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Abstract
In this paper we improve the zero-shot general-
ization ability of language models via Mixture-
Of-Memory Augmentation (MoMA), a mech-
anism that retrieves augmentation documents
from multiple information corpora (“external
memories”), with the option to “plug in” un-
seen memory at inference time. We develop a
joint learning mechanism that trains the aug-
mentation component with latent labels derived
from the end retrieval task, paired with hard
negatives from the memory mixture. We in-
stantiate the model in a zero-shot dense re-
trieval setting by augmenting strong T5-based
retrievers with MoMA. With only T5-base, our
model obtains strong zero-shot retrieval accu-
racy on the eighteen tasks included in the stan-
dard BEIR benchmark, outperforming some
systems with larger model sizes. As a plug-in-
play model, our model can efficiently general-
ize to any unseen corpus, meanwhile achieving
comparable or even better performance than
methods relying on target-specific pretraining.
Our analysis further illustrates the necessity
of augmenting with mixture-of-memory for ro-
bust generalization, the benefits of augmenta-
tion learning, and how MoMA utilizes the plug-
in memory at inference time without chang-
ing its parameters. Our code can be found at
https://github.com/gesy17/MoMA.

1 Introduction

Scaling up language models—with more parame-
ters and pretraining data—improves model general-
ization ability on downstream applications (Raffel
et al., 2019; Brown et al., 2020; Smith et al., 2022),
but with diminishing return: linear improvements
on downstream metrics often require exponentially
more parameters and computing cost (Kaplan et al.,
2020; Hoffmann et al., 2022). Hence, scaling pre-
trained language models in this way is economi-
cally unsustainable (Strubell et al., 2020; Bender
et al., 2021; Zhang et al., 2022).

∗Work partly done while at Microsoft.

Retrieval augmented language models provide a
promising alternative. They allow language mod-
els to efficiently access vast resources from an ex-
ternal corpus (Guu et al., 2020; Borgeaud et al.,
2022) that serves as a kind of “memory” they
can refer to when making predictions, alleviat-
ing the need to memorize as much information
in their own network parameters (Roberts et al.,
2020). This open-book approach helps language
models to better generalize on token prediction
tasks and machine translation (Khandelwal et al.,
2019; Borgeaud et al., 2022), and tasks which al-
ready involve a first-stage retrieval component, e.g.,
OpenQA (Borgeaud et al., 2022; Izacard et al.,
2022). Existing retrieval augmentation methods
usually stick to one single retrieval corpus through-
out training and inference so that the retrieval com-
ponent can be indirectly guided by the supervision
from end tasks.

In this paper we improve the zero-shot general-
ization ability of language models using “mixture-
of-memory” (MoMA), a new retrieval augmenta-
tion mechanism. Instead of a single corpus, MoMA
retrieves documents from a “mixture” of multi-
ple external corpora and enjoys the merits of a
larger and more comprehensive source of knowl-
edge. This mechanism also allows removing and/or
“plugging-in” new corpora during inference time,
when more information from the target task is re-
vealed, or as an additional way for users to con-
trol the model. Specifically, we apply MoMA on
the zero-shot dense retrieval task, which is the
foundation of many important real-world applica-
tions (Thakur et al., 2021a; Kim, 2022) and also the
retrieval component of recent retrieval augmented
language models (Guu et al., 2020; Izacard et al.,
2022). However, it is not trivial to guide a re-
trieval model to leverage multiple corpora. We
need to jointly train the augmentation component
and dense retriever using supervised relevance sig-
nals and self-mined hard negatives.
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We instantiate MoMA with a T5-base model (Ni
et al., 2022) and apply it to the dense retrieval
task (Karpukhin et al., 2020). Our end task re-
triever uses a set of augmenting documents from
the mixture-of-memories to enhance its represen-
tation of the query with important context; the re-
triever then uses the enhanced query representation
to retrieve a final candidate set. At inference time,
we plug in the target task’s corpus to the memory
mixture to introduce in-domain context informa-
tion, without updating any parameter.

As a plug-in-play method, MoMA provides an
flexible but powerful solution to zero-shot dense re-
trieval: Unlike recent state-of-the-art methods (Yu
et al., 2022; Neelakantan et al., 2022), it does not
require pretraining on target corpus or large-scale
web corpus, enabling it to generalize to arbitrary
unseen corpus without additional effort. It can
also be used as an efficient alternative for recent
large language model (LLM) based generative re-
trieval models (Gao et al., 2022). Given the target
query, MoMA only involves the T5-base model for
query encoding, which is significantly cheaper than
querying an LLM to generate pseudo answers and
re-encoding it.

We experimented on eighteen zero-shot dense
retrieval tasks included in BEIR (Thakur et al.,
2021a), the standard ZeroDR benchmark. The
results demonstrate the improved zero-shot abil-
ity of MoMA. MoMA achieves comparable or
even stronger performance to recent state-of-the-art
dense retrieval systems with larger model scales
and heavier computation costs. Our further anal-
ysis reveals that large and diverse corpora in the
memory leads to the best performance; while only
using a single corpus during training does not im-
prove performance on unseen target tasks. The
learning of augmentation component is also impor-
tant for MoMA to utilize the diverse information
from the mixture. Our analysis and case studies il-
lustrate how MoMA leverages the plug-in memory
at testing time to enrich its query representations.

2 Related Work

2.1 Retrieval Augmentation

Recent research has explored the retrieval-
augmented language model, which aims to con-
struct an external memory for the language
model (Khandelwal et al., 2019; Zhong et al., 2022;
Guu et al., 2020; Borgeaud et al., 2022; Petroni
et al., 2020). It retrieves related documents or to-

kens from an in-domain corpus as additional input
to enhance the semantic representation. Despite
their effectiveness, learning to retrieve useful docu-
ments to augment the language model is a challeng-
ing task, since human annotations on the useful-
ness of augmentation documents are costly and sel-
dom available. The most straightforward way is to
use representations from raw pretrained language
models, i.e., as unsupervised dense retrieval (Guu
et al., 2020; Borgeaud et al., 2022). Adapting ex-
isting dense retrieval models is another common
choice (Izacard and Grave, 2020b; Lewis et al.,
2020; Yu et al., 2021). A more plausible solution
is to jointly learn the augmentation components
end-to-end using supervision from the final task,
for example, treating the augmentation as latent
variables and applying EM (Zhao et al., 2021), or
distilling the augmentation component from feed-
back of the final model (Izacard and Grave, 2020a).
In a parallel work, Izacard et al. (2022) found the
most effective one is attention distillation method
(ADist), which trains the augmentation component
using soft labels derived from the end model’s at-
tention on augmentation documents.

