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Abstract

Instruction tuning (IT) achieves impressive
zero-shot generalization results by training
large language models (LLMs) on a massive
amount of diverse tasks with instructions. How-
ever, how to select new tasks to improve the
performance and generalizability of IT models
remains an open question. Training on all exist-
ing tasks is impractical due to prohibiting com-
putation requirements, and randomly selecting
tasks can lead to suboptimal performance. In
this work, we propose active instruction tuning
based on prompt uncertainty, a novel frame-
work to identify informative tasks, and then
actively tune the models on the selected tasks.
We represent the informativeness of new tasks
with the disagreement of the current model out-
puts over perturbed prompts. Our experiments
on NIV2 and Self-Instruct datasets demonstrate
that our method consistently outperforms other
baseline strategies for task selection, achieving
better out-of-distribution generalization with
fewer training tasks. Additionally, we intro-
duce a task map that categorizes and diagnoses
tasks based on prompt uncertainty and predic-
tion probability. We discover that training on
ambiguous (prompt-uncertain) tasks improves
generalization while training on difficult
(prompt-certain and low-probability) tasks
offers no benefit, underscoring the importance
of task selection for instruction tuning.1

1 Introduction

Recently, instruction tuning has shown great
success in improving large language models’ cross-
task generalizability. When training large language
models (LLM) with a wide range of tasks with
instructions, models like T0 (Sanh et al., 2021),
FLAN (Wei et al., 2021), TK-Instruct (Wang et al.,
2022b), Instruct-GPT (Ouyang et al., 2022), Al-
paca (Taori et al., 2023) and Vicuna (Chiang et al.,

1Our code and data can be found at https://github.
com/PlusLabNLP/Active-IT
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Figure 1: Our proposed Active Instruction Tuning frame-
work. Given an instruction tuning (IT) model with a sizeable
existing task pool, we actively identify and select useful tasks
from it and add them to the training task pool. After that, we
train a new IT model with the updated training task pool. By
continuing this loop, we expect to improve the IT model’s
cross-task generalization ability efficiently. The main chal-
lenge lies in identifying useful tasks, for which we propose
to select prompt-sensitive tasks.

2023) can perform well on unseen task. The per-
formance can be further boosted by increasing the
number of diverse training tasks (Xu et al., 2022;
Wang et al., 2022b; Longpre et al., 2023; Chung
et al., 2022). Based on this observation, many
recent studies scale up instruction-tuning datasets
by manually or automatically curating more tasks
with instructions. For example, T0 and FLAN
have 60 tasks. The NIV2 (Wang et al., 2022b)
benchmark extends its dataset to over 800 English
training tasks. Self-Instruct (Wang et al., 2022a)
and Unnatural Instructions (Honovich et al., 2022)
prompt LLMs to generate over 50K instruction
tuning data, and recently, Dynosaur (Yin et al.,
2023a) dynamically curates over 80K instruction
tuning data from Huggingface datasets (Lhoest
et al., 2021), which is still continuously expanding.

However, as the scale of datasets grows rapidly,
it becomes impractical to train on all existing tasks
due to overwhelming computing costs. One naive
solution is to randomly sample tasks for training,
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but it can potentially select less informative tasks,
leading to suboptimal results (Wang et al., 2023).
Therefore, it is crucial to employ an efficient task
selection strategy that identifies the most novel and
informative tasks for instruction tuning.

Data selection has been explored under active
learning and multi-task learning frameworks. De-
spite its prevalence, we argue that they are not
applicable to task selection for instruction tun-
ing. Specifically, active learning methods have
focused on selecting the most useful instances for
a single task, using either uncertainty-based intu-
itions such as entropy (Settles, 2009), Monte Carlo
dropout (Gal and Ghahramani, 2016), or ensem-
ble disagreement (Houlsby et al., 2011; Siddhant
and Lipton, 2018). However, these uncertainty
measurements can only measure uncertainty at
instance-level, and will become less effective when
applied to task-level selections as the scales of un-
certainty values are not comparable across tasks. In
multi-task learning, previous research (Ivison et al.,
2022; Poth et al., 2021; Kung et al., 2021) has ex-
plored measuring task usefulness by assessing its
similarity to the target task. While these methods
can enhance performance when aware of the target
tasks, they are not suitable for instruction tuning,
which aims to improve overall generalization to
arbitrary unseen tasks.

In this work, we introduce Active Instruction
Tuning, a framework that aims to actively identify
informative new tasks for an IT model to contin-
uously improve its cross-task generalization abil-
ity (refer to Figure 1). While being related to ac-
tive learning, our task is more challenging. Unlike
active learning, which focuses on improving per-
formance on a single target task by identifying
useful instances, our goal is to identify tasks that
enhance overall generalization, a novel concept
not explored in previous AL research.

To identify informative new tasks for Active In-
struction Tuning, we propose prompt uncertainty
(refer to Figure 2), a novel task-level uncertainty
metric that measures the sensitivity of an IT model
against instruction perturbations for a task. Specifi-
cally, with a task instruction and a few unlabeled
instances, we assess the disagreement of model pre-
dictions against original and perturbed prompts on
multiple instances to obtain an average disagree-
ment score. We then select and train the model
with the most prompt-uncertain tasks to enhance
the overall cross-task generalization ability. Since

this uncertainty method does not require labeled
instances for a task, we can also apply prompt un-
certainty to determine novel tasks to manually an-
notate if needed.

We further explore using prompt uncertainty to
understand task characteristics and diagnose poten-
tial issues. Motivated by Data Map (Swayamdipta
et al., 2020), which utilizes instance-level training
dynamics to categorize and diagnose data quality,
we propose Task Map, the first task diagnosing
method that categorizes tasks based on Prompt Un-
certainty and Prediction Probability. Based on the
Task Map, we categorize tasks into Ambiguous,
Easy and Difficult, inspired by prior in-context
learning research (Xie et al., 2021; Pan et al., 2023)
to facilitate analysis.

We conduct experiments on two instruction tun-
ing setting: TK-Instruct models with NIV2 dataset,
which generalize to unseen tasks, and Alpaca mod-
els with Self-Instruct dataset, which generalize to
unseen instructions, following our categorization
in Kung and Peng (2023). Results show that our ac-
tive instruction tuning method consistently outper-
forms baseline methods (random sampling, genera-
tion perplexity) for both instruction tuning setting,
demonstrating the effectiveness of our approach.
Moreover, we discover that while instruction tun-
ing with Ambiguous tasks can improve general-
ization effectively, Difficult tasks offers no benefit,
underscoring the importance of task selection in
instruction tuning. Our contributions can be sum-
marized as follows:

• We introduce Active Instruction Tuning, a
framework to efficiently improve the IT
model’s generalization ability in large-scale
instruction tuning.

• We propose Prompt Uncertainty, a task-level
uncertainty measurement for IT, which can
identify novel/informative tasks to improve IT
models’ zero-shot generalization.

• We further propose Task Map, a task diagnosing
tool that categorizes tasks based on their prompt
uncertainty and prediction probability, provid-
ing insights into task characteristics and quality.

