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Abstract

ASTE (Aspect Sentiment Triplet Extraction)
has gained increasing attention. Recent ad-
vancements in the ASTE task have been pri-
marily driven by Natural Language Generation-
based (NLG) approaches. However, most
NLG methods overlook the supervision of the
encoder-decoder hidden representations and
fail to fully utilize the semantic information
provided by the labels to enhance supervision.
These limitations can hinder the extraction of
implicit aspects and opinions. To address these
challenges, we propose a tagging-assisted gen-
eration model with encoder and decoder super-
vision (TAGS), which enhances the supervision
of the encoder and decoder through multiple-
perspective tagging assistance and label se-
mantic representations. Specifically, TAGS
enhances the generation task by integrating
an additional sequence tagging task, which
improves the encoder’s capability to distin-
guish the words of triplets. Moreover, it uti-
lizes sequence tagging probabilities to guide
the decoder, improving the generated content’s
quality. Furthermore, TAGS employs a self-
decoding process for labels to acquire the se-
mantic representations of the labels and aligns
the decoder’s hidden states with these seman-
tic representations, thereby achieving enhanced
semantic supervision for the decoder’s hidden
states. Extensive experiments on various public
benchmarks demonstrate that TAGS achieves
state-of-the-art performance.

1 Introduction

Aspect Sentiment Triplet Extraction (ASTE) aims
to extract sentiment triplets from a sentence, i.e.,
Aspect: the aspect term represents an explicit men-
tion of a discussed target, Opinion: the mentioned
comment terms/phrases, Sentiment: sentiment po-
larity of the aspect, holding significant potential in
downstream research and applications. Unlike sen-
tence sentiment classification, ASTE emphasizes
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the explanation for sentiments, explicitly highlight-
ing the causes of sentiments and the entities to
which they are attached. This task involves address-
ing challenges such as the diversity of emotional
expressions and the complexity of linguistic con-
texts. For instance, in the sentence "Food wise, it’s
ok but a bit pricey for what you get considering
the restaurant isn’t a fancy place," three sentiment
triplets can be extracted: (food, ok, neutral), (food,
pricey, neutral), and (restaurant, isn’t a fancy place,
neutral).

Existing Methods The current mainstream ap-
proaches for ASTE can be classified into two cat-
egories: sequence tagging-based approaches and
sequence generation-based approaches. ASTE em-
ployed a sequence tagging method initially intro-
duced by Peng et al. (2020). However, the sequence
tagging-based approaches in ASTE fail to capture
the semantic information conveyed by the labels,
which can result in semantic mismatches in the pre-
dicted results (Zhang et al., 2021b). By leveraging
the rich label semantic information and mitigating
the potential error propagation in pipeline methods
(Paolini et al., 2021; Yu et al., 2023), generation
methods achieve better performance in ASTE.

Generation-based approaches still face two sig-
nificant challenges. Firstly, the supervision of hid-
den representations within encoder-decoder archi-
tectures has been overlooked, leading to potential
issues such as the degeneration of neural language
models and difficulty in identifying distinctive in-
formation (Su et al., 2022). In the context of the
ASTE task, this oversight can fail to extract im-
plicit aspects and opinions (Cai et al., 2021; Peper
and Wang, 2022). Secondly, during training, the se-
mantic information of the labels has yet to be fully
utilized. Traditional supervision utilizes labels in
the form of one-hot probability vectors without
fully leveraging the semantic information of the
labels at the hidden state level.

TAGS To address the challenges mentioned
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above, we propose a novel tagging-assisted gen-
eration model called TAGS, which enhances the su-
pervision of both the encoder and decoder through
multiple-perspective tagging assistance and label
semantic representations. TAGS consists of two
modules: "Empowering Generation through Se-
quence Tagging" (EGST) and "Label-Driven Se-
mantic Alignment" (LDSA).

In EGST, we utilize a sequence tagging task
to enhance the generation task through three as-
pects: Multitask Learning, Guided Generation, and
Result Optimization. Multitask learning: we en-
hance the supervision in the encoder of the gen-
eration model by introducing a sequence tagging
task. This additional task empowers the encoder
to distinguish between triplet and irrelevant words
effectively, thereby benefiting the generation task.
Guided Generation: We incorporate the sequence
tagging outputs into the decoder’s attention mech-
anism. This encourages the model to focus more
on the keywords identified by the sequence tag-
ging task. Result Optimization: Finally, during
inference, we utilize the sequence tagging results to
optimize the generation results, thereby improving
the quality of the results.

In LDSA, we further enhance the supervision for
the decoder’s hidden states in the generation model
by utilizing the semantic information conveyed by
labels. Firstly, we convert label triplets into a nat-
ural context, referred to as a label sentence, and
input the label sentence into the TAGS model to
obtain a more accurate hidden state, which also
serves as a semantic label representation. Subse-
quently, we dynamically align the hidden states of
the decoder to the label’s semantic representation
according to the comparison results between the
tokens corresponding to the semantic representa-
tion and the ground truth tokens. By this alignment,
the model can better capture the semantic informa-
tion conveyed by the labels, making the generation
more in line with the intended label semantics.

Extensive experimental results validate the ef-
fectiveness of the TAGS model. In summary, our
contributions to this work are threefold:

1. We propose a novel ASTE generation model,
which utilizes sequence tagging to assist the
generation via enhancing the supervision of
the encoder’s hidden state and incorporating
sequence tagging probabilities and results to
improve the generation process.

2. We obtain the semantic representation of la-

bels at the decoder level and achieve semantic
alignment of the decoder’s hidden state to the
labels in the generation model.