The motivation for query augmentation coin-
cides with the query expansion methods in the
traditional IR community, whereby a query is aug-
mented by new but similar features (Carpineto and
Romano, 2012). As feature selection usually re-
quires additional semantic analysis, the efficiency
and usability of traditional query expansion meth-
ods remain limited when faced with a new domain.
To overcome this, recent work relies on dense re-
trieval results to expand the query (Yu et al., 2021).
The retrieved relevant documents serve as pseudo
relevance feedback signals for the model, which
are concatenated with the original query as the aug-
mented model input. Our work augments queries
with feedback from multiple corpora and learns to
select important augmentation documents automat-
ically.

2.2 Zero-shot Dense Retrieval

Dense retrieval models trained on a resource rich
source tasks, e.g., web search, usually do not per-
form as well when zero-shot transferred to other do-
mains (Thakur et al., 2021b). Xin et al. (2021) ana-
lyzed the challenge of shifting between training and
testing domains, and leveraged domain-invariant
learning to mitigate the gap. Another common ap-
proach is to first generate domain-specific pseudo
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labels for each task, and then use them to train
dense retriever (Thakur et al., 2021b; Wang et al.,
2022). Additionally, continuous pretraining the
language model also improves its generalization
ability in ZeroDR (Izacard et al., 2021). Follow-
ing works (Izacard et al., 2021; Yu et al., 2022)
further contrastively pretrained the retriever on tar-
get or external corpus with a sentence matching
loss. One significant drawback of them is requiring
the target or external corpus as part of the training
corpus, which prohibits the plug-in-play feature
when exposed to new data. Besides, stacking all
target datasets for model pretraining also increases
computation costs to a notable degree. On BEIR
benchmarks which contain 18 target tasks, it en-
larges the training corpus to 7 times larger.

Other methods seek better generalization abil-
ity in ZeroDR from various resources, for exam-
ple, combining with sparse retrieval to introduce
exact match signals (Formal et al., 2021) or us-
ing multiple vectors per documents for term-level
matching (Khattab and Zaharia, 2020a). More
recent work simply changes backbone models to
larger language models, such as T5-XXL or cpt-
text-XL (Ni et al., 2021; Neelakantan et al., 2022).
Some rely on stronger instruction-guided gener-
ative language models (Gao et al., 2022), which
match documents with model-generated query an-
swers. Overall, methods relying on large language
models will incur heavier costs on memory con-
sumption and computation, and calling generative
model API may also cause latency issues. Instead
of chasing stronger backbone models, our goal in
this paper is to provide an efficient plug-in-play
alternative for them.

3 Method

In this section we first describe our Mixture-of-
Memory Augmentation. Then we discuss how it
is jointly learned with the end system and enables
plug-in memory at inference time.

3.1 Mixture-of-Memory Augmentation
Before going to the details of MoMA, we first recap
some preliminaries in ZeroDR.

Preliminaries. The dense retrieval (DR) task
aims to find relevant documents d from a corpus
C for the given query q by representing them in a
shared embedding space. Specifically, the retrieval
score in DR is often calculated as:

f(q, d) = q · d; q = g(q);d = g(d). (1)

It uses dot product as the scoring function to match
the embeddings q and d, which is known to sup-
port efficient approximate nearest neighbor search
(ANN) (Johnson et al., 2019). A pretrained lan-
guage model is often the encoder of choice g(). We
use the ST5-EncDec variant of Sentence-T5 (Ni
et al., 2022):

g(x) = Dec(Enc(x)), (2)

which feeds in the text sequence (prepended by a
special [CLS] tokens) to the encoder of T5, Enc(),
and uses the output representation of the [CLS]
token from the decoder, Dec(), as the text represen-
tation. This naturally leverages the attention from
decoder to encoder at all Transformer layers (Raffel
et al., 2019), as a fine-grained information gather-
ing mechanism.

The training of dense retrieval systems often
applies standard ranking loss and pairs the relevant
documents d+ ∈ D+ for each query q with hard
negatives d− ∈ D−:

L =
∑

q

∑

d+∈D+

∑

d−∈D−
l(f(q, d+), f(q, d−));

D− ∼ ANNC
f(q,◦) \D+. (3)

Eqn. 3 uses ANCE hard negatives, which are the
top-retrieved documents from C using the retriever
itself (Xiong et al., 2020). The loss function l() can
be any standard ranking loss such as cross entropy.
A ZeroDR model is trained on qs and documents
ds ∈ Cs from a source task, often web search, and
tested on target tasks qt and Ct; supervision signals
are only present from the source.

Mixture-of-Memory. The key idea of
(document-based) retrieval augmented language
models is to enrich the representation g(q) with
additional contextual input for the model, i.e., aug-
mentation documents da retrieved from an external
memory M. Instead of using a single document
corpus, MoMA uses multiple corpora to provide
richer and more diverse external resources for aug-
mentation. For example, M can be composed by
the source corpus Cs, a general encyclopedia, a
domain specific knowledge graph, etc. Then we
can retrieve the augmentation documents Da :

Da = ANNM
fa(x,◦); M = {C1, ..., CM}. (4)

This augmentation component uses another dense
retriever fa(), which also adopts the Sentence-T5
architecture. Note that instead of retrieving Da
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Figure 1: Illustraion of the Mixture-of-Memory Aug-
mentation.

separately from M different ANN memory sources
and merging results, Eqn. 4 combines them into
one ANN index. This requires the augmentation
component fa() to be flexible enough to handle
various corpora in the mixture.

Using the encoder-decoder architecture for g()
in Eqn. 2 enables a simple extension to incorpo-
rate the augmentation documents using the fusion-
in-decoder (FiD) mechanism (Izacard and Grave,
2020b):

gMoMA(q) = Dec(Enc(q),Enc(da1), ...,Enc(daK));

Da = {da1, ..., daK}. (5)

It feeds in the K augmentation documents sepa-
rately to the T5 encoder of g(). Then it fuses the
encoded documents together with Enc(q) using one
decoder that attends to all encoded vectors, as illus-
trated in Figure 1.

The FiD approach in Eqn 5 is a nice balance of
efficiency and capacity when modeling multiple
text sequences (Izacard and Grave, 2020b). It is
more efficient than concatenating all text pieces to-
gether, while also remaining expressive enough to
model the nuances from many sequences. (Izacard
and Grave, 2020a; Izacard et al., 2022).