2 Method

2.1 Active Instruction Tuning
The Active Instruction Tuning framework is illus-
trated in Figure 1. In reality, when the number of
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Figure 2: We demonstrate how we measure the prompt uncertainty of a model W to a task. Given the original instruction I0
and instance input x0 of a task to the model, we first get prediction y and its sentence probability p0,0. Next, we randomly drop
words (highlighted in red) from the original instructions to create k perturbed instructions. We measure the model’s prediction
probability of y given each of the perturbed instructions and input x0. Finally, we calculate the average absolute difference
(disagreement) between the prediction probability of using original and perturbed instructions, providing an estimate of the
model’s prompt uncertainty for x0. We can further aggregate this prompt uncertainty scores across n instances for a task. Further
details can be found in section 2.

tasks is large and continuously expanding, training
on all existing tasks becomes impractical due to
the overwhelming computing cost. To efficiently
improve an instruction tuning model, we can apply
a task selection method to actively select the tasks
that benefit the current model the most. By repeat-
ing this model training and task selection loop, we
can continually improve instruction-tuned models’
generalization to unseen tasks.

For the experiment, we use a large training task
pool of fixed size. The training procedure consists
of multiple iterations. In the first iteration, a small
number of tasks are randomly sampled to train
a weak instruction-tuned model. In subsequent
iterations, we actively select the most useful tasks
based on the previous model and train a new model
with the selected tasks. We evaluate different task
selection strategies by testing the model on unseen
tasks at each iteration.

2.2 Prompt Uncertainty

Inspired by uncertainty-based active learning (Sid-
dhant and Lipton, 2018), we aim to select those
highly uncertain tasks as the most informative
ones at each stage for training. While prior active
learning work has proposed numerous uncertainty
measurements at the instance level for a single task,
these uncertainty values are usually not comparable
across tasks. We propose Prompt Uncertainty, a
task-level uncertainty measurement that estimates
uncertainty values by assessing the disagreement

of the model on the original prediction given com-
plete and perturbed task instructions. By selecting
those most prompt-uncertain tasks, we can select
the tasks to which the current model is susceptible.

Prompt Uncertainty Measurement Our Prompt
Uncertainty method is motivated from Bayesian Ac-
tive Learning by Disagreement (BALD) (Houlsby
et al., 2011) in single task Active Learning.
Instead of measuring the disagreement among
ensemble models in a single task, we measure
the disagreement of generation likelihoods on the
original prediction over perturbed prompts and
original prompts of a task. Figure 2 illustrates
the process of measuring the prompt uncertainty
of a model to a task’s instance x0. To measure
the prompt uncertainty Ut for task t given model
weights W , corresponding unlabeled dataset
Xt and instruction (prompt) It0, we calculate
the average disagreement of likelihood between
perturbed and original instruction on n randomly
sampled examples from Xt.

Ut =
1

n

n∑

i=1

1

k

k∑

j=1

|pti,0 − pti,j |,

pti,j=P (yti |xti, Itj ,W ),

where i ∈ [1, n], j ∈ [0, k].

P is the likelihood of prediction y given model
weights W , a task instruction I and corresponding
task instance x. k is the number of perturbations.
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For each example xti ∈ Xt, we will first get the
original output yti and its corresponding likelihood
pti,0. Then, we will perturb the instruction k times
and calculate the average absolute difference be-
tween the likelihood of yti given original instruction
pti,0 and perturbed instructions {pti,j |j ∈ (1, k)}.

In order to perturb a task instruction, it is
possible to employ paraphrasing techniques,
adding extraneous tokens or randomly omitting
words, such that the altered instructions can mostly
preserve their meaning (A more detailed discussion
can be found in subsection 6.2). In our experiment,
we assign a 0.2 drop rate for each word in the
instruction to create perturbed instructions. After
getting the prompt uncertainty for each remaining
task, we will select the highly uncertain ones and
add them to the training task pool.

Underlying Hypothesis We describe the under-
lying hypothesis to propose Prompt Uncertainty.
From an uncertainty perspective, when measuring
the model’s sensitivity toward sampled prompts
from a task, we estimate the model’s epistemic un-
certainty, reflecting the model’s lack of knowledge
of a particular task. Different from epistemic un-
certainty using an ensemble of models (Gal and
Ghahramani, 2016), we consider an ensemble of
slightly different conditions, i.e., perturbations of
prompts for the model, and use the original likeli-
hood to represent the ensembled prediction. From
the robustness of the in-context learning perspec-
tive, if a model cannot robustly map task instruc-
tions to specific latent concepts, which is reflected
by the sensitivity regarding perturbations in instruc-
tions, its generalization ability to the corresponding
task is limited (Xie et al., 2021; Pan et al., 2023). To
address this, we hypothesize that training the model
on prompt-uncertain tasks will improve its ability
to associate prompts with specific latent concepts
(tasks), leading to a better zero-shot performance
on unseen instructions.

3 Experiment Setting

In this work, we experiment with two well-known
IT datasets: NIV2 and Self-Instruct (Wang et al.,
2022b,a). NIV2 is the largest IT dataset with 1600+
cross-lingual tasks. It focuses on improving model
generalization to unseen tasks, while Self-Instruct
is used to train the Alpaca model (Taori et al.,
2023) and aims to enhance model instruction
following ability, following the categorization in
prior work (Kung and Peng, 2023). For detailed

Statistics / IT Models NIV2 Self-Instruct
Dataset
# of training tasks (instructions) 756 52K
# of testing tasks (instructions) 119 252
# of data per task ≥ 200* 1
Testing on unseen tasks? ✔ ✗
Active Instruction Tuning
# of tasks in initial training set 68 500
# of task to select at ith iteration 68 500 ∗ 2i
Evaluation
Evaluation Metrics Rouge-L Human Eval

GPT Eval

Table 1: Comparison between NIV2 (Wang et al., 2022b) and
Self-Instruct (Wang et al., 2022a) datasets. Most tasks in NIV2
have more than 200 instances, while Self-Instruct only has one
instance for each task. These two settings differ in terms of the
definition of the task and generalization objective (zero-shot
cross-task v.s. cross-task), described in Kung and Peng (2023).

setting and comparison, please see Table 1.

3.1 Active Instruction Tuning Setting
Natural Instruction V2 dataset We utilize the
NIV2 English tasks split, comprising 756 training
tasks and 119 testing tasks, including classification
and generative tasks, and run our experiment with
five random seeds.2 For each randomized setting,
we first randomly select 68 tasks for the initial train-
ing set and select another 68 tasks as the validation
set, leaving the remaining 620 tasks as the task
pool. Afterward, we iteratively apply different task
selection strategies to expand the training set and
train new IT models, reporting the performance at
each iteration [136, 204, 272, 340].

Self-Instruct dataset We first randomly sample
500 tasks as the initial training set from the
52K tasks in the Self-Instruct dataset, leav-
ing the remaining tasks as the remaining task
pool. We conduct active instruction tuning and
compare model performance at each iteration
[1000, 2000, 4000, 8000, 16000].