3. The experimental results show that our pro-
posed framework significantly outperforms
recent SOTA methods.

2 Problem statement

The input of the ASTE task is a sentence X =
{x1, x2, ..., xn}, where each xi represents a word
and n is the maximum length of the sentence. The
goal of the ASTE task is to generate a set of sen-
timent triplets T = {(a,o, s)k}|T |

k=1, where |T |
means the number of triplets in T . Each triplet
consists of an aspect term (a), an opinion term
(o), and the corresponding sentiment polarity (s)
(s ∈ {POS,NEU,NEG} ).

Our proposed TAGS is an encoder-decoder
model designed for the generation task, in which
the input is a natural sentence and the generation
target, i.e., the label sentence, is constructed by
concatenating triplets from the set T as follows:
Y = "a1, o1, s1; a2, o2, s2; . . . ; ak, ok, sk" , where
ai, oi, and si correspond to the i-th triplet (a, o, s)i.

3 Methodology

Fig. 1 shows our proposed TAGS method.
TAGS comprises two modules, an Empowering
Generation through Sequential Tagging module
(EGST) and a Label-Driven Semantic Alignment
(LDSA) module. EGST leverages sequence tag-
ging task to enhance the generation model in three
aspects: Multitask Learning, Guided Generation,
and Result Optimization. LDSA utilizes a label
self-decoding process to obtain the semantic repre-
sentation of labels and aligns the decoder’s hidden
states to the semantic representation during train-
ing, thereby achieving enhanced semantic supervi-
sion for the decoder’s hidden states.

3.1 Empowering Generation through
Sequence Tagging

TAGS leverages sequence tagging to enhance the
generation task from multiple perspectives, shown
in the right part of Fig. 1. Firstly, TAGS employs
a sequence tagging task as an additional task to
enhance the supervision of the encoder, thereby
improving its ability to differentiate between triplet
and irrelevant words. By sharing parameters be-
tween the sequence tagging model and the gener-
ation model, the enhanced discriminative power
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Figure 1: Overview of our TAGS framework, which consists of two parts: Empowering Generation through
Sequence Tagging (right) and Label-Driven Semantic Alignment (left). Sequence tagging enhances the generation
task in three aspects. Encoder Multitask Learning: Ltagging for sequence tagging task. Guided Generation:
the decoder’s Tag Attention incorporates probabilities (pi) from the sequence tagging task as additional weights
for its cross-attention mechanism. (The figure illustrates the generation of the q-th word.) Result Optimization:
"Inference" optimizes the generation results using tagging results. Semantic representation of the label (ĥY

De) is
obtained by inputting the label sentence (Y ) into the model. Lalignment is computed based on the cosine similarity
results (ĥX

De and ĥY
De) and the alignment labels L.

obtained from the sequence tagging task can also
benefit the triplets extraction process in the genera-
tion model. Next, the sequence tagging task prob-
abilities are integrated into the generation model,
compelling it to prioritize the words identified as
crucial by the sequence tagging results. This inte-
gration ensures that the generation model produces
content closely aligned with those words. Lastly,
TAGS utilizes the sequence tagging task results dur-
ing inference to optimize the generated results. By
considering the results from both methods, TAGS
achieves a more comprehensive information fusion,
enhancing overall model performance.

3.1.1 Sequence Tagging Task
We perform multitask learning by simultaneously
training a generation task and a sequence tagging
task.

Tagging Scheme In our designed sequence tag-
ging scheme, each word will be classified into one
of 7 categories. The "N" category represents non-
keywords, while the remaining 6 categories rep-
resent aspects and opinions, each combined with
three sentiment types (positive, negative, and neu-
tral). Read Appendix A.1 for detailed descriptions.

Tagging Task A tagging sample is de-

noted as (X,Z), where Z is the tagging label
{z1, z2, z3, . . . , zn}. The encoder encodes X to
obtain hidden states HX

En:

HX
En = En([x1, x2, . . . , xn]) = [hX1 , hX2 , . . . , hXn ] (1)

where En is Encoder,HX
En ∈ Rn×d, d denotes the

hidden dimension. HX
En is also the encoder hidden

state for the generation task. Pass HX
En through a

fully connected layer to obtain the tag probabilities
pi:

pi = softmax(W1h
X
i + b1) (2)

where W1 ∈ R7×d, b1 ∈ R7, and pi ∈ R7 repre-
sents the probability distribution of the i-th word
across 7 tags. We calculate the sequence tagging
loss using cross-entropy loss:

Ltagging =

n∑

i=1

CE(pi, zi) (3)

3.1.2 Generation guided by sequence tagging
Tag Attention To leverage the guidance informa-
tion the sequence tagging task provides, we com-
pute the probability p̃i of the i-th word being a
keyword. pi[0] denotes the probability of the i-th
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word belonging to the non-keyword category ("N").
Consequently, p̃i = 1 − pi[0] indicates the prob-
ability of the i-th word belonging to the keyword
category. We incorporate p̃i into the cross-attention
mechanism of the decoder in the generation model
as follows:

ãti =
exp((1 + p̃i) · ati)∑n
j=1 exp((1 + p̃j) · atj)

(4)

where ati represents the attention score at the t-
th row and i-th column in the cross-attention score
matrix before applying softmax. ãti denotes the fi-
nal adjusted attention score after applying softmax.
(1 + p̃i) ensures a balanced contribution from both
the sequence tagging task and inherent generation
task to the attention distribution. Compared to the
formulation without adding 1 to p̃i (Appendix A.3),
this formulation effectively enhances the genera-
tion process while mitigating the potential impact
of tagging errors on overall generation quality (Ap-
pendix B.2).