When instantiating MoMA in the dense retrieval
setting, we focus on augmenting the query repre-
sentation q, as queries are often short, ambiguous,
and benefit more from additional contextual infor-
mation (Lavrenko and Croft, 2017; Yu et al., 2021).
This leads to the following definition of MoMA:

fMoMA(q, d) =qa · d;
qa = gMoMA(q),d = g(d), (6)

using the construction of gMoMA() in Eqn. 5 upon
the augmentation documents defined in Eqn. 4.

3.2 Joint Learning in MoMA and Inference
with Plug In Memory

MoMA has two sets of parameters to learn, in the
main model fMoMA() and the augmentation com-

ponent fa(). Both have their own independent
parameters. The two components are bridged by
the augmentation documents, which are retrieved
by fa() from M and used by fMoMA() to produce
query representation qa.

Main Model Learning. Given the relevance
labels from the source task and an augmentation
model, training fMoMA() is straightforward. We
can use the standard dense retrieval training to fine-
tune the enriched query encoder gMoMA() and the
document encoder g():

LMoMA =
∑

qs,d+,d−
l(fMoMA(qs, d+), fMoMA(qs, d−));

d+ ∈ Ds+, d− ∈ Ds− (7)

Ds− ∼ ANNCs

fMoMA(qs,◦) \Ds+. (8)

The training signals come from the source task, in-
cluding qs, its relevant documents Ds+, and ANCE
hard negatives Ds− retrieved from the source cor-
pus Cs.

Augmentation Learning. Training fa() is chal-
lenging as it is hard to label whether an augmen-
tation document is useful. Propagating gradients
from the final loss to fa() is also prohibitive as the
retrieval operation in Eqn. 4 is discrete. Fortunately,
recent research found the attention scores from the
FiD decoder to each encoded inputs (Eqn. 5) are
good approximations to the usefulness of augmen-
tation documents (Izacard and Grave, 2020a):

FidAtt(dai ) =
∑

pos

∑

head

AttDec→Enc(g
MoMA(dai )).

(9)

It sums the attentions from gMoMA()’s special to-
ken at the decoder’s [CLS] position over all layers,
input positions, and attention heads. Ideally, higher
FidAtt() is assigned to dai that provides useful con-
textual information.

Previously, FidAtt scores are often used as soft
labels for the augmentation model (Izacard and
Grave, 2020a; Izacard et al., 2022). Doing so with
memory mixtures is risky as it is too sparse and
overfits memory resource that appears earlier in
the training, which are the only ones available for
the decoder to attend on. To improve the learning
robustness, we introduce ANCE-style hard nega-
tive mining to train the augmentation component
as well.

First, we formulate the positive set of augmenta-
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tion documents as:

Da+ = Ds+ ∪ Top-NFidAtt(dai ),D
a . (10)

which combines relevant documents Ds+ and the
augmenting ones that received N-highest attention
scores from gMoMA(). Then we pair them with hard
negatives to formulate the training of fa() as:

La =
∑

qs

∑

d+∈Da+

∑

d−∈Da−
l(fa(qs, d+), fa(qs, d−));

(11)

Da− ∼ ANNM
fa(qs,◦) \Da+. (12)

Notice the negatives for fa() have comprehensive
coverage from multiple corpora.

Iterative Training. The learning of fMoMA()
and fa() is an iterative process that fits naturally
into the training procedure of dense retrieval train-
ing with hard negatives. We follow the standard
iterations in ANCE and construct the t-th training
episode of MoMA:

1. Construct hard negatives Ds− via Eqn. 8 us-
ing weights fMoMA

t−1 () from the last episode;

2. Retrieve augmentation Da via Eqn. 4 using
weights fa

t−1() from the last episode;

3. Train fMoMA
t () as Eqn. 7;

4. Formulate new positive augmentation docu-
ments Da+, using updated attention scores
from fMoMA

t (), and mine negative augmenta-
tion documents Da− using fa

t−1();

5. Train fa
t () following Eqn. 11.

Both fMoMA
0 () and fa

0 () can be initialized with a
BM25 warmed-up T5 retriever. Steps 1 and 3 above
are inherited from standard dense retrieval training.
The rest are introduced by MoMA. The additional
computation in the training side mainly resides up-
dating the index for the memory mixture, a standard
cost in retrieval-augmented language models (Guu
et al., 2020; Izacard et al., 2022).

Zero-Shot Retrieval with Plug in Memories.
To perform zero-shot retrieval on unseen tasks,
MoMA first retrieves augmented documents using
fa() from M for the target query qt, and retrieves
target documents dt ∈ Ct with the augmented
model fMoMA() without changing any model pa-
rameters. MoMA allows fa() to attend over the
target corpus as well if it is plugged in: M =

M∪Ct\Cs, which conveys in-domain information.
The augmenting corpus can also be engineered by
users manually to inject their preference or domain
knowledge, e.g., as “memory engineering”. In this
work we focus on swapping out the source corpus
for the target corpus; we leave other explorations
for future work.

4 Experimental Methodologies

Datasets. We choose the MS MARCO passage
dataset (Bajaj et al., 2016) as the source domain
dataset, whereas the target domains are from the 18
datasets in BEIR (Thakur et al., 2021b) benchmark,
which include including biomedical, scientific and
financial texts. More details can be found in Ap-
pendix A.3. The evaluation metric NDCG@10 is
the same with BEIR benchmark, which measures
Normalized Discounted Cumulative Gain (Wang
et al., 2013) of top 10 prediction. The higher
NDCG@10 value indicates better performance.

Augmenting Corpora. During training, the
mixture-of-memory is composed of source train-
ing corpus (MARCO), Wikipedia and a medical
knowledge graph. We use the Wikipedia chunk
prepossessed by (Karpukhin et al., 2020) without
further processing1. The medical knowledge graph
is extracted from the Medical Subject Headings
(MeSH)2, an open-source database for indexing
and cataloging of biomedical and health-related
information. Since it is hierarchical in structure,
we linearize it by concatenating spans with text
information. During testing, we directly replace
MARCO with the corresponding document sets
from BEIR. Each task from BEIR is augmented
independently. More dataset and preprocessing
details can be found in Appendix A.3.

Baselines and Model Choices. We compare our
MoMA with standard sparse and dense retrieval
models on BEIR. We also compare MoMA with
advanced approaches that are specifically designed
for zero-shot generalization. They involve tech-
niques that are not directly comparable with this pa-
per, including pretraining on extra data, in-domain
continuous pretraining, and generating target pairs
using another pretrained generative model. Besides,
some baselines use larger scale language model as
their backbone. We list the details of baselines in
Appendix A.4.