3.2 Task Selection Strategies
Since we are the first to propose active instruction
tuning, we construct several baseline task selection
strategies: Random Sampling, High Perplexity
and Low Perplexity, to compare with our proposed
Prompt Uncertainty method. Random Sampling
will randomly sample tasks from the remaining
task pool. This is usually a strong baseline in
task-selection experiments since we utilize a
well-constructed dataset as the task pool, which
has less noisy and duplicate data. High and Low
Perplexity are the baselines inspired by prior active

2We provide details of our experiments in subsection A.2.
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Figure 3: Experiment results for NIV2 dataset. We compare Ours prompt uncertainty method with other baselines and report
the Rouge-L scores on testing and validation set at each active instruction tuning iteration [136, 204, 272, 340]. We report
the average and standard deviation scores of five runs, each with a different initial 68 tasks, 68 validation tasks, and 620
remaining task pool. Note that we do not show the standard deviation on validation since each random seed will have a different
validation set, leading to high variance. Additionally, we report the Fully Trained results which train on the entire task pool.
Exact numbers for this experiment can be seen in Table 3 in the Appendix.

learning work, which aims to select difficult/easy
tasks by measuring predicted sentence perplexity
for generation tasks or entropy for classification
tasks. As these uncertainty measurements are
established at the instance level, we aggregate the
uncertainty score of multiple (ten for NIV2 and
one for Self-Instruct) instances in a task to estimate
task-level uncertainty. For our method, we measure
the Prompt Uncertainty using n = 10 random ex-
amples and k = 20 prompt perturbations in NIV2
(refer to section 2). For Self-Instruct, we measure
the prompt uncertainty using n = 1 random
examples and k = 20 prompt perturbations.

3.3 Training and Evaluation

For NIV2, we follow the current SOTA TK-instruct
model’s setting, to train the T5-770M model (Raf-
fel et al., 2020) and report the Rouge-L score
of Classification, Generative and Overall tasks,
on both validation and testing set. During train-
ing and testing, we will provide a task definition
and two examples as instruction demonstration.
For Self-Instruct dataset, we train the LLaMA-7B
model (Touvron et al., 2023) follows Alpaca model
setting. For evaluation, we report the blind pair-
wise comparison of each task selection methods

with Random Sampling on the 252 user-oriented
test set (Wang et al., 2022a). We follow the evalua-
tion in Vicuna (Chiang et al., 2023) to report GPT-4,
Chat-GPT (GPT 3.5) and Human evaluation scores,
and provide more details in subsection A.1.

4 Results

4.1 NIV2 Results

Figure 3 displays our experimental results on the
NIV2 dataset. For each task selection method, we
iteratively select a batch (68) of tasks from the task
pool (620 tasks) to train a new model, and compare
model performance at each iteration. A better task
selection method should achieve consistent supe-
rior performance at early iterations, when there are
still plenty of tasks to select from. Figure 3 demon-
strates that when selecting less than 340 tasks (half
of the task pool), our proposed Prompt Uncertainty
method consistently outperforms other baselines in
terms of Overall scores for both the validation and
testing sets. This shows that training on prompt-
uncertain tasks is indeed the most effective way
for better zero-shot cross-task generalization abil-
ity. On closer examination, our method is highly
effective for Classification tasks, surpassing all
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we report the average uncertainty score of the 620 training
tasks predicted by the initial model.

other baselines. For Generative tasks, the Low
Perplexity method performs well on testing tasks
at early iterations but poorly on the validation set.
This inconsistency suggests that the model’s overall
generalizability is not enhanced, but rather the low
perplexity tasks in the training set coincidentally
benefit the generative tasks in the testing set. Con-
versely, our proposed method achieves consistently
good performance on both testing and validation
tasks, outperforming Random Sampling on testing
tasks and exhibiting similar performance on valida-
tion tasks.

We further investigate the trend of uncertainty
scores during active instruction tuning. In Figure 5,
we illustrate the average uncertainty scores of the
selected tasks using different task selection strate-

gies at each iteration. It is shown that when select-
ing for more than half of the tasks in the training
pool, all task selection strategies start deviating and
choose tasks with unfavorable uncertainty scores.
For example, High Perplexity method start select-
ing tasks with low perplexity scores due to the lack
of high perplexity tasks. Specifically, when extend-
ing the training tasks from 340 to 408 using prompt
uncertainty, the average uncertainty score of se-
lected tasks is already slightly lower than that of
all tasks at the first iteration, indicating there are
no high-uncertainty tasks to select from. Note that
the lack of uncertain tasks would occur exclusively
in an experimental setting. In practical scenarios
where the number of tasks grows rapidly, the ex-
haustion of uncertain tasks is less likely to happen.

4.2 Self-Instruct Results

We show the pairwise preference comparison of all
task selection methods against Random Sampling
in Figure 4. First for Fully Trained, we use the offi-
cial Alpaca release (Taori et al., 2023), which was
trained on all 52K tasks. We compare it to Random
Sampling at each active instruction tuning itera-
tion. It is shown that for both GPT-4 and Chat-GPT
evaluation, the Fully Trained model outperforms
Random Sampling with a great margin. However,
as more training tasks are randomly sampled, the
difference in preferred tasks is diminishing, indi-
cating that IT performance of the Alpaca setting
scales with an increasing number of training tasks.
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Figure 6: Task Map visualization. We measure the prediction
probability and prompt uncertainty of an IT model against
620 tasks in NIV2 and plot the Ambiguous, Easy, and
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Secondly, for high/low perplexity and our pro-
posed task selection method, we first fine-tune an
LLaMA (Touvron et al., 2023) model with 500
tasks and then iteratively extend the number of
training tasks to [1000, 2000, 4000, 8000, 16000].
We then report the pairwise comparison results
against Random Sampling at each iteration. Fig-
ure 4 shows that Low Perplexity and High Perplex-
ity are generally subpar with Random Sampling,
indicating that applying inadequate task selection
strategies can hurt the model’s performance. In
contrast, our prompt uncertainty method is almost
consistently more preferable by all GPT4, Chat-
GPT, and human assessors when selecting less or
equal than 8000 tasks, showing that training with
prompt-uncertain tasks can lead to better general-
ization to the user-oriented test tasks. When the
number of training tasks increases to 16000, the
performance improvement diminishes along with
a smaller remaining task pool, which aligns with
our results on the NIV2 dataset. Additionally, we
discuss our observations regarding applying GPT4,
Chat-GPT, and human assessors for pairwise com-
parisons. It is seen that while the number of net
winning tasks (Win task - Lose Tasks) varies a lot
across each evaluation method, the overall trend is
similar, showing a certain alignment of preference
across these automatic or human assessors.

In conclusion, our experiments on NIV2 and
Self-Instruct demonstrate that our prompt uncer-
tainty method consistently improves cross-task
generalization in two different instruction tuning
scenarios, surpassing random sampling and other
uncertainty baselines.
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Figure 7: The performance comparison between training on
Ambiguous, Easy, and Difficult tasks on the NIV2 dataset.
The setting is similar to Figure 3, but we run all methods with
three runs for the early active instruction tuning iterations.

5 Task Map

Prior work tries to understand a dataset’s charac-
teristics in the field of Dataset Diagnosing. Mo-
tivated by Data Map (Swayamdipta et al., 2020),
we propose Task Map, a model-based diagnosing
tool that understands the contributions of different
groups of tasks towards instruction tuning. Differ-
ent from previous work using data correctness and
variability to construct data map, we propose to
map tasks with the dimensions of Prediction Proba-
bility and Prompt Uncertainty, as in Figure 6. This
follows a hypothesis from recent work in explain-
ing in-context learning (ICL) (Xie et al., 2021):
when the model performs a task in-context during
test time (ICL), it might implicitly map the prompt
to a corresponding latent concept and perform the
task under the concept. Prediction Probability rep-
resents the model’s confidence to perform a task,
indicating task difficulties. In comparison, Prompt
Uncertainty represents the consistency of a model
to map a prompt to a certain concept, indicating
the task’s ambiguity to the model. We further fol-
low the above intuition to categorize the tasks into
three types: Ambiguous tasks, where models fail
to recognize them and have high prompt uncer-
tainty; Easy and Difficult tasks, where models can
map the prompts to a certain latent task knowledge
(low prompt uncertainty) and perform the task with
high/low confidence (sentence probability), respec-
tively. We then use the tasks from these three cate-
gories for instruction tuning on NIV2 (Wang et al.,
2022a) to understand the contributions of different
groups of tasks.