Generation Task A sample is denoted as
(X,Y), where Y represents the label sentence
{y1, y2, y3, . . . , ym} , with m being the maximum
length of Y. The loss function for the generation
task with model parameters θ is defined as follows:

Lgeneration = −
m∑

t=1

log pθ(yt|X, y<t) (5)

3.1.3 Inference
During inference, we leverage the sequence tag-
ging results to optimize the generated outputs. The
main operation involves comparing the generated
triplets from the generation task with the triplets
from the sequence tagging task. If the generated
aspect is a subset of the sequence tagging aspect
set, or vice versa, and the generated opinion is a
subset of the sequence tagging opinion set, or vice
versa, the triplet is retained. Otherwise, the triplet
is discarded. Read Appendix A.2 for details.

3.2 Label-Driven Semantic Alignment
The form of supervision, similar to Equation 5,
lacks fine-grained supervision at the hidden state
level and fails to fully utilize the semantic informa-
tion embedded in the labels. In Label-Driven Se-
mantic Alignment (shown in the left part of Fig. 1),
we employ a label self-decoding process to obtain
a more accurate decoder hidden state, which serves
as a semantic representation of the label. During

training, We align the decoder’s hidden state to
the semantic representation, thereby enhancing the
supervision of the decoder’s hidden state. This
alignment ensures that the generated output closely
matches the semantic content of the label.

Label Semantic Representation During train-
ing, we input the label sentence Y into the model
to obtain the decoder’s hidden state:

HY
De = En-De([y1, y2, . . . , ym]) = [ĥY1 , ĥ

Y
2 , . . . , ĥ

Y
m] (6)

where En-De means encoder-decoder architec-
ture. Since the label sentence contains only the
words of the correct triplets, the model can effort-
lessly extract the correct triplets from it. In this
case, the model’s input and output are both the la-
bel sentence, essentially forming a self-decoding
process. Furthermore, due to the absence of ir-
relevant words in the input, HY

De is more accu-
rate compared to HX

De, where HX
De = De(HX

En) =
[ĥX1 , ĥX2 , . . . , ĥXm], as demonstrated in Experiment
4.3.3. Therefore, we regard HY

De as an accurate se-
mantic representation of the label that can provide
substantial supervision at the decoder stage.

Alignment Labels The main objective of seman-
tic alignment is to establish alignment between HX

De
and HY

De. One significant challenge arises from the
fact that even though HY

De represents a more accu-
rate hidden state, its corresponding output tokens
Y ′, as shown in Equation 7, may not always match
the ground truth token sequence Y during the early
stages of training. Therefore, we compare y′i with
yi, and only when y′i is equal to yi, it indicates that
ĥiY is correct. We then allow ĥXi to be close to ĥYi .
Otherwise, we move ĥXi away from ĥYi . Use Li to
represent the comparison result between y′i and yi:

Y ′ = (Lm_head (HY
De)).argmax() (7)

Li = Equal(y′i, yi) (8)

where Lm_head represents a linear layer that takes
the decoder’s hidden states as input and outputs a
probability distribution over the vocabulary. The
predicted tokens Y ′ are obtained by selecting
the words with the highest probability using the
argmax operation. The function "Equal" outputs
1 when the inputs are equal and 0 otherwise.

Alignment Task Alignment is achieved by ad-
justing the distance between ĥXi and ĥYi accoding
to Li. Employ cosine similarity to quantify the
distance:

si = cos(ĥXi , ĥYi ) (9)

s′i = ReLu(si) (10)
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where cos is the cosine similarity, and ReLu is
used to limit the similarity values between 0 and
1 (Appendix B.3). We compute the alignment loss
using binary cross-entropy to enforce the cosine
similarity scores to align with the labels L:

Lalignment =
m∑

i=1

BCEloss(s′i, Li) (11)

Final Loss. Therefore, the final loss is defined
as follows:

L = α1Lgeneration + α2Ltagging + α3Lalignment
(12)

where α1, α2 and α3 are hyperparameters.

4 Experiments

4.1 Experiment Setup
ASTE Dataset We evaluate our TAGS on four
popular ASTE datasets shown in Table 1: 14Res,
14Lap, 15Res, 16Res (Pontiki et al., 2014, 2015,
2016), which are modified for ASTE task by Fan
et al. (2019); Peng et al. (2020); Xu et al. (2020a);
Wu et al. (2020).

Baseline Models We categorize the comparison
models into the following three types:

1.Sequence tagging-based models, such as OTE-
MTL (Zhang et al., 2020), GTS (Wu et al., 2020),
JET (Xu et al., 2020b), EMC-GCN (Chen et al.,
2022a), SyMux (Fei et al., 2022), SCEDD (Zhang
et al., 2022b), BDTF (Zhang et al., 2022a), SA-
Transformer (Yuan et al., 2023), STAGE (Liang
et al., 2023).

2.Generation-based models, such as GAS(Zhang
et al., 2020), Paraphrase (Wu et al., 2020),
BARTABSA (Yan et al., 2021), PASTE (Mukher-
jee et al., 2021), Seq2Path (Mao et al., 2022), DLO
(Hu et al., 2022a), LEGO-ABSA (Gao et al., 2022),
EHG (Lv et al., 2023) and Mvp (Gou et al., 2023).

3.Models based on other methods: reinforce-
ment learning based model ASTE-RL (Jian
et al., 2021), reading comprehension based model
BMRC (Chen et al., 2021), and span-level models
Span-ASTE (Xu et al., 2021) and SBN (Chen et al.,
2022b).

Experiment Details We employ the T5-base
model (Raffel et al., 2020) from the huggingface
Transformer library as our pre-trained generative
encoder-decoder model. During training, we set
the learning rate to 3e-4 for T5 and 5e-3 for all the

Table 1: Statistics of datasets. S and T mean the total
number of sentences and triplets. POS, NEU, and NEG
represent the number of positive, neutral, and negative
sentiment triplets, respectively.

