the proposed KALMV method is a
bit separated. Specifically, the retriever and verifier
are not jointly trained, while the signal from train-
ing the verifier may help improve the retriever’s
performance. Also, regarding the error rectifying
steps, while we can iteratively correct failures on
knowledge-augmented LMs, the previous and cur-
rent rectifying steps are handled separately. How-
ever, the current step may get benefits from the
results of the previous steps. We leave developing
and building more ideas on improving components
of our proposed KALMV method as future work.

Ethics Statement

Hallucination, which is a phenomenon where the
language models generate responses that are plau-
sible and sound yet factually incorrect, is a critical
problem especially when deploying LMs in pro-
duction since it can induce the spreading of misin-
formation. In this work, the proposed knowledge-
augmented language model verification (KALMV)
method contributes to significantly reducing hal-
lucinations of LMs, by verifying their retrieved
knowledge and generated answers, and further rec-
tifying them if errors are detected. However, there
may be some cases where our verifier misclassifies
the failure cases of knowledge-augmented LMs as
correct, potentially leading to severe negative con-
sequences, especially in mission-critical domains
and systems. Therefore, it is important for us to
put more effort into making LMs more reliable and
trustworthy with advanced verification methods.
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Table 5: Relative Increment of Computational Costs, which
the verifier of our KALMV approach additionally yields, com-
pared to the model (knowledge-augmented LMs with knowl-
edge retrieval and answer generation) without the verification.

Datasets Base Large XL

WebQSP 5.60% 3.40% 3.07%
Mintaka 6.07% 3.47% 3.57%
Natural Questions 10.51% 9.26% 6.54%
HotpotQA 5.02% 4.24% 3.67%

A Additional Experimental Setups

Here we provide additional experimental setups, in-
cluding the instruction that we use for verification.

Instruction Prompt In Table 6, we provide a set
of 5 different instructions that we use for verifi-
cation ensemble as well as instruction-finetuning
verifiers (Please refer to Section 3.2 for details).

LLM-Augmenter Details In our experiments in
Section 5, we include this LLM-Augmenter model
as our major baseline (Peng et al., 2023), and we
now describe it in more detail. Note that the main
focus of this baseline is to verify whether the gener-
ated answers from large LMs are grounded in the re-
trieved knowledge, and they propose two strategies
to identify the groundedness. Specifically, the first
strategy is the one that measures the Knowledge F1
score between the retrieved knowledge and the gen-
erated answer, which we already used for compar-
isons against our KALMV in our main experiments.
On the other hand, the second strategy is to ask pro-
prietary LMs (e.g., ChatGPT) to verify the ground-
edness of the generated answer in the retrieved
knowledge. However, for the second one, it is in-
feasible for us to run every experiment with private
Large LMs, and also it is clearly unfair to compare
the public LMs against the proprietary LMs since
their training data and capacity may be largely dif-
ferent. Nevertheless, we show that our KALMV is
superior to LLM-Augmenter with ChatGPT on ver-
ification and answer generation in Table 3. More-
over, LLM-Augmenter with ChatGPT is known
to have similar performances to the one that we
compare (i.e, LLM-Augmenter w/ Knowledge F1)
according to Peng et al. (2023), which may further
support the fact that our KALMV is more effective
on verification compared to the LLM-Augmenter
based on ChatGPT since our KALMV significantly
outperforms LLM-Augmenter w/ Knowledge F1.

B Additional Experimental Results

B.1 Verification Cost
As it is worthwhile to investigate the increment of
computational costs incurred by answer verification
of our KALMV compared to the one without veri-
fication, we measure the relative increment in costs
that our verifier additionally brings compared to the
whole costs of running base knowledge-augmented
LMs, and report it in Table 5. In particular, fol-
lowing the main experiment settings, we use the
FLAN Base (250M) as the verification LM and
use three different sizes of FLAN: Base (250M),
Large (780M), and XL (3B), as the generation LM.
Also, we set the cost of knowledge retrieval and
answer generation (e.g., cost of running the entire
knowledge-augmented LMs) as 100, and then re-
port the relative increment from using the proposed
verification. As shown in Table 5, our KALMV
yields only the marginal increment, since not only
do we use the smaller LM (Base) compared against
larger LMs (Large and XL) for verification, but also
the proposed verification LM generates only one
token (e.g., A, B, or C) unlike the generation LM
that decodes multiple tokens. For example, verify-
ing answers with KALMV is 34 times faster than
generating answers with Flan XL on the WebQSP
data, which suggests that ours is highly efficient.