We show the results in Figure 7. It is seen that
while training on Ambiguous tasks can effectively
improve IT generalization ability and outperform
random baseline, training on Easy tasks and Diffi-
cult tasks is generally worse than randomly select-
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ing tasks. Furthermore, when selecting more Easy
tasks can still slightly boost the IT model’s perfor-
mance, Difficult tasks can be useless, showing no
benefit to the IT model’s performance with more
training tasks. We hypothesize that Difficult tasks
can be too specific and hard to learn, therefore
useless for improving the IT model’s cross-task
generalization. While our proposed Task Map can
already help diagnose task quality for IT, we look
forward to future work conducting a more compre-
hensive analysis to discuss the role of these task
categories to bring a comprehensive understanding
of instruction tuning and in-context learning.

6 Discussion

6.1 Prompt Uncertainty Reflects Task Novelty

To demonstrate how prompt uncertainty reflects
the novelty of tasks to a model, we designed a
controlled experiment to visualize how the prompt
uncertainty scores of tasks change after the model
is trained with relevant tasks. To collect a set of rel-
evant tasks, we first gathered eight Word Analogy
tasks from the NIV2 (Wang et al., 2022b) testing
set, which is held unseen from the NIV2 training
set. In Figure 8, we measured the prediction
probability and prompt uncertainty for 620 unseen
tasks (unrelated to analogy tasks) from the NIV2
training set and four of the unseen analogy tasks
using an instruction-tuned model, labeled as M0,
and plotted the task map in blue. We further trained
the M0 model with the other four analogy tasks,
resulting in a new model called M1, and used it
to plot the task map for the 620 irrelevant tasks
and four unseen analogy tasks again in orange. It
is evident that after training the M0 model with the
four analogy tasks, the overall prompt uncertainty
distribution of the 620 irrelevant tasks remains
relatively unchanged, while the prompt uncertainty
of the four unseen analogy tasks consistently and
significantly decreases.3This demonstrates that
prompt uncertainty can effectively indicate the nov-
elty of tasks within the model. When the model is
trained with specific tasks, the prompt uncertainty
of those relevant tasks notably decreases. Addi-
tionally, please note that the prediction probability
does not increase after training with similar tasks
for these four analogy tasks. This observation
highlights that using prediction probability alone
cannot effectively reflect the novelty of tasks.
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Figure 8: Tasks’ prompt uncertainty shifts before and after
training with four analogy tasks. We visualize all the tasks on
the task map with two models, M0 (Blue) and M1 (Orange).
M0 is the same instruction-tuned model as in Figure 6,
which does not train on any analogy tasks. M1 is M0,
further trained with four analogy tasks: task1159, task1154,
task1152, task1155.Additionally, we measure the prediction
probability and prompt uncertainty of 620 irrelevant tasks
and four unseen analogy tasks, task1157, task1156, task1158,
task1153, using both M0 and M1, plotted in orange and blue.
It can be seen that after training the model with analogy tasks
(from M0 to M1), the prompt uncertainty of the four unseen
analogy tasks consistently decreases, while the distribution
of other irrelevant tasks remains relatively unchanged.

6.2 Prompt Perturbation Methods

While prompt perturbation methods are meant to
slightly perturb the prompt without changing its
meanings, it is difficult to 100% guarantee the
preservation of instruction meaning after automatic
paraphrasing methods. To ensure the prompt un-
certainty is not measured using an extreme per-
turbation case, we perturbed all instructions 20
times in our experiments. We also tried several
instruction perturbation methods at our early exper-
iment stage, such as randomly repeating tokens or
adding extraneous tokens, which achieved similar
prompt uncertainty scores as randomly dropping
words. Additionally, for the NIV2 and Self-Instruct
datasets we used, which have detailed instructions
with many redundant tokens (average 56 words
per instruction), randomly dropping 20% of tokens
will mostly preserve the meaning of the instruc-
tions. For other datasets with concise instructions,
a higher dropping rate is needed to perturb the in-
structions, leading to a higher probability of chang-
ing instructions meaning entirely.

3From M0 to M1, the average decrease in prompt uncer-
tainty scores is 0.0018 for the 620 irrelevant tasks and 0.039
for the four analogy tasks. The prompt uncertainty of analogy
tasks decreases 21 times more than that of the irrelevant tasks.
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7 Related Work

7.1 Instruction Tuning Paradigm
By training large language models (LLMs) with
diverse tasks and corresponding instructions, it al-
lows the model to achieve a decent cross-task gener-
alization ability (Wei et al., 2021; Sanh et al., 2021;
Wang et al., 2022b; Taori et al., 2023; Chiang et al.,
2023; Ouyang et al., 2022). Following the obser-
vation from prior research (Xu et al., 2022; Wang
et al., 2022a) that scaling up the number of tasks
can significantly improve zero-shot generalization,
there is research on continuously adding knowledge
to large language models (Scialom et al., 2022;
Jang et al., 2023), along with many large-scale IT
datasets emerged. Wang et al. (2022a); Wei et al.
(2021); Bach et al. (2022); Xu et al. (2022); Jiao
et al. (2023) manually augment existing datasets
to form large-scale IT datasets and Gupta et al.
(2022); Finlayson et al. (2022) manually construct
new IT datasets in specific domains. There are
also automatic approaches to collecting large-scale
IT datasets. Wang et al. (2022a); Honovich et al.
(2022) propose generating moderate-quality data
from powerful IT models, like GPT-4 and Chat-
GPT (OpenAI, 2023). Recently, Dynosaur (Yin
et al., 2023a) proposes to curate instructions for the
continuously growing huggingface dataset (Lhoest
et al., 2021) using GPT-4 to create high-quality
IT data with low costs. Additionally, we would
like to highlight that as IT models rapidly scale in
performance with larger models and datasets, the
concern of whether they adhere to instructions still
remains (Yin et al., 2023b; Kung and Peng, 2023;
Min et al., 2022; Yang et al., 2023; Li et al., 2023;
Xue et al., 2023), and requires further investigation.
For recent IT development, see (Zhang et al., 2023)
for a detailed survey.

7.2 Uncertainty Estimation for LLMs
Uncertainty estimation is essential for ensuring
safe deployments of neural networks (Abdar
et al., 2021). Prior works have decomposed the
total uncertainty into aleatoric (data) uncertainty
and epistemic (model) uncertainty, and proposed
methods to quantify each of them, represented
by Monte-Carlo Dropout (Gal and Ghahramani,
2016) and Deep Ensemble (Lakshminarayanan
et al., 2017). In particular, data uncertainty
measures the intrinsic uncertainty from the data
distribution. Model uncertainty measures the
uncertainty due to lack of understanding of the

task, and can be leveraged to detect adversarial or
out-of-distribution data (Feinman et al., 2017; Yin
et al., 2022). Recent works have also extended un-
certainty quantification to autoregressive language
models (Xiao and Wang, 2019; Malinin and Gales,
2020). In this work, we propose a novel epistemic
uncertainty measurement for instruction-tuned
LLMs by measuring the disagreement of models
conditioned on perturbed instructions.