Dataset S T POS NEU NEG

15
R

es

train 605 1013 783 25 205

dev 148 249 185 11 53

test 322 485 317 25 143

16
R

es

train 857 1394 1015 50 329

dev 210 339 252 11 76

test 326 514 407 29 78

14
L

ap

train 906 1460 817 126 517

dev 219 345 169 36 140

test 328 541 364 63 114

14
R

es

train 1266 2337 1015 50 329

dev 310 577 252 11 76

test 492 994 407 29 78

linear layers. The model is trained for 40 epochs
on Nvidia 3090 GPUs, and the hyperparameters of
Equation 12 are set as follows: α1 = 10, α2 = 1,
and α3 = 1. The probability threshold in the infer-
ence stage is 0.999. All the reported results are the
average of five runs with different random seeds.

Evaluation Metrics Following previous works
(Peng et al., 2020), we employ widely used eval-
uation metrics, namely F1 scores (F1), recall (R),
and precision (P ).

4.2 Main Results

The main results are reported in Table 2. In this
task, F1 is the most important metric (Peng et al.,
2020; Chen et al., 2022b; Gao et al., 2022; Gou
et al., 2023). TAGS significantly outperforms the
previous state-of-the-art method Mvp (Gou et al.,
2023), specifically achieving a lead of up to 3.13%
on the 16res dataset and 2.01% on the 15res dataset
according to the F1 metric.

Based on the principles of sequence tagging-
based methods, these approaches tend to be con-
servative, which means they only predict a triplet
when they are highly confident. Consequently, the
precision of these methods tends to be higher than
the recall, as shown in both the OTE-MTL and JET
methods in Table 2. In contrast, generation meth-
ods tend to over-predict the number of triplets due
to their strong creativity. Consequently, the recall
in the results of generation methods is generally
higher than the precision.

By introducing a sequence tagging task, the
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Table 2: Main results on 4 datasets of ASTE tasks. The best results are in bold, while the second best are underlined.
† denotes the replication results, while the other results are obtained from original papers.

Model
16res 15res 14lap 14res

P R F1 P R F1 P R F1 P R F1

O
th

er

BMRC 71.20 61.08 65.75 68.51 53.40 60.02 70.55 48.98 57.82 75.61 61.77 67.99

ASTE-RL 67.21 69.69 68.41 65.45 60.29 62.72 64.80 54.99 59.50 70.60 68.65 69.71

Span-ASTE 69.45 71.17 70.26 62.18 64.45 63.27 63.44 55.84 59.38 72.89 70.89 71.85

SBN 71.59 72.57 72.08 69.93 60.41 64.82 65.68 59.88 62.65 76.36 72.43 74.34

Ta
gg

in
g

OTE-MTL 62.88 52.10 56.96 56.37 40.94 47.13 49.53 39.22 43.42 62.00 55.97 58.71

JET 70.42 58.37 63.83 64.45 51.96 57.53 55.39 47.33 51.04 70.56 55.94 62.40

GTS 66.08 69.91 67.93 62.59 57.94 60.15 57.82 51.32 54.36 67.76 67.29 67.50

EMC-GAN 64.43 72.63 67.69 60.45 62.72 61.55 59.61 56.30 57.90 70.37 72.84 71.58

SyMux \ \ 72.76 \ \ 63.13 \ \ 60.11 \ \ 74.84

SCEDD 66.11 71.37 68.64 59.41 62.73 61.03 61.84 60.08 60.95 70.27 73.02 71.62

SA-Transformer 72.01 62.87 67.13 62.82 58.31 60.48 61.28 48.98 54.44 70.76 65.85 68.22

BDTF 71.44 73.13 72.27 68.76 63.71 66.12 68.94 55.97 61.74 75.53 73.24 74.35

STAGE 77.67 68.44 72.75 72.33 58.93 64.94 70.56 55.16 61.88 78.51 69.30 73.61

G
en

er
at

io
n

GAS \ \ 70.10 \ \ 62.10 \ \ 60.78 \ \ 72.16

Paraphrase \ \ 71.70 \ \ 62.56 \ \ 61.13 \ \ 72.03

BARTASA 66.6 68.68 67.62 59.14 59.38 59.26 61.41 56.19 58.69 65.52 64.99 65.25

PASTE 66.1 69.8 67.9 61.7 60.8 61.3 61.2 53.6 57.1 66.7 66.5 66.6

DLO \ \ 72.23 \ \ 63.52 \ \ 61.33 \ \ 72.02

Seq2path† 71.59 75.41 73.40 62.62 65.48 64.02 64.57 60.04 62.22 73.28 74.23 73.75

LEGO-ABSA \ \ 69.9 \ \ 64.4 \ \ 62.2 \ \ 73.7

EHG \ \ 72.35 \ \ 63.58 \ \ 61.53 \ \ 71.82

MvP \ \ 73.48 \ \ 65.89 \ \ 63.33 \ \ 74.05

TAGS 76.37 76.85 76.61 70.23 65.73 67.90 65.11 62.20 64.53 77.38 72.86 75.05

TAGS method alleviates the excessive creativity of
the generation model by directing its focus toward
keywords. This not only enhances the quality of
the generated output but also objectively limits the
number of excessively generated triplets. Leverag-
ing the semantic alignment with labels, TAGS fur-
ther enhances the quality of the generated triplets.
Consequently, compared to conventional genera-
tion methods, our method can extract more correct
triplets with fewer predicted triplets. This leads to
higher precision, recall, and consequently, a higher
F1 score. Furthermore, when compared to conven-
tional sequence tagging methods, TAGS surpasses
them due to the generation model’s ability to uti-
lize semantic information from the labels and its
inherent creativity. Thus, TAGS outperforms most
previous methods in terms of F1 score, precision,
and recall.