As a plug-in-and-play method, MoMA can be

1https://huggingface.co/datasets/wiki_dpr
2https://www.ncbi.nlm.nih.gov/mesh/
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Table 1: NDCG@10 on the BEIR benchmark. We also include an averaged score on datasets used by Contriever
for a fair comparison. The best result each task is marked bold. An ∗ denotes unfair comparison, as NQ is used in
training for GTR. †: GenQ generated pseudo labels to train an independent model for each task. ‡: Larger models

BM25 DPR ANCE T5-ANCE coCondenser GenQ† ColBERT Contriever GTRbase
∗ GTRlarge

∗‡ MoMA
(T5-ANCE)

MoMA
(coCondenser)

Parameters# — 110M 110M 110M*2 110M 66M*18 110M 110M 110M 335M 110M*2 110M*2
TREC-COVID 0.656 0.575 0.654 0.653 0.715 0.619 0.677 0.596 0.539 0.557 0.762 0.761
BioASQ 0.465 0.232 0.306 0.322 0.318 0.398 0.474 — 0.271 0.320 0.372 0.371
NFCorpus 0.325 0.210 0.237 0.275 0.307 0.319 0.305 0.328 0.308 0.329 0.307 0.333
NQ 0.329 0.398 0.446 0.452 0.494 0.358 0.524 0.498 0.495 0.547 0.490 0.544
HotpotQA 0.603 0.371 0.456 0.487 0.566 0.534 0.593 0.638 0.535 0.579 0.539 0.589
FiQA-2018 0.236 0.274 0.295 0.294 0.285 0.308 0.317 0.329 0.349 0.424 0.320 0.329
Signal-1M 0.330 0.238 0.249 0.246 0.274 0.281 0.274 — 0.261 0.265 0.258 0.264
TREC-NEWS 0.398 0.366 0.382 0.379 0.389 0.396 0.393 — 0.337 0.343 0.413 0.453
Robust04 0.408 0.344 0.392 0.412 0.399 0.362 0.391 — 0.437 0.470 0.469 0.475
ArguAna 0.414 0.414 0.415 0.415 0.411 0.493 0.233 0.446 0.511 0.525 0.438 0.463
Touché-2020 0.367 0.208 0.240 0.312 0.190 0.182 0.202 0.230 0.205 0.219 0.271 0.299
Quora 0.789 0.842 0.852 0.836 0.863 0.830 0.854 0.865 0.881 0.890 0.847 0.843
DBPedia-entity 0.313 0.236 0.281 0.290 0.356 0.328 0.392 0.413 0.347 0.391 0.347 0.383
SCIDOCS 0.158 0.107 0.122 0.115 0.140 0.143 0.145 0.165 0.149 0.158 0.143 0.145
Fever 0.753 0.589 0.669 0.655 0.678 0.669 0.771 0.758 0.660 0.712 0.723 0.745
Climate-Fever 0.213 0.176 0.198 0.194 0.184 0.175 0.184 0.237 0.241 0.262 0.235 0.233
SciFact 0.665 0.475 0.507 0.566 0.600 0.644 0.671 0.677 0.600 0.639 0.632 0.630
CQADupStack 0.299 0.281 0.296 0.283 0.330 0.347 0.350 0.345 0.357 0.384 0.283 0.294
Contriever Sub Avg 0.437 0.368 0.408 0.416 0.438 0.425 0.445 0.466 0.442 0.471 0.453 0.471
Avg 0.428 0.352 0.391 0.399 0.417 0.410 0.431 — 0.416 0.444 0.436 0.453

combined with other techniques. We initiate
MoMA on two dense retrieval models. The primi-
tive MoMA (T5-ANCE) is built on the original
T5 model checkpoint and optimized iteratively
with ANCE-style (Xiong et al., 2020) hard neg-
atives. By comparing it with T5-ANCE, we can
clearly observe the performance gain brought by
MoMA. To demonstrate it can integrate techniques
from other models to achieve higher performances,
we initiate MoMA on a better pretrained model.
Following coCondenser (Gao and Callan, 2022),
we continuously trained the original T5 model on
the MARCO document corpus using a sentence-
level contrastive loss, combined with the original
masked language modeling loss. We then per-
formed the same MoMA training on top of the
continuously pretrained T5 checkpoint and denoted
it as MoMA (coCondenser). The only difference
between MoMA (T5-ANCE) and MoMA (coCon-
denser) is the initialized model start point. We
compare their pretraining details with other models
in Table 2. Unlike other work (Yu et al., 2022),
as a plug-in-play design, we did not include target
datasets and augmenting corpora in the contrastive
pretraining stage. Since MARCO contains only
0.5M documents, it adds fewer computational over-
head compared to other methods listed in the table,
e.g., Contriever.

Implementation Details. For MoMA, we use
the T5-base (Raffel et al., 2019) architecture (12-
layer Transformer, 768 hidden size) by directly
loading the checkpoint from HuggingFace3. To
warm up the language model for dense retrieval, we

3https://huggingface.co/t5-base

followed (Xiong et al., 2020) to further train it us-
ing BM25 negatives for 10 epochs. After warming
up, we jointly trained the two components for three
episodes, each episode including three training
epochs. After three joint episodes, the end retriever
reaches the best performance on MSMARCO, so
we select this checkpoint for evaluation. The ratio
between positive and hard negative pairs is 1:7 for
both models. The main hyperparameters in MoMA
include the total number of grounding documents
K and the attention threshold number N in Equa-
tion 10. We directly set K=10 and N=5 without
any parameter tuning. More details on hyperpa-
rameters and experimental settings can be found in
Appendix A.5.

5 Evaluation Results

5.1 Zero-Shot Retrieval Accuracy and
Efficiency

The retrieval accuracy of MoMA and baselines
are listed in Table 1. Besides baselines of simi-
lar parameter count, we also include larger models
(GTRlarge) or those using multiple vectors per docu-
ment (ColBERT). MoMA (coCondenser) shows the
strongest zero-shot accuracy against previous state-
of-the-art methods that do continuous contrastive
pretraining (coCondenser), generate pseudo la-
bels (GenQ), or consume additional training sig-
nals in both continuous pretraining and finetun-
ing phrases (GTRbase). MoMA (T5-ANCE) also
achieved nearly comparable zero-shot accuracy
against larger models like GTRlarge, and ColBERT,
which scales up the number of vectors per docu-
ments (one per token). This confirms that retrieval-
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Table 2: Computational analysis in the pretraining stage
of different models.

Model Pretraining Corpus Batch Size Training Steps
MoMA (T5-ANCE) 0 0 0
MoMA (coCondenser) MARCO 128 50k
GTRbase NQ, CQA 2048 800k
Contriever CCNet 2048 500k

Wikipedia 2048 200k

Table 3: Efficiency of MoMA search and training.