7.3 Active Learning and Task Selection

Our work is also related to active learning, which
iteratively annotates informative instances from an
unlabeled pool for efficient training (Olsson, 2009;
Siddhant and Lipton, 2018; Zhang et al., 2022).
Strategies for querying informative instances fall
into different categories. See Zhang et al. (2022)
for a detailed survey. Our method is more related
to disagreement-based active learning (Houlsby
et al., 2011; Siddhant and Lipton, 2018; Shen et al.,
2017), which queries for instances where multiple
models disagree the most, and is usually combined
with model uncertainty measurements (Gal and
Ghahramani, 2016). However, different from ac-
tive learning which selects informative instances,
we consider selections at task-level. We show that
simply adopting prior active learning strategies at
task-level do not work well and propose our own
methods. There are also works doing task selection
for specific target tasks (Parvez and Chang, 2021;
Zhou et al., 2023). However, we do not assume
knowledge of the target task but select tasks solely
based on the uncertainty information of the model.

8 Conclusion

We propose Active Instruction Tuning with
prompt uncertainty, a framework to enhance the
generalization ability of the IT model in large-scale
instruction tuning. Our experiments on NIV2 and
Self-Instruct datasets demonstrate that training on
prompt uncertain tasks consistently outperforms
random sampling and other uncertainty baselines,
highlighting the effectiveness of our approach. We
also introduce Task Map, a tool that categorizes
tasks based on prompt uncertainty and prediction
probability, revealing that while training on am-
biguous tasks improves generalization, some diffi-
cult tasks offer no benefit. These findings motivate
future investigations into prompt uncertainty and
task selection strategies for better understanding
cross-task generalization and instruction tuning.
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Limitations

While our experiments demonstrate the superiority
of our proposed prompt uncertainty method over
other baseline task selection methods on the
NIV2 and Self-Instruct datasets, there are several
limitations to consider. Firstly, our experiments are
conducted on open-source instruction tuning mod-
els and do not consider the impact of reinforcement
learning with human feedback in Instruct-GPT
(Ouyang et al., 2022). Secondly, although we
conducted our experiments on well-constructed
instruction tuning datasets, it is important to
note that this setting may not fully capture the
challenges posed by noisy or poorly constructed
tasks in extreme scenarios, which may require
techniques such as noisy task filtering or batch
active learning. Lastly, our current experiment
on active instruction tuning focuses on comparing
task selection methods and does not incorporate
the effect of continual learning, which could be
valuable for improving IT models in realistic
settings. In summary, our work primarily focuses
on introducing active instruction tuning and com-
paring task selection methods within a controlled
environment. We look forward to future research
to conduct further analysis to comprehensively
examine the effects of all these factors.

Ethics Statement

We describe the computation resources and models
we used to conduct our experiments. We conduct
all experiments on 4 to 8 48GB NVIDIA A6000
GPUs or 2 to 4 NVIDIA A100 GPUs, along with
48 TB disk storage and AMD EPYC 7413 24-Core
Processor. The experiment takes around 5500 GPU
hours for one 48GB NVIDIA A6000 GPU. Our
experiments do not need to leverage private data.
For the model, we use open-sourced Huggingface
T5-large-lm-adapt models and LLaMA-7B,
Stanford Alpaca-7B for our experiments, and we
will release our code once the paper is accepted.

Acknowledgements

We would like to thank Hritik Bansal and Da
Yin for their valuable insights during discussion,
paper reviews, and constructive comments. We
thank the anonymous reviewers for their feedback.
This work was partially supported by AFOSR
MURI via Grant #FA9550-22-1-0380, Defense Ad-
vanced Research Project Agency (DARPA) grant

#HR00112290103/HR0011260656, CISCO and
ONR grant #N00014-23-1-2780.

References
Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana

Rezazadegan, Li Liu, Mohammad Ghavamzadeh,
Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Ra-
jendra Acharya, et al. 2021. A review of uncertainty
quantification in deep learning: Techniques, applica-
tions and challenges. Information Fusion, 76:243–
297.

Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Al-
bert Webson, Colin Raffel, Nihal V Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, et al. 2022. Promptsource: An integrated
development environment and repository for natural
language prompts. arXiv preprint arXiv:2202.01279.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and
Andrew B Gardner. 2017. Detecting adversarial sam-
ples from artifacts. arXiv preprint arXiv:1703.00410.

Matthew Finlayson, Kyle Richardson, Ashish Sabhar-
wal, and Peter Clark. 2022. What makes instruc-
tion learning hard? an investigation and a new chal-
lenge in a synthetic environment. arXiv preprint
arXiv:2204.09148.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Prakhar Gupta, Cathy Jiao, Yi-Ting Yeh, Shikib Mehri,
Maxine Eskenazi, and Jeffrey P Bigham. 2022. Im-
proving zero and few-shot generalization in dia-
logue through instruction tuning. arXiv preprint
arXiv:2205.12673.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. arXiv
preprint arXiv:2212.09689.

1822

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416


Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and
Máté Lengyel. 2011. Bayesian active learning for
classification and preference learning. arXiv preprint
arXiv:1112.5745.

Hamish Ivison, Noah A Smith, Hannaneh Hajishirzi,
and Pradeep Dasigi. 2022. Data-efficient finetuning
using cross-task nearest neighbors. arXiv preprint
arXiv:2212.00196.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung
Kim, Lajanugen Logeswaran, Moontae Lee, Kyung-
jae Lee, and Minjoon Seo. 2023. Exploring the bene-
fits of training expert language models over instruc-
tion tuning. arXiv preprint arXiv:2302.03202.

Wenxiang Jiao, Jen tse Huang, Wenxuan Wang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Parrot:
Translating during chat using large language models.
ArXiv.

Po-Nien Kung and Nanyun Peng. 2023. Do mod-
els really learn to follow instructions? an empir-
ical study of instruction tuning. arXiv preprint
arXiv:2305.11383.

Po-Nien Kung, Sheng-Siang Yin, Yi-Cheng Chen, Tse-
Hsuan Yang, and Yun-Nung Chen. 2021. Efficient
multi-task auxiliary learning: selecting auxiliary data
by feature similarity. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 416–428.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems,
30.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Zekun Li, Baolin Peng, Pengcheng He, and Xifeng Yan.
2023. Evaluating the instruction-following robust-
ness of large language models to prompt injection.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Andrey Malinin and Mark Gales. 2020. Uncertainty esti-
mation in autoregressive structured prediction. arXiv
preprint arXiv:2002.07650.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Fredrik Olsson. 2009. A literature survey of active
machine learning in the context of natural language
processing.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023. What in-context learning" learns" in-context:
Disentangling task recognition and task learning.
arXiv preprint arXiv:2305.09731.

Md Rizwan Parvez and Kai-Wei Chang. 2021. Evalu-
ating the values of sources in transfer learning. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5084–5116, Online. Association for Computa-
tional Linguistics.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and
Iryna Gurevych. 2021. What to pre-train on? ef-
ficient intermediate task selection. arXiv preprint
arXiv:2104.08247.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6107–6122, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Burr Settles. 2009. Active learning literature survey.