Table 3: Ablation study. The results reported are the
average F1 scores.

Model 16Res 15Res 14Lap 14Res

Full Model 76.61 67.90 64.53 75.05
w/o Tagging traing 72.83 64.34 62.15 72.96
w/o Tag Attention 75.68 66.51 63.14 74.18

w/o Inference 75.49 66.66 64.19 74.34
w/o Alignment 75.37 65.82 63.20 73.44

4.3 Ablation

The results of the ablation experiments are pre-
sented in Table 3.

Effectiveness of the Sequence Tagging Task:
The "w/o Tagging training" condition denotes the
removal of the sequence tagging task, including
multitask training, tag attention, and the specialized
inference stage. It means that the model only re-
lies on the Semantic Alignment component. Com-
pared to the "Full Model", the performance un-
der this condition decreased in all datasets: 16res
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(-3.78%), 15res (-3.56%), 14Lap (-2.38%), and
14Res (-2.09%), providing evidence for the effec-
tiveness of the sequence tagging task. To further
investigate the role of the sequence tagging task,
we conducted Experiments 4.3.1.

Effectiveness of Tag Attention: The "w/o Tag
attention" condition refers to the absence of tag
attention while still retaining the training of the
sequence tagging task, special inference stage, and
the Semantic Alignment component. When com-
pared to the "full model," there was an average
performance decrease of 1.11% across all datasets,
providing evidence for the effectiveness of Tag At-
tention. In Appendix B.2, we further analyze the
impact of different utilization methods for sequence
tagging probabilities on Tag Attention. This anal-
ysis enables us to gain a deeper understanding of
how the utilization of sequence tagging probabili-
ties influences the performance of Tag Attention.

Effectiveness of Inference: The "w/o Infer-
ence" condition refers to the absence of a spe-
cial inference stage. In comparison to the "Full
model," there was an average performance decrease
of 0.85% across all datasets. This provides evi-
dence for the effectiveness of the Inference stage.
In Experiment 4.3.2, we further investigate the ex-
perimental results related to the threshold hyperpa-
rameter in the inference stage.

Effectiveness of the Semantic Alignment: The
"w/o Alignment" condition refers to the removal of
the Semantic Alignment component. Compared to
the "Full Model", the performance under this condi-
tion decreased in all datasets: 16res (-1.24%), 15res
(-2.08%), 14Lap (-1.33%), and 14Res (-1.61%).
This demonstrates the effectiveness of the Semantic
Alignment component in improving overall perfor-
mance. To further investigate the impact of the loss
function on the Semantic Alignment component,
we conducted Experiment B.3.

4.3.1 Loss Hyperparameters
In this section, we investigate the impact of loss hy-
perparameters. First, we fix α2 and vary α1 and α3,
as shown in Fig. 2(a). As α1 gradually increases,
the performance initially improves and then de-
creases, achieving the best result at 10. Comparing
the three curves in the graph, the curve correspond-
ing to α3 = 1 achieves the best result. Next, we
fix α1 = 10 and vary α2 and α3 as shown in Fig.
2(b). As the α2 increases, the performance initially
improves and then decreases, achieving the best re-
sult at 1. Furthermore, the curve corresponding to

Table 4: F1 results on the development dataset for dif-
ferent thresholds.

threshold 16res 15res 14lap 14res
0.9 77.14 73.91 62.14 65.88
0.99 77.62 74.27 62.61 66.00
0.999 77.73 74.35 62.78 66.08
0.9999 77.66 74.29 62.77 66.00
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Figure 2: F1 result with different loss ratios.

α3 = 1 achieves the best result. We select the loss
ratios corresponding to the optimal performance
as our final hyperparameter settings: α1 = 10,
α2 = 1, α3 = 1. This suggests that our method
primarily focuses on the generative task, with the
other two components serving as auxiliary factors.

4.3.2 Threshold Hyperparameter in Inference
We conducted experiments on the development set
to determine the most suitable probability thresh-
old hyperparameter. We experimented with four
different values for the threshold hyperparameter.
The results are shown in Table 4. As the thresh-
old increases, the performance initially improves
and then decreases, achieving the best result at
0.999. This threshold value is very close to 1. In
the generated results, the probability of each word
is also very close to 1, even for some incorrect
words. Therefore, when we require a threshold to
filter out potentially erroneous triplets, this thresh-
old should also be very close to 1. Hence, 0.999 is
a reasonable choice.

4.3.3 Correctness of Semantic Representation
To demonstrate that HY

De is more accurate, during
self-decoding, we replace each label sentence with
the original input sentence with a probability of r.
This increases the influence of irrelevant words on
semantic representation. We then train the TAGS
model using the semantic representation obtained
from this self-decoding process and the correspond-
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Figure 3: F1 result with different r.

ing performance reflects the correctness of the se-
mantic representation. We conducted experiments
on the 16res dataset and the results are presented
in Fig. 3. The results indicate that as r increases,
performance decreases. This demonstrates that an
increasing number of irrelevant words in the input
lead to a decrease in the correctness of the seman-
tic representation, resulting in a gradual decline in
performance.

4.4 Results on Other ABSA Tasks

The proposed model provides a unified framework
to effectively address the Aspect-Based Sentiment
Analysis (ABSA) problem. To demonstrate the ef-
fectiveness of TAGS and its generalizability across
different tasks, we conducted experiments on two
ABSA tasks: AOPE and UABSA. We compared
TAGS with the models in Appendix B.4.