Operation Offline Online
BM25 Index Build 1.8h —
BM25 Retrieval Per Query — 43ms
MoMA Inference
Encoding of Corpus/Per Doc 1.5h/4.5ms —
Query Encoding — 55ms
ANN Retrieval (batched q) — 9ms
Dense Retrieval Total — 64ms
MoMA Training
Encoding of Corpus/Per Doc 1.5h/4.5ms —
ANN Index Build 10s —
Neg Construction Per Batch (32 queries) 45ms —
Back Propagation Per Batch (32 queries) 330ms —

augmentation provides another path to improve
language models’ generalization ability besides
scaling up. MoMA (T5-ANCE) also outperforms
T5-ANCE, which MoMA (T5-ANCE) uses as a
subroutine for retrieval augmentation, on all but
one retrieval task, showing the improved general-
ization ability from plug-in mixture of memory.

We evaluate the efficiency of MoMA in two
stages: offline model training and online infer-
ence. In offline training from Table 2, MoMA
(T5-ANCE) is significantly cheaper than other
methods as we do not require pretraining on large
external corpora, which saves hundreds of hours
training time. MoMA (condenser) additionally pre-
train on MARCO for 50k steps, which is far fewer
than the other compared methods. In online in-
ference, similar with other retrieval enhanced lan-
guage models, MoMA imposes a necessary cost
of retrieval augmented model upon the baseline
T5-ANCE. We further provide detailed efficiency
analysis on MoMA in Table 3. The online latency
is measured on one query and 100 retrieved doc-
uments. Due to the query augmentation, query
encoding is more costly and takes about 55ms per
query. Even with the augmentation cost, the full
dense retrieval total online inference cost is 64ms,
only slightly above the BM25 retrieval latency. The
ANN retrieval is very efficient, only takes 9ms. In
addition, the complexity of ANN retrieval is sub-
linear to the corpus size, in most ANN framework
such as FAISS. Thus the extra round of ANN re-
trieval operation in MoMA is not the bottleneck
even when the size of memory mixture scales up.

5.2 Performance with Different Memories

Table 4 evaluates how MoMA behaves under dif-
ferent combinations of external memories. Unsur-
prisingly, using a single out-of-domain memory for
retrieval augmentation does not help, for example,
even though MARCO is the source domain corpus,
solely grounding on it reduces zero-shot accuracy.
MeSH as the sole augmenting corpus also lowers
performance, even on some medical retrieval tasks
such as BioASQ. Interestingly, when we expand
the memory to include MARCO, Wiki, and MeSH,
but keep the target corpus excluded (w/o Target),
MoMA exhibits better accuracy compared to the
no-memory version. Our conclusion is that more
memory sources achieves better generalization,
especially when no target domain information
is available.

In the Full setting, the 3-memory mixture of
MARCO, Wiki, and MeSH is jointly learned with
final task at training time. At test time, MARCO
is swapped out for the target corpus. The Full im-
proves zero-shot accuracy over both the w/o Target
setting (where the target corpus is excluded at test
time), and the w/o Learning setting (wherein the
augmentation component is not learned). As ex-
pected, plugging in the target corpus at test time is
the most valuable source of generalization power.
It is also the most realistic, as access to the target
corpus may only be available at testing time.

5.3 Effect of Memory Mixture Learning

To study the effect of our joint learning mechanism
on the memory mixture, we compare it with re-
cent state-of-the-art Attention Distillation (ADist),
which is first used in Izacard and Grave (2020a)
and recently updated in a parallel work Izacard et al.
(2022). It jointly trains the augmentation model us-
ing attention scores from the end language model
as pseudo-labels. We also enrich ADist with rel-
evance labels from MARCO for more direct su-
pervision (ADist + MSMARCO rel). To exclude
the effect of contrastive pretraining, we choose
MoMA (T5-ANCE) as our own method for com-
parison. We also tried using a trained ANCE re-
triever without further distilling and denote it as
w/o Distilling (T5-ANCE). The performances of
these joint learning methods are listed in Table 5.
The results show that ADist, either standalone or
enriched with MARCO labels, does not improve
the final accuracy compared to using a supervised
dense retriever T5-ANCE. The main difference is

1802



Table 4: NDCG@10 of MoMA under different memory compositions: no memory, single memory, and a mixture
of memories. w/o Learning uses the end retriever to select augmenting documents without use of an augmentation
component. w/o Target excludes the target from memory. Best results are in bold.

No Memory Single Memory Memory Mixture
MARCO Wiki MeSH Target w/o Learning w/o Target Full

TREC-COVID 0.653 0.576 0.592 0.669 0.731 0.759 0.664 0.761
BioASQ 0.322 0.247 0.262 0.219 0.361 0.359 0.271 0.371
NFCorpus 0.275 0.295 0.302 0.282 0.319 0.317 0.301 0.333
NQ 0.452 0.472 0.486 0.393 0.483 0.510 0.484 0.544
HotpotQA 0.487 0.481 0.519 0.462 0.538 0.539 0.520 0.589
FiQA-2018 0.294 0.296 0.286 0.280 0.320 0.304 0.285 0.329
Signal-1M 0.246 0.239 0.225 0.238 0.250 0.248 0.240 0.264
TREC-NEWS 0.379 0.381 0.391 0.372 0.416 0.410 0.398 0.453
Robust04 0.412 0.435 0.443 0.428 0.483 0.446 0.452 0.475
ArguAna 0.415 0.439 0.438 0.442 0.439 0.427 0.438 0.463
Touché-2020 0.312 0.281 0.281 0.252 0.331 0.275 0.272 0.299
Quora 0.836 0.809 0.798 0.835 0.781 0.813 0.812 0.843
DBPedia-entity 0.290 0.340 0.341 0.287 0.335 0.331 0.342 0.383
SCIDOCS 0.115 0.128 0.121 0.130 0.146 0.134 0.127 0.145
Fever 0.655 0.663 0.735 0.610 0.694 0.718 0.737 0.745
Climate-Fever 0.194 0.231 0.238 0.231 0.228 0.222 0.240 0.233
SciFact 0.566 0.583 0.587 0.585 0.624 0.618 0.598 0.630
CQADupStack 0.283 0.207 0.218 0.203 0.283 0.235 0.215 0.294
Avg 0.399 0.395 0.403 0.384 0.431 0.426 0.411 0.453

Table 5: Zero-shot Performances of different distillation methods. We observe consistent trend on all BEIR datasets.
We present results on 6 representative datasets from Wikipedia or medical domains.