Yet, each rectifying step of our KALMV method
incurs a cost that is approximately equivalent to the
cost of running entire knowledge-augmented LMs
with verification. To be specific, let’s assume that,
through the KALMV framework, the error in the
generated answer is identified, the rectifying step is
subsequently performed, and the new answer is ver-
ified as correct. Then, it takes twice as slow as the
model without rectification. Yet, fortunately, since
not every generated answer is verified as incorrect,
the number of samples that require rectifying steps
is far less than the number of all samples (e.g., only
38% of samples require rectification on WebQSP).

B.2 Case Study
In Table 7, we provide examples of our KALMV
framework on three verification categories: incor-
rect knowledge retrieval, incorrect answer genera-
tion, and correct answer generation, on knowledge-
augmented LMs. As shown in Table 7, KALMV
can detect the errors of knowledge-augmented LMs
by contextualizing and understanding the relation-
ships between the input question, retrieved knowl-
edge, and generated answer effectively.
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Table 6: A list of instructions that we use for verification with ensemble as well as for instruction-finetuning verifiers. Note that
the variable inside the set parentheses {} is replaced with its actual string (e.g., input question, knowledge, and generated output).

Indices Instructions
1 The following is a multiple choice question about a question answering task. In this task, you should

generate an output given a question with a passage. The passage is retrieved from Wikipedia, which may
or may not be helpful to answer the question.
Question: {question}
Passage: {passage}
Output: {answer}
Options:
A. The passage is unhelpful to answer the question.
B. The passage is helpful to answer the question, yet the generated output for the question is incorrect.
C. The generated output for the question is correct.
Select one option:

2 Question: {question}
Passage: {passage}
Output: {answer}
Options:
A. The passage is unhelpful to answer the question.
B. The passage is helpful to answer the question, yet the generated output for the question is incorrect.
C. The generated output for the question is correct.
Select one option:

3 Given a question and a passage from Wikipedia, you should generate an output as follows:
Question: {question}
Passage: {passage}
Output: {answer}
This is a multiple choice question, and, based on the above information, you need to select one option
among three, as follows:
A. The passage is unhelpful to answer the question.
B. The passage is helpful to answer the question, yet the generated output for the question is incorrect.
C. The generated output for the question is correct.
Select one option:

4 Here is a question, passage, and generated output from the question and passage. Based on them, you
need to select one option among the three.
Question: {question}
Passage: {passage}
Output: {answer}
Options:
A. The passage is unhelpful to answer the question.
B. The passage is helpful to answer the question, yet the generated output for the question is incorrect.
C. The generated output for the question is correct.
Select one option:

5 Given a question, passage, and output, which option is the best?
Question: {question}
Passage: {passage}
Output: {answer}
Options:
A. The passage is unhelpful to answer the question.
B. The passage is helpful to answer the question, yet the generated output for the question is incorrect.
C. The generated output for the question is correct.
Select one option:
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Table 7: Examples of three types of verification outputs, such as retrieval error, generation error, and correct answer of knowledge-
augmented LMs, determined by our KALMV on the Natural Question dataset with FLAN Base as the generation LM.

Types Examples
Retrieval Error Question: who sang the song good morning good morning?

Knowledge: Good Morning Call
Correct answers: [’Gene Kelly’, "Donald O’Connor", ’Judy Garland’, ’Debbie Reynolds’, ’Mickey
Rooney’]
Generated answer: The Beatles

Retrieval Error Question: when did taylor swift’s first album release?
Knowledge: 1989 is the fifth studio album by American singer-songwriter Taylor Swift released on
October 27, 2014, through Big Machine Records. Swift began composing the album following release of
previous studio effort, Red (2012). Over the course of the two-year songwriting period, she collaborated
with producers Max Martin and ShellbackâC”Martin served as the album’s executive producer alongside
Swift. The album’s title was named after the singer’s birth year and inspired by the pop music of the
1980s.
Correct answers: [’October 24, 2006’, ’2005’]
Generated answer: October 27, 2014