AOPE focuses on extracting (aspect, opinion)
pairs, similar to ASTE, but without sentiment anal-
ysis. This task requires accurate identification of
keywords in the sequence tagging task, as well as
the assistance of Tag Attention and Semantic Align-
ment components. The F1 results for the AOPE
task are presented in Table 5. TAGS outperforms
the previous model on all four datasets: 2.28%
for 16Res, 1.50% for 14Lap, 0.83% for 15Res,
and 0.51% for 14Res. The improvement in results
demonstrates the effectiveness of the aforemen-
tioned components.

UABSA focuses on extracting (aspect, senti-
ment) pairs, similar to ASTE, but without extract-
ing opinions. This task presents challenges in accu-
rately classifying sentiments in sequence tagging
and aligning sentiments in Semantic Alignment.
The F1 results for the UABSA tasks are presented
in Table 6. TAGS has achieved an average improve-
ment of 1.27% compared to the previous model.
This improvement demonstrates the effectiveness
of the aforementioned components in enhancing

Model 16Res 14Lap 15Res 14Res
HAST+TOWE(Zhang et al., 2021b) 63.84 53.41 58.12 62.39
JERE-MHS(Zhang et al., 2021b) 67.65 52.34 59.64 66.02
SpanMlt(Zhao et al., 2020) 71.78 68.66 64.68 75.60
SDRN(Chen et al., 2020) 73.67 66.18 65.75 73.30
GAS(Zhang et al., 2021b) 74.54 68.08 67.19 74.12
LEGO(Gao et al., 2022) 77.6 69.7 71.4 78.1
EHG(Lv et al., 2023) 78.19 69.05 69.11 77.17
TAGS (Our) 80.47 71.20 72.23 78.61

Table 5: Main F1 results of the AOPE task. The best
results are in bold, second best results are underlined.

Model 14Lap 16Res 15Res 14Res
BERT+GRU(Li et al., 2019b) 61.12 70.21 59.60 73.17
SPAN-BERT(Hu et al., 2019) 61.25 - 62.29 73.68
MN-BERT (Li et al., 2019b) 61.73 - 60.22 70.72
RACL(Chen and Qian, 2020) 63.40 - 66.05 75.42
Dual-MRC(Mao et al., 2021) 65.94 - 65.08 75.95
GAS(Zhang et al., 2021b) 67.37 71.87 65.75 75.77
EHG(Lv et al., 2023) 68.48 77.12 70.04 79.32
TAGS (Our) 71.37 78.11 70.76 79.80

Table 6: Main F1 results of the UABSA task. The best
results are in bold, second best results are underlined.

the accuracy of sentiment analysis.
These results demonstrate the effectiveness and

generalization of TAGS across different tasks.

5 Related Work

ASTE employed sequence tagging methods, when
it was first introduced by (Peng et al., 2020). Subse-
quent research efforts (Xu et al., 2020b; Wu et al.,
2020; Chen et al., 2022a; Liang et al., 2022; Gou
et al., 2023) have been focused on enhancing the
sequence tagging schemes and model components
to facilitate the integration and mutual interpre-
tation of the triple elements. However, the se-
quence tagging technique in ASTE fails to capture
the semantic information conveyed by the labels,
which can lead to semantic mismatches in the pre-
dicted results(Zhang et al., 2021b). Generation
methods were initially proposed by Zhang et al.
(2021c). The generation-based approach in ASTE
has achieved good performance by reducing poten-
tial error propagation present in pipeline methods
and effectively utilizing the rich semantic infor-
mation provided by labels(Paolini et al., 2021; Yu
et al., 2023). They employed various targets for
generation, such as sentiment element sequences
(Zhang et al., 2021c,c; Hu et al., 2022b), natural
language (Liu et al., 2021; Zhang et al., 2021a), and
structured extraction patterns (Lu et al., 2022). Re-
cently proposed models, LEGO-ABSA (Gao et al.,
2022), UnifiedABSA (Wang et al., 2022) and Mvp
(Gou et al., 2023), have focused on leveraging task
prompts or guided design for multi-task processing.
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6 Conclusion

In this work, we introduce a generation model
called TAGS, which enhances the supervision of
both the encoder and decoder through multiple-
perspective tagging assistance and label semantic
representations. Specifically, TAGS utilizes se-
quence tagging to enhance the generation model
in multiple aspects: Multitask Learning, Guided
Generation, and Result Optimization. Additionally,
TAGS employs a label self-decoding process to ob-
tain semantic representations of labels and aligns
the decoder’s hidden states with these representa-
tions, thereby providing enhanced semantic super-
vision for the decoder’s hidden states. These two
components enhance the supervision of the encoder
and decoder’s hidden states, resulting in improved
generation quality. Extensive experiments demon-
strate that our method significantly advances the
state-of-the-art on benchmark datasets.

7 Limitations

Despite achieving state-of-the-art performance, our
proposed methods still have some limitations that
point to potential future directions.

1. Compared to conventional generation meth-
ods, our approach requires an additional gen-
eration step to obtain more accurate hidden
states, namely semantic labels. As a result,
there is an increase in training overhead.

2. Although we apply a simple yet effective ag-
gregation strategy to combine the results of
the sequence tagging task and generation task,
more advanced strategies can be explored to
further enhance performance.

3. We have indeed observed that the improve-
ment of our model varies on different datasets,
which may be due to the differences in the
characteristics of these datasets.

4. Our work utilizes a relatively simple sequence
tagging approach, specifically characterized
by the absence of explicit pairing between ex-
tracted aspects and opinions. There is room
for designing a more robust and sophisti-
cated sequence tagging scheme that can also
seamlessly integrate with generation models,
thereby enhancing performance.