Distillation Method TREC-COVID BIOASQ NFCorpus NQ HotpotQA FEVER Avg
Soft Attention Distill

ADist (Izacard et al., 2022) 0.609 0.185 0.227 0.351 0.387 0.615 0.396
ADist + MSMARCO rel 0.664 0.220 0.255 0.397 0.394 0.624 0.426

w/o Distilling (T5-ANCE) 0.741 0.361 0.301 0.472 0.513 0.684 0.512
MoMA 0.762 0.372 0.307 0.490 0.539 0.723 0.532

that ADist learns a soft attention score distribu-
tion, while the supervised retriever is trained effec-
tively using hard negative sampling (Xiong et al.,
2020). Jointly learning using soft labels without
hard negatives downgraded the augmentation accu-
racy. Hence, MoMA is a simple technique to learn
the end task signals via the attention scores together
with hard negatives, which improves quality over a
supervised retriever alone.

To further illustrate the joint training process,
we track the attention scores of documents from
different memory sources as well as their ratio in
the augmentation set in Figure 2. We also split
MARCO documents by whether they are labeled
as Relevant (Rel) for the corresponding query.

Firstly, MoMA learns to increasingly attend to,
and retrieve, relevant documents from the memory
mixture throughout training. In Figure 2a, more
attention is paid to MARCO Relevant documents
than to any other type in the memory. Although
the number of MARCO Relevant documents is not
significant as a percentage of the augmenting set
in Figure 2c, a query level analysis confirms that

percentage of queries having at least one relevant
document in the augmenting set increases from
46% in Epi-0 to 62% in Epi-2.

This apparent discrepancy can be explained by
the fact that MARCO has only one relevant label
per query on average, leaving plenty of room for
other types of documents to be included in the
augmenting set.

Secondly, the amount of attention paid to cer-
tain types of documents by MoMA is positively
correlated with their representation in the augment-
ing set. This confirms that the joint learning ef-
fectively conveys the feedback signals from the
end model to the augmentation component. For
instance, in Figure 2a, MoMA pays a high level
of attention to MARCO Other documents, a signal
reflected in the composition of its augmentation set
in Figure 2c. Even though MARCO Other docu-
ments were not labeled relevant for the query, they
can still prove to be valuable as an augmenting
document because they may contain partial infor-
mation that helps query understanding (Lavrenko
and Croft, 2017) or it was simply not annotated
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Figure 2: Grounding component breakdown for different distillation methods in each learning iteration. We display
the regularized doc and att. score ratio of documents from different augmentation sources.

NQ HotpotQA FEVER0

20

40

60

80

100

Target
Wiki
MeSH

(a) Doc Ratio. (Wiki)

NFCorpus TREC-Covid BIOASQ0

20

40

60

80

100

(b) Doc Ratio. (Med)

NQ HotpotQA FEVER0

20

40

60

80

100

(c) Att. Score Ratio. (Wiki)

NFCorpus TREC-Covid BIOASQ0

20

40

60

80

100

(d) Att. Score Ratio. (Med)
Figure 3: The inclusion of Plug-In memory during testing (grouped by the Wiki and Medical domains).

in MARCO’s sparse labels (Bajaj et al., 2016). In
comparison, the correlation of the two in ADist is
weak as the model seems to include 60% augment-
ing documents from MeSH, far greater than the
fraction of medical queries in MARCO.

5.4 Generalization of Plug-In Memory

In the previous section, we observed how MoMA
learns to attend to, and retrieve, informative docu-
ments from memories on which it was trained. In
this section, we examine the zero-shot behavior of
MoMA (T5-ANCE) on new corpora plugged-in at
test time (keeping Wiki and MeSH as before).

Figure 3 compares documents from the plugged-
in target versus the remaining memory mixture in
terms of membership in the augmenting set (Doc
Ratio) and attention. Again, on all tasks, MoMA
(T5-ANCE) heavily attends to – and successfully
retrieves – in-domain documents, even if those in-
domain documents were only just plugged in. This
confirms that the augmentation model achieves the
zero-shot ability to capture relevant information
from unseen corpora.

In the medical domain, the model pays more at-
tention to MeSH documents, especially on TREC-
Covid task since MeSH includes high quality up-
dated information related to COVID-19. Wikipedia
documents received more attention on the Wiki-

centric tasks like FEVER, as expected. Some tasks
may need a small amount of precise information
from Wikipedia to answer the detailed question,
e.g. in HotpotQA. Similar with the training pro-
cess, there is a non-trivial correspondence between
attention score of a memory and its membership in
the augmentation set.

6 Conclusion

In this paper we propose a new plug-in mixture-
of-memory mechanism for the retrieval augmented
language models to improve their zero-shot abil-
ity on the dense retrieval task. To learn the mem-
ory mixture we develop a new joint learning ap-
proach that trains the augmentation component
using the positive signals from the end task, the
language model’s attention scores, and hard nega-
tives retrieved from the mixture of augmentation
corpora. This leads to our final model MoMA (T5-
ANCE) and MoMA (coCondenser) that achieve
strong zero-shot accuracy on 18 retrieval tasks in-
cluded in BEIR. Our analysis shows the importance
of augmenting with diverse memory sources and in-
domain information for robust generalization. We
hope our findings can inspire more future research
in better augmenting language models, to provide
other alternatives to achieve generalization ability
beyond solely relying on model scale.
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Limitations

Although MoMA (T5-ANCE) and MoMA (coCon-
denser) achieve strong zero-shot performances, we
mainly verify their efficacy from the empirical per-
formances on BEIR tasks, where the target cor-
pora, Wiki and MARCO serve as readily avail-
able retrieval sources. In a real-world scenario, the
grounding corpora usually need to be customized
according to query domains and user needs. Thus,
how to choose effective grounding corpora and ef-
ficiently evaluate their relative contribution remain
an open problem. These analyses will go beyond
our empirical settings and reveal a wider applica-
tion scenario of MoMA.

Ethics Statement

All data in this study are publicly available and
used under ethical considerations. Text and figures
in the paper are used for illustration only, they do
not represent the ethical attitude of the authors.
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Figure 4: MRR@10 on MSMARCO of the augmenta-
tion component and end retriever during MoMA (T5-
ANCE) training.