1823

https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
http://arxiv.org/abs/2308.10819
http://arxiv.org/abs/2308.10819
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.402
https://doi.org/10.18653/v1/2021.naacl-main.402
https://doi.org/10.18653/v1/2022.emnlp-main.410
https://doi.org/10.18653/v1/2022.emnlp-main.410


Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kro-
nrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. In
Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Aditya Siddhant and Zachary C. Lipton. 2018. Deep
Bayesian active learning for natural language pro-
cessing: Results of a large-scale empirical study.
In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages
2904–2909, Brussels, Belgium. Association for Com-
putational Linguistics.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How
far can camels go? exploring the state of instruction
tuning on open resources.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, A. Arunk-
umar, Arjun Ashok, Arut Selvan Dhanasekaran,
Atharva Naik, David Stap, Eshaan Pathak, Gian-
nis Karamanolakis, Haizhi Gary Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Maitreya Patel, Kuntal Kumar Pal,
M. Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj
Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravse-
haj Singh Puri, Rushang Karia, Shailaja Keyur Sam-
pat, Savan Doshi, Siddharth Deepak Mishra, Sujan
Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen,
Chitta Baral, Yejin Choi, Noah A. Smith, Hanna
Hajishirzi, and Daniel Khashabi. 2022b. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Yijun Xiao and William Yang Wang. 2019. Quantifying
uncertainties in natural language processing tasks.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7322–7329.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang-
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Zero-
prompt: Scaling prompt-based pretraining to 1,000
tasks improves zero-shot generalization. arXiv
preprint arXiv:2201.06910.

Tianci Xue, Ziqi Wang, Yixia Li, Yun Chen, and Guan-
hua Chen. 2023. Tadis: Steering models for deep-
thinking about demonstration examples.

Cheng-Fu Yang, Yen-Chun Chen, Jianwei Yang, Xiyang
Dai, Lu Yuan, Yu-Chiang Frank Wang, and Kai-Wei
Chang. 2023. Lacma: Language-aligning contrastive
learning with meta-actions for embodied instruction
following.

Da Yin, Xiao Liu, Fan Yin, Ming Zhong, Hritik Bansal,
Jiawei Han, and Kai-Wei Chang. 2023a. Dynosaur:
A dynamic growth paradigm for instruction-tuning
data curation. arXiv preprint arXiv:2305.14327.

Fan Yin, Yao Li, Cho-Jui Hsieh, and Kai-Wei Chang.
2022. Addmu: Detection of far-boundary adversarial
examples with data and model uncertainty estimation.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caim-
ing Xiong, and Chien-Sheng Jason Wu. 2023b. Did
you read the instructions? rethinking the effective-
ness of task definitions in instruction learning. arXiv
preprint arXiv:2306.01150.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2023. Instruc-
tion tuning for large language models: A survey.

Zhisong Zhang, Emma Strubell, and Eduard Hovy. 2022.
A survey of active learning for natural language pro-
cessing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 6166–6190, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Jing Zhou, Zongyu Lin, Yanan Zheng, Jian Li, and
Zhilin Yang. 2023. Not all tasks are born equal:
Understanding zero-shot generalization. In The
Eleventh International Conference on Learning Rep-
resentations.

1824

https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2310.00901
http://arxiv.org/abs/2310.00901
http://arxiv.org/abs/2310.12344
http://arxiv.org/abs/2310.12344
http://arxiv.org/abs/2310.12344
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/2308.10792
https://aclanthology.org/2022.emnlp-main.414
https://aclanthology.org/2022.emnlp-main.414
https://openreview.net/forum?id=KGV-GBh8fb
https://openreview.net/forum?id=KGV-GBh8fb


A Appendix

A.1 Evaluation details

Human Evaluation For human evaluation in sec-
tion 4 and Figure 4, we recruit crowd-source work-
ers on Amazon Mechanical Turk who are native
English speakers, score at least 70% on a qualifica-
tion test, and pass the attention test. For the anno-
tation task, three annotators are presented with the
task instruction, the input, and the expected output,
followed by two models’ outputs in random order.
The annotators are asked to indicate whether the
first model wins, loses, or has a tie. An example of
the annotation interface is presented Figure 9. The
final comparison decisions are aggregated from the
raw annotations using majority voting. We assign
a tie label when all the annotators disagree. To
calculate the inter-annotator agreement, we define
no-contradiction as agreement with the tie entries
removed since an annotator slightly supporting a
model may also vote for a tie. Under this definition,
the no-contradiction rate is measured as 60.4%.
Among the cases with contradiction, we find two
annotators agree for 82% cases, and all annota-
tors disagree in only 18% cases. We set the per-
item reward to $0.1 to reach an hourly rate of $15.
We collect 3780 comparison annotations to com-
pare Prompt Uncertainty with Random Sampling
at each active instruction tuning iteration. The total
annotation cost is approximately 600 US Dollars.

GPT-4/Chat-GPT Evaluation We conduct
a blind pairwise comparison on GPT-4 and
Chat-GPT (GPT-3.5) models using Open-AI API,
following a similar template as we used for human
evaluation, which is shown in Table 2. To compare
two models on one instance, we will randomly as-
sign "(1)" and "(2)" to the model’s predictions and
prompt the model to reply with the better choice or
"Equal" if two predictions are equally good. Note
that when applying GPT evaluation, there are very
rare cases (about 0.7% of the cases) that the GPT
models will reply with unrelated output, which we
will assign "Equal" to these instances. The total
annotation cost is approximately 50 US Dollars
for GPT-4 and 2 US Dollars for Chat-GPT. For full
evaluation results, please refer to Table 4

A.2 Experiment details

We provide the details of our experiments
on two well-known instruction tuning datasets:
NIV2 (Wang et al., 2022b) and Self-Instruct

dataset (Wang et al., 2022a).

NIV2 - Active Instruction Tuning Details We
utilize the NIV2 English tasks split, comprising
756 training tasks and 119 testing tasks, including
classification and generative tasks. We employ five
random seeds without selection in our active in-
struction tuning experiment. Each seed involves
randomly sampling 68 tasks as initial training tasks
and 68 tasks as validation tasks. The remaining
620 training tasks form the remaining task pool. In
each active learning iteration, we maintain a fixed
classification and generative task ratio and select
24 classification tasks and 44 generative tasks us-
ing different task selection strategies. This fixed
ratio allows a more meaningful comparison of our
results as we evaluate overall, classification, and
generative task scores separately. After the new
tasks are sampled, we add them to the previously
selected training tasks and form a new training task
set. We further train a new instruction tuning model
with the updated training task set.

Self-Instruct - Active Instruction Tuning De-
tails We utilize the 52K self-instruct dataset as
the task pool. For the active instruction tuning ex-
periment, we will randomly sample 500 tasks as the
initial training set and further compare model per-
formance at [1000, 2000, 4000, 8000, 16000] train-
ing tasks. For task selection, we will first divide
all tasks into 13 chunks by output sequence length
[[1, 10], [11, 20], ..., [121, 130]], and then apply the
task selection methods on each chunk of tasks, fol-
lowing the ratio of the number of tasks in all chunks.
We conduct this extra step to normalize the output
sequence length of the selected task for each task se-
lection method. This ensures there is no imbalance
in output sequence length during task selection.