8 Ethics Statement

In all our experiments, we used existing datasets
that have been widely used in previous scientific
publications. When analyzing the experimental
results, we strive to maintain fairness and honesty,
ensuring that our work does not cause harm to
anyone.

As for broader implications, this work may con-
tribute to further research in sentiment analysis
and the use of generation methods to simplify and
automate the extraction of user opinions in real-
world applications. However, it is important to
note that this work involves fine-tuning large-scale
pre-trained language models to generate sentiment
triplets. Due to the nature of the Internet-based
large-scale pre-training corpora, the predicted sen-
timent polarities may be influenced by unintended
biases related to gender, race, and intersectional
identities (Tan and Celis, 2019). LPMLs often in-
herit biases present in their training data, potentially
leading to biased sentiment analysis results, partic-
ularly when assessing text from underrepresented
or marginalized groups, thereby perpetuating and
amplifying societal prejudices. Another limitation
is the opacity of these models. Their complex archi-
tectures make it challenging to fully understand the
reasoning behind their predictions, raising concerns
about transparency and accountability. This lack of
interpretability may hinder the identification and
mitigation of harmful biases and ethical violations
in sentiment analysis applications. It is crucial for
the natural language processing community to con-
sider these biases more extensively. Fortunately,
these issues are actively being addressed within the
research community, including efforts to standard-
ize datasets and methodologies.
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Table 7: Descriptions of the tagging scheme. It focuses
on the aspect attribution of each word. The sequence
tagging task is to classify each word to one of these tags.

tag Meaning

N not belong to aspect term or opinion term

A-POS a part of aspect term with positive sentiment

A-NEG a part of aspect term with negative sentiment

A-NEU a part of aspect term with neural sentiment

O-POS a part of opinion term with positive sentiment

O-NEG a part of opinion term with negative sentiment

O-NEU a part of opinion term with neural sentiment

learning framework for pair-wise aspect and opinion
terms extraction. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3239–3248, Online. Association for
Computational Linguistics.

A Additional details about the
methodology

A.1 Tagging Scheme

Specific details of the sequence tagging scheme
and their explanations are presented in Table 7.

A.2 Inference

Here’s an overview of the inference process:

1. Obtain the probabilities of each word in the
generated sentence.

2. Conduct experiments on the development
dataset to find a suitable probability thresh-
old.

3. For each triplet in the generated result, check
if all the words in the triplet have probabilities
greater than the threshold. If so, retain the
triplet. Otherwise, proceed to the next step.

4. Compare the generated triplet with the triplet
identified by the sequence tagging task. If the
generated aspect is a subset of the sequence
tagging aspect set, or vice versa, and the gen-
erated opinion is a subset of the sequence
tagging opinion set, or vice versa, retain the
triplet. Otherwise, discard the triplet.

The specific algorithm pseudocode is presented in
algorithm 1.

A.3 Other Attention

ãti =
exp(ati)∑n
j=1 exp(atj)

(13)

ãti =
exp(p̃i · ati)∑n
j=1 exp(p̃j · atj)

(14)

B Additional Experiment

B.1 case study
In this case study section, we compare our
model with the Paraphrase model (Zhang et al.,
2021a) to illustrate how our two components
benefit the results. For the first example, the
Paraphrase model fails to extract the triplet
(barmenu,Disappointingly,NEG) because it
is a relatively hard and implicit triplet. Addition-
ally, thanks to the semantic alignment training of
the decoder hidden state, our model can generate
higher-quality results. Therefore, our model can
extract this triplet successfully. In the second ex-
ample, the Paraphrase model incorrectly extracts
the triplet (staff, supportive,NEG). However,
during the inference stage, our model optimizes the
generation results based on the sequence tagging
output, resulting in the discarding of this incorrect
triplet.

B.2 Arithmetic Operations in Tag Attention
In the context of Tag Attention, we have explored
several approaches to incorporating tagging proba-
bility into the cross-attention mechanism:

1. Multiplication before softmax: Multiply the
attention scores by the probability weights and
then apply softmax.

2. Multiplication is performed before softmax,
but without adding 1 to p̃i. The attention for-
mula is given by Equation (14).

3. Softmax after multiplication: Apply softmax
to the attention scores and then multiply them
by the probability weights.

4. Addition: We directly add the probability in-
formation to the attention scores.

Through the evaluation of these various opera-
tions, our objective is to gain insights into their
impact on the Tag Attention mechanism and their
effectiveness in incorporating probability informa-
tion. We conducted this experiment on a model
without the "Inference" process because including
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Table 8: Case study. The ground truth represents the correct triplets. The aspect and opinion words of the same
triplet are highlighted in the same color. The two examples in the table demonstrate how our model can avoid the
errors made by the Paraphrase model.

Example Ground Truth Paraphrase (Zhang et al., 2021a) Ours

Disappointingly, their wonderful Saketini
has been taken off the bar menu .

(Saketini,wonderful,POS)
(bar menu,Disappointingly,NEG)

(Saketini,wonderful,POS) (Saketini,wonderful,POS)
(bar menu,Disappointingly,NEG)

Our waiter was friendly and it is a shame
that he didnt have a supportive staff to work with.

(waiter,friendly,POS) (waiter,friendly,POS)
(staff,supportive,NEG)

(waiter,friendly,POS)

Table 9: Result of different arithmetic operations

16res 15res 14lap 14res
Multiplication before softmax 76.61 67.90 64.53 75.05
Multiplication before softmax
without adding 1 to p̃

75.81 66.71 63.23 74.09

Softmax after multiplication 73.92 65.05 61.78 72.38
Addition 73.06 64.58 61.43 72.12

the "Inference" process could potentially narrow
down the performance gaps observed in these re-
sults. The results in Table 9 demonstrate that the
first approach performs better. This is because it
provides valuable information to the generation
model while minimizing any disruptive effects on
the original generation process. It can be regarded
as a gentle process. The results of the second ap-
proach are worse compared to the first approach.
One possible reason for this is that in the first ap-
proach, by adding 1 to the p̃, the attention is not
solely determined by the sequence tagging results.
This helps mitigate the potential impact of tagging
errors on the overall generation quality. Further-
more, we found that the performance of the last
two arithmetic operations is worse.