A Appendix

A.1 Performance on Source Domain

Figure 4 demonstrates the MRR@10 on MS-
MARCO for the end retriever and augmentation
component of MoMA (coCondenser) over differ-
ent training epochs. We make the following ob-
servations. Firstly, the augmentation component
improves on the source domain even though it
is not directly optimized with relevance labels.
Since helpful augmentation documents are usu-
ally strongly related to the query, the augmentation
component benefits from such indirect relevance
signals. Secondly, the end retriever monotonically
benefits from information collected by the augment-
ing component, indicating that the two components
mutually enhance each other in the joint learning
process. We further compare MoMA with relevant
baselines on MSMARCO in Table 6. The com-
parison verifies that MoMA also achieves better
performance on the source domain retrieval tasks.

A.2 Case Studies

Table 7 shows examples of how augmenting doc-
uments chosen by MoMA can provide valuable
contextual information for the query. The first ex-
ample is a training query from MARCO, where
the augmenting documents help disambiguate the
query word "rating". In the second one, documents
from the official Wiki and HotpotQA’s Wiki corpus
are descriptions of the two entities in HotpotQA’s
comparison question. It illustrates how MoMA pro-
vides more comprehensive augmentation by incor-
porating information from different sources. The
last query shows the benefit of the in-domain plug-
in corpus as it brings in very specific information
about the query (AND-1/Ctf4) that is hard to find
elsewhere.

A.3 Datasets Details
Evaluation Datasets Target domain datasets
used in our experiments are collected in the BEIR
benchmark (Thakur et al., 2021b)4 and include the
following domains:

• Open-domain Question Answering (QA): Hot-
potQA (Yang et al., 2018), NQ (Kwiatkowski
et al., 2019), and FiQA (Maia et al., 2018).

• Bio-Medical Information Retrieval: TREC-
COVID (Voorhees et al., 2021), NFCor-
pus (Boteva et al., 2016), and BioASQ (Tsat-
saronis et al., 2015).

• Argument Retrieval: Webis-Touché2020 (Bon-
darenko et al., 2020) and ArguAna (Wachsmuth
et al., 2018).

• News Retrieval: TREC-NEWS (Soboroff et al.,
2018) and Robust04 (Voorhees et al., 2004).

• Tweet Retrieval: Signal-1m (Suarez et al., 2018).

• Duplicate Question Retrieval: Quora (Thakur
et al., 2021b) and CQADupStack (Hoogeveen
et al., 2015).

• Entity Retrieval: DBPedia (Hasibi et al., 2017)

• Citation Prediction: SCIDOCS (Cohan et al.,
2020)

• Fact Checking: SciFact (Wadden et al., 2020),
FEVER (Thorne et al., 2018), and Climate-
FEVER (Diggelmann et al., 2020)

We list the statistics of the BEIR benchmark in
Table 8.

Augmenting Corpora Corpus size We first in-
troduce more details on how we preprocessed
the Medical Subject Headings (MeSH) Database.
We select text information from the Qualifier
Record Set and Descriptor Record Set. Each set
contains multiple <Concept> elements, which is
composed of three sub-elecments, i.e., <Concept-
Name>, <ScopeNote> and <TermList>. Among
the sub-elecments, <ScopeNote> is the major tex-
tual information source, which is usually a short
description to a medical term or phenomenon. We
directly consider each <ScopeNote> as a document
entry and concatenate it with corresponding <Con-
ceptName>.

We list the statistics of the augmenting corpora
in Table 9.

4https://github.com/beir-cellar/beir

1809

https://github.com/beir-cellar/beir


Table 6: Performance comparisons of different methods on MSMARCO.

DPR T5-ANCE coCondenser MoMA (T5-ANCE) MoMA (coCondenser)
MRR@10 0.3340 0.3678 0.3820 0.3866 0.4056

Table 7: MoMA retrieves augmenting documents during
training (Marco) and testing (BEIR).

Queries Augmentation Docs
Training
[Marco]
What is
hotel tran-
sylvania
rated

[Marco] Why is Hotel Transylvania 2 rated
PG? It is rated PG for some scary images,
action and rude humor. [Wiki] Another re-
view aggregate calculated an average score
of 47 out of 100, indicating “mixed or av-
erage reviews”.

Zero-Shot Testing
[HotpotQA]
Were Scott
Derrickson
and Ed
Wood of
the same
nationality?

[Wiki] Scott Derrickson (born July 16,
1966) is an American director, screenwriter
and producer. [HotpotQA] Edward Davis
Wood Jr. (October 10, December 10, 1978)
was an American filmmaker, actor, writer,
producer, and director.

[BIOASQ]
Is AND-
1/Ctf4
essential for
prolifera-
tion?

[BIOASQ] AND-1/Ctf4 bridges the CMG
helicase and DNA polymerase alpha, fa-
cilitating replication. [Wiki] FADD has
no effect on the proliferation of B cells in-
duced by stimulation of the B cell receptor.

A.4 Baselines

We use the baselines from the current BEIR leader-
board (Thakur et al., 2021b) and recent papers.
These baselines can be divided into four groups:
dense retrieval, dense retrieval with generated
queries5, lexical retrieval and late interaction.

Dense Retrieval For dense retrieval, the base-
lines are the same dual-tower model as ours.
We consider DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2020), T5-ANCE, coCon-
denser (Gao and Callan, 2022) and one recently-
proposed model GTR (Ni et al., 2021) with differ-
ent size configuration in this paper.

• DPR uses a single BM25 retrieval example and
in-batch examples as hard negative examples to
train the model. Different from the original pa-
per (Thakur et al., 2021b) that train the DPR on
QA datasets, we train DPR on MS MARCO (Ba-
jaj et al., 2016) Dataset for fair comparison. No-
tice that this also lead to better results according
to Xin et al. (2022).

5We separate them from dense retrieval since they usually
rely on Seq2seq models to generate pseudo query-document
pairs, and they train a model for each dataset independently
instead of using a single model for all datasets.

• ANCE constructs hard negative examples from
an ANN index of the corpus. The hard nega-
tive training instances are updated in parallel dur-
ing fine-tuning of the model. The model is a
RoBERTa (Liu et al., 2019) model trained on MS
MARCO for 600k steps.

• T5-ANCE Different with default ANCE set-
ting, we replace the backbone language model
RoBERTa with T5-base. All the other model
settings are the same with the original ANCE.
We include this baseline because as a subroutine
for MoMA, it could be viewed as an ablation
without memory augmentation. We can directly
observe the impact of plug-in mixture of memory
by comparing T5-ANCE with MoMA.

• coCondenser is a continuous pre-trained model
based on BERT, with the equivalent amount of
parameters to BERT-base. It enhances the repre-
sentation ability of [CLS] token by changing the
connections between different layers of Trans-
former blocks. Fine-tuning of coCondenser uses
BM25 and self-mined negatives.