Training Details For experiments on NIV2
dataset (Wang et al., 2022b), we follow the TK-
instruct setting, the SOTA model on the NIV2
dataset to train the T5-770M model (Raffel et al.,
2020) with learning rate 2e-5, batch size 128 and
200 instances per task for eight epochs. We evalu-
ate the model’s zero-shot performance on the vali-
dation set at each epoch and select the model check-
point with the best validation score. For evalua-
tion, we follow (Kung and Peng, 2023) setting
to report the Rouge-L score of Overall, Classifi-
cation, and Generative tasks on both validation
and testing sets. For experiments on Self-Instruct
dataset (Wang et al., 2022a), We follow Alpaca’s
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settings to train the LLaMA-7B model with learn-
ing rate 2e-5, batch size 128 for four epochs.

Computing Resources For the experiment on
NIV2 dataset (Wang et al., 2022b), we conduct
our experiments using 4 to 8 Nvidia 48GB A6000
GPUs. For each uncertainty method, it takes
around 1200 GPU hours, a total of 5000 GPU
hours(for a single GPU), to run all experiments
for Figure 3. For the experiment on Self-Instruct
dataset (Wang et al., 2022a), we run with 2 Nvidia
80GB A100 GPUs. Each uncertainty method takes
around 40 GPU hours, which sums to 160 GPU
hours for all experiments in Figure 4.
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Given the model predictions from Random Sampling and Prompt Uncertainty which trained with 1000
tasks, we first randomly assign "(1)" and "(2)" tags:
(1): Prompt-Uncertainty-1000
(2): Random-Sampling-1000
Now we fill the GPT prompt template with these two model predictions.

GPT Prompt:
You’re a helpful AI system that is meant to imitate human judgment.
Given an instruction, input, and two predictions "(1)" and "(2)", please tell me which prediction is most
satisfying and correct.
If (1) is better, output "(1)".
If (2) is better, output "(2)".
If both predictions are equally good or equally bad, you can output "Equal".

Instruction:
If you could help me write an email to my friends inviting them to dinner on Friday, it would be greatly
appreciated.

Input:

Now given two predictions:

(1): Dear Friends,
I would like to invite you all to join me for dinner on Friday. I am planning to make some of my
favorite dishes, and I would love for you all to join me.

The dinner will be held at my place at 7pm on Friday, and I am looking forward to seeing you
all there.

Please let me know if you are able to make it so that I can make sure to have enough food.

See you then!

Sincerely,

[Your Name]

(2): Dear [Name],

With sincerity,
[Your Name]

Output:

GPT Output: (1)

Table 2: We show our GPT evaluation template. When comparing two models’ predictions, we will randomly assign
"(1)" or "(2)" tags and then fill them into the GPT templates with provided instruction and inputs. In this specific
instance, the input is an empty string. All the underlined text are the component we injected into the template.
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Figure 9: An example of the annotation interface for the human evaluation in §4.2.

NIV2 Results (Rouge-L) – Test Set
Task Selection Methods Task Num Overall Classification Generative
Random Seeds → 10 20 30 40 60 Avg Std 10 20 30 40 60 Avg Std 10 20 30 40 60 Avg Std
Fully Trained 680 50.51 48.96 49.41 47.27 49.39 49.11 1.18 57.03 53.35 53.99 50.26 54.00 53.73 2.41 44.43 44.87 45.13 44.47 45.09 44.80 0.33
Prompt Uncertainty 68 44.67 43.71 44.82 43.78 43.75 44.15 0.55 46.80 47.69 48.25 47.84 48.16 47.75 0.58 42.68 40.00 41.62 40.00 39.63 40.79 1.31

136 45.55 46.54 46.06 44.65 46.22 45.80 0.74 48.34 50.83 49.59 48.52 50.51 49.56 1.13 42.95 42.54 42.77 41.04 42.23 42.31 0.76
204 46.44 48.28 46.23 46.09 46.63 46.73 0.89 50.95 53.74 49.80 50.85 49.98 51.06 1.58 42.23 43.20 42.89 41.65 43.50 42.69 0.75
272 47.38 48.64 47.25 47.49 48.48 47.85 0.66 51.92 54.05 50.65 52.73 52.75 52.42 1.25 43.14 43.58 44.08 42.61 44.49 43.58 0.74
340 48.12 48.93 47.23 49.44 48.23 48.39 0.84 52.93 54.08 51.92 54.45 52.37 53.15 1.09 43.63 44.13 42.86 44.78 44.37 43.95 0.74

Random Sampling 68 44.67 43.71 44.82 43.78 43.75 44.15 0.55 46.80 47.69 48.25 47.84 48.16 47.75 0.58 42.68 40.00 41.62 40.00 39.63 40.79 1.31
136 45.07 45.75 44.55 45.04 45.15 45.11 0.43 48.45 50.50 47.82 47.97 49.56 48.86 1.14 41.92 41.32 41.50 42.31 41.04 41.62 0.50
204 46.15 46.87 45.94 46.15 45.26 46.07 0.58 49.76 51.36 49.08 48.73 49.72 49.73 1.01 42.79 42.68 43.02 43.74 41.09 42.66 0.97
272 47.90 48.24 46.44 46.24 46.25 47.01 0.97 53.90 53.38 50.34 50.00 50.15 51.55 1.92 42.30 43.44 42.81 42.74 42.61 42.78 0.42
340 47.37 48.35 47.82 47.22 47.33 47.62 0.47 50.12 52.74 52.61 50.54 51.94 51.59 1.20 44.81 44.26 43.35 44.11 43.02 43.91 0.72

High Perplexity 68 44.67 43.71 44.82 43.78 43.75 44.15 0.55 46.80 47.69 48.25 47.84 48.16 47.75 0.58 42.68 40.00 41.62 40.00 39.63 40.79 1.31
136 45.15 43.97 45.31 43.98 44.83 44.65 0.64 48.41 49.04 48.87 48.56 47.96 48.57 0.42 42.10 39.25 42.00 39.71 41.91 40.99 1.39
204 45.50 46.91 45.43 44.19 46.15 45.64 1.00 49.13 51.29 49.25 47.89 49.81 49.47 1.23 42.11 42.82 41.86 40.73 42.74 42.05 0.84
272 47.57 46.09 47.33 44.80 46.27 46.41 1.11 53.19 50.10 52.29 48.73 49.21 50.70 1.95 42.32 42.35 42.70 41.12 43.53 42.40 0.87
340 48.65 48.59 48.15 45.66 46.66 47.54 1.32 53.96 53.71 54.57 49.19 50.15 52.32 2.46 43.70 43.81 42.16 42.36 43.41 43.09 0.77

Low Perplexity 68 44.67 43.71 44.82 43.78 43.75 44.15 0.55 46.80 47.69 48.25 47.84 48.16 47.75 0.58 42.68 40.00 41.62 40.00 39.63 40.79 1.31
136 45.15 45.99 46.13 45.55 45.10 45.58 0.47 46.99 48.82 48.72 49.10 49.88 48.70 1.06 43.43 43.36 43.72 42.24 40.64 42.68 1.27
204 46.21 46.21 46.22 47.79 46.01 46.49 0.73 49.63 48.83 48.83 51.63 50.95 49.97 1.27 43.02 43.76 43.79 44.21 41.41 43.24 1.11
272 46.71 45.93 47.43 47.32 46.71 46.82 0.60 50.77 48.57 51.87 51.39 50.89 50.70 1.27 42.93 43.48 43.29 43.51 42.80 43.20 0.32
340 47.86 48.34 47.29 47.57 46.47 47.51 0.70 52.64 51.46 50.66 51.92 50.14 51.36 0.99 43.40 45.43 44.15 43.51 43.05 43.91 0.94