B.3 Loss Function for Semantic Alignment

We discuss loss function for semantic alignment
in our approach. Specifically, we compare two
different approaches:

1. Confining the similarity scores to the range of
0 to 1 and utilizing the Binary Cross Entropy
(BCE) loss function.

2. Preserving the cosine similarity scores in the
range of -1 to 1 and employing the margin
ranking loss function to constrain the similar-
ity.

The results in Table 10 indicate that in our
method, the BCE loss function outperforms the
margin rank loss function. From this, we can con-
clude that it is not necessary to push the similar-
ity of incorrect hidden states to -1, i.e., there is

Table 10: Result of different loss function

16res 15res 14lap 14res

MarginRankLoss 75.55 67.12 64.19 73.91

BCELoss 76.61 67.90 64.53 75.05

no need to excessively move away from the nega-
tive hidden states associated with incorrect words.
Since the hidden states are generated from the la-
bel sentences, even if some negative hidden states
are incorrect, they remain relatively close to the
correct hidden states. Moving too far away from
negative hidden states may lead to an increase in
the distance from the correct hidden state.

B.4 ABSA subtask Detail
The subtasks are described as follows:

1. Aspect Opinion Pair Extraction (AOPE) aims
to extract aspect terms and their corresponding
opinion terms as pairs (Zhang and Qian, 2020;
Chen et al., 2020).

2. Unified ABSA (UABSA) is the task of ex-
tracting aspect terms and predicting their sen-
timent polarities at the same time (Li et al.,
2019a; Chen and Qian, 2020). We also formu-
late it as an (aspect, sentiment polarity) pair
extraction problem

For these tasks, we adopt the dataset used in
(Zhang et al., 2021b).

For AOPE task, we compare our model with
the following models: a multi-task learning model
SpanMlt (Zhao et al., 2020), a synchronous dou-
ble channel extraction model SDRN (Chen et al.,
2020), HAST+TOWE and JERE-MHS model com-
pared in (Zhang et al., 2021b), GAS (Zhang et al.,
2021b), LEGO(Gao et al., 2022) and EHG(Lv et al.,
2023).

For the UABSA task, we compare our model
with the following models: a BERT base model
BERT+GRU (Li et al., 2019b), a span-base extrac-
tion model SPAN-BERT (Hu et al., 2019), an in-
teractive multi-task learning network LMN-BERT
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(He et al., 2019), a Relation-Aware Collaborative
Learning (RACL) model RACL (Chen and Qian,
2020), a machine reading comprehension models
Dual-MRC (Mao et al., 2021) , GAS (Zhang et al.,
2021b) and EHG(Lv et al., 2023).

B.5 Analysis on Potential Practical
Applications

Time Complexity: The time complexity of the
TAGS model is quadratic relative to the input data.
The primary source of complexity in this quadratic
time complexity is the attention operations within
the transformer. It’s important to note that the ad-
ditional modules introduced in our model, such as
the sequence tagging classification layer and the
label-driven semantic alignment module, have a
linear time complexity relative to the input data.
Consequently, the time complexity introduced by
our additional modules remains exceedingly mod-
est compared to that of the transformer. As such,
the primary temporal overhead in our model stems
from the transformer’s attention operations. Conse-
quently, the complexity of the TAGS model closely
aligns with the time complexity of baseline mod-
els that rely on transformers. Moreover, exist-
ing lightweight and acceleration-oriented designs
based on the transformer can be readily assimilated
into our model. Hence, although our model does
introduce some additional time overhead, it does
not impose a significant obstacle to the training
process.

Space Complexity: Apart from the core model
architecture and input data, the additional space
utilization of the TAGS model primarily consists
of a linear layer for sequence tagging classification
and the semantic representation of label sentences.
The additional space occupation amounts to 5.2
M, which is notably minor when compared to the
parameter size of the T5 model, standing at 222
M. Additionally, the tag attention module does not
introduce any additional parameters.

Based on the aforementioned explanation, it’s
evident that the TAGS model demonstrates com-
mendable scalability. As dataset volumes increase,
the incremental rise in both time and space over-
heads within our model remains consistent.
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Input: Generated triplets T ′
1 = {(ai, oi, si)k}

|T ′
1|

k=1,

Word probabilities G={gk = (gk1, gk2, gk3)k}|T
′
1|

k=1,
Tagging Aspect Set Saspect = {ak}|Saspect|

k=1 ,

Tagging Opinion Set Sopinion = {ak}|Sopinion|
k=1 ,

Threshold threshold.
Output: Result triplets

Function Verify(gen_element, sequenceTag):
foreach tag_element in sequenceTag do

if gen_element is a part of tag_element OR tag_element is a part of gen_element then
return true

end
end
return false

begin
Result← ∅
foreach (triplet,wordProb) in (T ′

1, G) do
if (wordProb ≥ threshold).all() then

Result← Result ∪ {triplet} end
else

aspect←triplet.aspect
Averified←Verify(aspect,Saspect)
opinion←triplet.opinion
Overified←Verify(opinion,Sopinion)
if Averified AND Overified then

Result← Result ∪ {triplet}
end

end
end

end
return Result

Algorithm 1: Inference
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