Retrieval Error Question: who sang i ran all the way home?
Knowledge: In 2007, the song was covered by Paul McCartney who sung it, and Allen Toussaint playing
the piano, as their contribution to Goin’ Home: A Tribute to Fats Domino (Vanguard).
Correct answers: [’The Impalas’]
Generated answer: Paul McCartney

Generation Error Question: what is the hot coffee mod in san andreas?
Knowledge: Hot Coffee is a normally inaccessible mini-game in the 2004 video game Grand Theft
Auto: San Andreas, developed by Rockstar North. Public awareness of the existence of the mini-game
arrived with the release of the Hot Coffee mod, created for the Microsoft Windows port of GTA: San
Andreas in 2005. This mod enables access to the mini-game.
Correct answers: [’a normally inaccessible mini-game’]
Generated answer: enables access to the mini-game

Generation Error Question: where does a roadrunner live in the desert?
Knowledge: Roadrunners inhabit the deserts of the southwestern United States, Mexico, and Central
America. They live in arid lowland or mountainous shrubland, widely dispersed in dry open country
with scattered brush. They are non-migratory, staying in their breeding area year-round.[10] The greater
roadrunner is not currently considered threatened in the US, but is habitat-limited.
Correct answers: [’mountainous shrubland’, ’arid lowland’]
Generated answer: United States

Generation Error Question: what is the angle of the tower of pisa?
Knowledge: The height of the tower is 55.86 metres (183.27 feet) from the ground on the low side and
56.67 metres (185.93 feet) on the high side. The width of the walls at the base is 2.44 m (8 ft 0.06 in).
Its weight is estimated at 14,500 metric tons (16,000 short tons). The tower has 296 or 294 steps; the
seventh floor has two fewer steps on the north-facing staircase. Prior to restoration work performed
between 1990 and 2001, the tower leaned at an angle of 5.5 degrees, but the tower now leans at about
3.99 degrees. This means the top of the tower is displaced horizontally 3.9 metres (12 ft 10 in) from the
centre.
Correct answers: [’about 3.99 degrees’, ’3.99 degrees’, ’at about 3.99 degrees’]
Generated answer: 5.5 degrees

Correct Answer Question: who wrote he ain’t heavy he’s my brother lyrics?
Knowledge: "He Ain’t Heavy, He’s My Brother" is a popular music ballad written by Bobby Scott
and Bob Russell. Originally recorded by Kelly Gordon in 1969, the song became a worldwide hit for
The Hollies later that year and again for Neil Diamond in 1970. It has been covered by many artists in
subsequent years. The Hollies’ and Rufus Wainwright’s versions of the song were featured in the film
Zoolander.
Correct answers: [’Bobby Scott’, ’Bob Russell’]
Generated answer: Bobby Scott and Bob Russell

Correct Answer Question: who is the lead singer of depeche mode?
Knowledge: David Gahan (born David Callcott; 9 May 1962) is an English singer-songwriter, best
known as the baritone lead singer of the electronic band Depeche Mode since their debut in 1980. He is
also a successful solo artist, releasing albums in 2003 (Paper Monsters) and 2007 (Hourglass).
Correct answers: [’David Gahan’]
Generated answer: David Gahan

Continued on the next page
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Table 7 – Continued from the previous page
Types Examples
Correct Answer Question: when was the first hunger games book published?

Knowledge: The Hunger Games was first published in hardcover on September 14, 2008, by Scholastic,
featuring a cover designed by Tim O’Brien. It has since been released in paperback and also as an
audiobook and ebook. After an initial print of 200,000, the book had sold 800,000 copies by February
2010. Since its release, The Hunger Games has been translated into 26 languages, and publishing rights
have been sold in 38Â territories. The novel is the first in The Hunger Games trilogy, followed by
Catching Fire (2009) and Mockingjay (2010). A film adaptation, directed by Gary Ross and co-written
and co-produced by Collins herself, was released in 2012.
Correct answers: [’September 14, 2008’, ’2008’]
Generated answer: September 14, 2008
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