• Contriever conducts unsupervised contrastive
pretraining with data augmentations and momen-
tum queues on Wikipedia and the larger CC-
Net (Wenzek et al., 2020) corpora for 500k steps.

• GTR initializes the dual encoders from the T5
models (Raffel et al., 2019). It is first pre-trained
on Community QA6 with 2 billion question-
answer pairs then fine-tuned on NQ and MS
Marco dataset. In addition, they use the hard neg-
atives released by RocketQA (Qu et al., 2021)
when finetuning with MS Marco data and the
hard negatives release by (Lu et al., 2021) for Nat-
ural Questions. GTRbase leverages the same T5-
base model as MoMA, while GTRlarge is based
on T5-large, which is not directly comparable to
our method as it triples the parameters.

Dense Retrieval with Generated Queries
GenQ first fine-tunes a T5-base (Raffel et al., 2019)

6Unfortunately, this corpus has not been released by the
authors.
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Table 8: Statistics of datasets in the BEIR benchmark. The table is taken from the original BEIR benchmark
paper (Thakur et al., 2021b).

Split (→) Train Dev Test Avg. Word Lengths

Task (↓) Domain (↓) Dataset (↓) Title Relevancy #Pairs #Query #Query #Corpus Avg. D / Q Query Document

Passage-Retrieval Misc. MS MARCO ✗ Binary 532,761 —- 6,980 8,841,823 1.1 5.96 55.98

Bio-Medical Bio-Medical TREC-COVID ✓ 3-level —- —- 50 171,332 493.5 10.60 160.77
Information Bio-Medical NFCorpus ✓ 3-level 110,575 324 323 3,633 38.2 3.30 232.26
Retrieval (IR) Bio-Medical BioASQ ✓ Binary 32,916 —- 500 14,914,602 4.7 8.05 202.61

Question Wikipedia NQ ✓ Binary 132,803 —- 3,452 2,681,468 1.2 9.16 78.88
Answering Wikipedia HotpotQA ✓ Binary 170,000 5,447 7,405 5,233,329 2.0 17.61 46.30
(QA) Finance FiQA-2018 ✗ Binary 14,166 500 648 57,638 2.6 10.77 132.32

Tweet-Retrieval Twitter Signal-1M (RT) ✗ 3-level —- —- 97 2,866,316 19.6 9.30 13.93

News News TREC-NEWS ✓ 5-level —- —- 57 594,977 19.6 11.14 634.79
Retrieval News Robust04 ✗ 3-level —- —- 249 528,155 69.9 15.27 466.40

Argument Misc. ArguAna ✓ Binary —- —- 1,406 8,674 1.0 192.98 166.80
Retrieval Misc. Touché-2020 ✓ 3-level —- —- 49 382,545 19.0 6.55 292.37

Duplicate-Question StackEx. CQADupStack ✓ Binary —- —- 13,145 457,199 1.4 8.59 129.09
Retrieval Quora Quora ✗ Binary —- 5,000 10,000 522,931 1.6 9.53 11.44

Entity-Retrieval Wikipedia DBPedia ✓ 3-level —- 67 400 4,635,922 38.2 5.39 49.68

Citation-Prediction Scientific SCIDOCS ✓ Binary —- —- 1,000 25,657 4.9 9.38 176.19

Wikipedia FEVER ✓ Binary 140,085 6,666 6,666 5,416,568 1.2 8.13 84.76
Fact Checking Wikipedia Climate-FEVER ✓ Binary —- —- 1,535 5,416,593 3.0 20.13 84.76

Scientific SciFact ✓ Binary 920 —- 300 5,183 1.1 12.37 213.63

Table 9: Statistics of the augmenting corpora.

Datasets Corpus Size Avg. Doc Length
MS MARCO 502,939 56.0
MeSH 32,326 16.8
Wiki 21,015,324 100.0

model on MS MARCO for 2 epochs and then gener-
ate 5 queries for each passage as additional training
data for the target domain to continue to fine-tune
the TAS-B (Hofstätter et al., 2021) model.

Lexical Retrieval Lexical retrieval is a score
function for token matching calculated between
two high-dimensional sparse vectors with token
weights. BM25 (Robertson et al., 2009) is the most
commonly used lexical retrieval function. We use
the BM25 results reported in Thakur et al. (2021b)
for comparison.

Late Interaction We also consider a late interac-
tion baseline, namely ColBERT (Khattab and Za-
haria, 2020b). The model computes multiple con-
textualized embeddings for each token of queries
and documents, and then uses a maximum similar-
ity function to retrieve relevant documents. This
type of matching requires significantly more disk
space for indexes and has a higher latency.

A.5 Detailed Experimental Settings and
hyperparameters

Our implementation uses PyTorch (Paszke et al.,
2019) with Hugging Face Transformers (Wolf
et al., 2020). We optimize the model using

AdamW (Loshchilov and Hutter, 2019) with a peak
learning rate at 5e-6, weight decay of 0.01, and
linear learning rate decay. The global batch size
is set to 256. The maximum length of query and
passage are set to 32 and 128 respectively. We
summarize all hyperparameter settings in Table 10.
The model is trained with 8 Nvidia A100 80GB
GPUs and FP16 mixed-precision training. The to-
tal running time is 6.6 hrs for three episodes of
augmentation component training and 6.3 hrs for
end retriever training. We detail the training time
of each episode in Table 11.

When evaluating on the BEIR benchmark, we
follow the setting in GTR (Ni et al., 2021), which
use sequences of 64 tokens for the questions and
512 for the documents in all datasets except Trec-
News, Robust-04 and ArguAna. In particular, we
set the document length to 768 for Trec-News and
Robust-04. For ArguAna, we set both question and
document length to 128. The above length setting
is in accordance to the average query and document
lengths in these datasets.
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Table 10: The hyperparameters of MoMA.

Hyperparameters Settings
Grounding document number 10
Attention threshold number 5
Negative mining depth 200
Global batch size (query size per batch) 256
Positive number per query 1
Negative number per query 7
Peak learnig rate 5e-6
Learnig rate decay 0.01
Optimizer AdamW
Scheduler Linear
MARCO Maximum query length 32
MARCO Maximum document length 128

Table 11: Training time for MoMA with three training
episodes. We use 8 Nvidia A100 80GB GPUs with
FP16 mixed-precision training.

Stage Augmentation Component End Retriever
Epi-1 0.8h 1.5h
Epi-2 0.8h 1.5h
Epi-3 0.8h 1.5h
Index refresh 1.4h 0.6h
Refresh number 3 3
Overall 6.6h 6.3h
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