NIV2 Results (Rouge-L) – Validation Set
Task Selection Methods Task Num Overall Classification Generative
Random Seeds → 10 20 30 40 60 Avg Std 10 20 30 40 60 Avg Std 10 20 30 40 60 Avg Std
Full 680 50.86 48.24 48.28 48.36 47.52 48.65 1.28 58.66 59.76 54.86 57.52 59.68 58.10 2.02 43.04 36.47 41.71 38.94 35.27 39.09 3.31
Prompt Uncertainty 68 42.27 41.28 41.40 44.66 41.15 42.15 1.47 44.42 53.67 46.83 53.32 55.39 50.73 4.80 40.11 28.90 35.97 36.01 26.92 33.58 5.49

136 44.78 43.35 45.69 48.16 42.57 44.91 2.19 49.29 57.21 52.76 57.93 56.47 54.73 3.64 40.27 29.48 38.61 38.38 28.67 35.08 5.54
204 47.75 47.60 46.98 50.03 44.17 47.31 2.10 53.69 60.83 53.21 60.31 57.01 57.01 3.57 41.81 34.36 40.75 39.75 31.34 37.60 4.53
272 47.69 47.98 48.13 49.73 46.54 48.01 1.14 55.5 61.03 54.45 60.80 59.85 58.33 3.11 39.88 34.93 41.81 38.66 33.23 37.70 3.54
340 48.12 48.00 48.39 49.61 47.31 48.29 0.84 56.78 60.31 54.92 60.79 60.79 58.72 2.71 39.45 35.70 41.85 38.43 33.82 37.85 3.15

Random Sampling 68 42.27 41.28 41.40 44.66 41.15 42.15 1.47 44.42 53.67 46.83 53.32 55.39 50.73 4.80 40.11 28.90 35.97 36.01 26.92 33.58 5.49
136 45.31 44.36 43.61 47.39 42.25 44.58 1.93 50.75 56.15 50.21 56.77 56.45 54.07 3.29 39.87 32.57 37.01 38.01 28.06 35.10 4.77
204 45.99 45.54 45.78 47.73 43.91 45.79 1.36 49.09 56.43 51.56 56.74 56.41 54.05 3.51 42.88 34.64 39.99 38.72 31.40 37.53 4.53
272 47.38 47.13 45.99 48.76 46.05 47.06 1.14 52.79 60.45 52.58 58.61 59.03 56.69 3.72 41.98 33.80 39.41 38.90 33.06 37.43 3.84
340 47.98 48.89 47.80 49.52 45.15 47.87 1.67 54.80 61.90 54.71 60.50 56.95 57.77 3.29 41.17 35.88 40.89 38.54 33.34 37.96 3.35

High Perplexity 68 42.27 41.28 41.40 44.66 41.15 42.15 1.47 44.42 53.67 46.83 53.32 55.39 50.73 4.80 40.11 28.90 35.97 36.01 26.92 33.58 5.49
136 43.43 43.79 41.51 47.04 42.36 43.63 2.11 48.34 55.35 50.13 56.09 55.75 53.13 3.62 38.51 32.24 32.90 38.00 28.98 34.13 4.05
204 44.11 46.97 41.89 47.07 43.63 44.73 2.24 48.75 58.62 50.16 56.65 57.89 54.41 4.61 39.47 35.32 33.62 37.49 29.37 35.05 3.87
272 49.59 44.64 44.29 49.02 44.53 46.41 2.65 56.83 55.59 52.85 58.34 58.41 56.40 2.30 42.35 33.70 35.73 39.69 30.65 36.42 4.66
340 50.14 48.74 47.37 50.35 44.79 48.28 2.29 56.30 62.06 56.41 60.38 56.73 58.38 2.67 43.98 35.43 38.33 40.31 32.86 38.18 4.30

Low Perplexity 68 42.27 41.28 41.40 44.66 41.15 42.15 1.47 44.42 53.67 46.83 53.32 55.39 50.73 4.80 40.11 28.90 35.97 36.01 26.92 33.58 5.49
136 43.85 43.80 41.21 46.77 41.41 43.41 2.26 47.87 55.52 47.05 56.04 54.90 52.28 4.42 39.83 32.09 35.38 37.49 27.92 34.54 4.67
204 46.62 44.17 42.88 49.49 43.85 45.40 2.67 50.72 56.68 49.53 59.04 56.53 54.50 4.14 42.53 31.66 36.23 39.94 31.18 36.31 5.00
272 47.22 46.02 46.83 49.64 44.30 46.80 1.94 53.95 57.95 54.37 60.29 57.53 56.82 2.65 40.49 34.08 39.30 39.00 31.06 36.79 4.03
340 47.08 48.85 47.58 50.47 45.45 47.89 1.89 55.12 61.16 53.75 61.23 57.99 57.85 3.42 39.04 36.54 41.42 39.71 32.91 37.92 3.31

Table 3: Full experiment results in Figure 3.
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Task Selection Methods Task Num Win Lose Tie Error Win - Lose*
Fully Trained 1000 143 55 54 0 88

2000 129 55 67 1 74
4000 104 70 78 0 34
8000 95 67 90 0 28
16000 84 67 101 0 17

Prompt Uncertainty (Ours) 1000 83 72 97 0 11
2000 100 73 79 0 27
4000 75 94 83 0 19
8000 89 75 88 0 14
16000 78 83 91 0 -5

High Perplexity 1000 64 88 100 0 24
2000 83 81 88 0 2
4000 77 84 91 0 -7
8000 80 88 84 0 -8
16000 70 86 96 0 16

Low Perplexity 1000 73 81 98 0 -8
2000 78 96 78 0 18
4000 74 03 75 0 29
8000 73 04 75 0 31
16000 71 97 84 0 26

Task Selection Methods Task Num Win Lose Tie Error Win - Lose*
Fully Trained 1000 117 62 71 2 55

2000 125 71 55 1 54
4000 99 74 76 3 25
8000 93 71 86 2 22
16000 82 72 98 0 10

Prompt Uncertainty (Ours) 1000 94 70 88 0 24
2000 94 73 82 3 21
4000 86 76 90 0 10
8000 86 76 88 2 10
16000 83 83 86 0 0

High Perplexity 1000 58 95 98 1 -37
2000 88 74 90 0 14
4000 84 86 82 0 -2
8000 82 81 84 5 1
16000 68 93 91 0 -25

Low Perplexity 1000 68 98 86 0 -30
2000 82 90 79 1 -8
4000 71 103 74 4 -32
8000 80 106 66 0 -26
16000 76 96 79 1 -20

Task Selection Methods Task Num Win Lose Tie Error Win - Lose*
Prompt Uncertainty (Ours) 1000 101 88 13 – 13

2000 74 66 8 – 8
4000 94 83 11 – 11
8000 93 84 9 – 9
16000 91 93 -2 – -2

GPT-4 Evaluation (Compare to Random Sampling)

Chat-GPT Evaluation (Compare to Random Sampling)

Human Evaluation (Compare to Random Sampling)

Table 4: Full experiment results in Figure 4.
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