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Abstract

The task of repository-level code completion is
to continue writing the unfinished code based
on a broader context of the repository. While
for automated code completion tools, it is diffi-
cult to utilize the useful information scattered in
different files. We propose RepoCoder, a sim-
ple, generic, and effective framework to address
the challenge. It streamlines the repository-
level code completion process by incorporating
a similarity-based retriever and a pre-trained
code language model in an iterative retrieval-
generation pipeline. RepoCoder makes effec-
tive utilization of repository-level information
for code completion and has the ability to
generate code at various levels of granularity.
Moreover, we propose a new benchmark Re-
poEval, which consists of the latest and high-
quality real-world repositories covering line,
API invocation, and function body completion
scenarios. Experimental results indicate that
RepoCoder significantly improves the In-File
completion baseline by over 10% in all set-
tings and consistently outperforms the vanilla
retrieval-augmented code completion approach.
Furthermore, we validate the effectiveness of
RepoCoder through comprehensive analysis,
providing valuable insights for future research.
Our source code and benchmark are publicly
available: https://github.com/microsoft/
CodeT/tree/main/RepoCoder

1 Introduction

In real-world software production, it is crucial for
developers to be aware of other files within the
repository during programming. This challenge
gives rise to the task of repository-level code com-
pletion, where automated tools are expected to uti-
lize the broader context of a repository rather than
relying solely on in-file information to complete
unfinished code. Code files within a repository
often exhibit interrelated dependencies, including
shared utilities, configurations, and cross-API in-
vocations resulting from modularization (Tu et al.,

Figure 1: Illustration of the In-File code comple-
tion method, the repository-level Retrieval-Augmented
Generation (RAG) method, and the iterative retrieval-
generation RepoCoder method.

2014). Additionally, each repository typically fol-
lows customized naming conventions and coding
styles (Zou et al., 2019), which contribute to en-
hanced readability and maintainability. However,
developing effective repository-level code comple-
tion tools remains an open problem. Although
approaches relying on static code analysis and
heuristic rules (Raychev et al., 2014; Svyatkovskiy
et al., 2019, 2021) can reliably parse specific repos-
itory context, they have limitations in the comple-
tion scenario, limiting capability for varying-length
completions anywhere in a file. Meanwhile, stud-
ies (Hellendoorn and Devanbu, 2017; Svyatkovskiy
et al., 2020; Ding et al., 2022) tuning language mod-
els on labeled data excel in their respective evalua-
tion scenarios but face challenges generalizing to
unseen repositories without retraining.

In this paper, we propose an approach to lever-
age off-the-shelf retrievers in order to locate valu-
able information within a repository and enhance
the context for language models. We introduce
a novel framework called RepoCoder that aims
to improve code retrieval and completion perfor-
mance. As depicted in Figure 1, we enhance the
conventional In-File code completion method by
incorporating the Retrieval-Augmented Generation
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(RAG) technique, which allows us to search for rel-
evant code snippets from the repository to assist in
generating the code completion. Additionally, we
introduce RepoCoder, which employs an iterative
pipeline that utilizes the generated code completion
to enhance the retrieval process, thus bridging the
gap between the retrieval context and the intended
completion target. Figure 2 provides an example
that illustrates the rationale behind our design. We
demonstrate that relying solely on the unfinished
code is insufficient to retrieve useful information
from the repository. In the example, the model
improvises a statement calling the COLMAP API in
the first iteration. The predicted parameters are
reasonable yet incorrect. This is because the in-
complete code preceding the code completion does
not serve as an adequate retrieval query for the in-
tended completion target. However, by performing
a subsequent retrieval from the repository using the
model’s generated completion, we can successfully
retrieve the target API signature and complete the
code effectively.

Furthermore, we introduce the RepoEval bench-
mark designed for evaluating the repository-level
code completion task, which is constructed using
the latest high-quality repositories sourced from
GitHub1. By introducing RepoEval, we address the
lack of established benchmarks in the repository-
level scenario. Notably, RepoEval is the first bench-
mark that encompasses three levels of code com-
pletion granularity: line, API invocation, and func-
tion body. We also leverage unit tests present in
the repository to enhance the accuracy of evalua-
tion, which overcomes the limitations of similarity-
based metrics. To rigorously validate the effective-
ness of RepoCoder, we conduct extensive exper-
iments using different language models of vary-
ing sizes, including GPT-3.5-Turbo2 and CODE-
GEN (Nijkamp et al., 2022). Experimental re-
sults demonstrate that RepoCoder achieves signifi-
cant improvements over In-File completion perfor-
mance, surpassing the baseline by over 10% across
different experimental settings. Moreover, our iter-
ative framework consistently enhances the perfor-
mance of vanilla retrieval-augmented generation.
We also provide a comprehensive analysis of the
effectiveness and limitations of RepoCoder, offer-
ing insights for future research. Our contributions
can be summarized as follows:

1https://github.com
2https://platform.openai.com/docs/models/

gpt-3-5

Figure 2: A motivating example showcasing the utiliza-
tion of model predictions to enhance the performance
of code retrieval.

• We propose RepoCoder, a novel itera-
tive retrieval-generation framework for the
repository-level code completion task.

• We introduce the RepoEval benchmark, en-
abling the evaluation of repository-level code
completion with varying levels of granularity
and improved evaluation accuracy through the
utilization of unit tests.

• Through rigorous experimentation, we demon-
strate that RepoCoder significantly outper-
forms the In-File code completion paradigm
and enhances the performance of vanilla
retrieval-augmented generation.

2 Methodology

2.1 Overall Framework

The task of code completion using a language
model M can be generally described as Ŷ =
M(X), where Ŷ represents the predicted tokens
and X corresponds to the in-file unfinished code.
By introducing an additional code retrieval model
R, we can transform the code completion pipeline
into a Retrieval-Augmented Generation (RAG) ap-
proach. Initially, we establish a retrieval database
by partitioning the code files from the reposi-
tory into a collection of code snippets Crepo =
{c1, c2, · · · }. Subsequently, we utilize the retrieval
model R to extract the most relevant code snippets
from Crepo by employing the unfinished code X
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as the retrieval query. This process yields a set of
retrieved code snippets Cret = R(Crepo, X). Fol-
lowing this, we leverage the language model M to
perform code completion, resulting in the predic-
tion Ŷ = M(Cret, X). Consequently, we are able
to incorporate the contextual information from the
repository level during the code completion task.

However, using the unfinished code X as the
sole retrieval query introduces a gap between the
retrieval context and the intended completion tar-
get, as exemplified in Figure 2. To address this
limitation, we propose RepoCoder, an iterative
retrieval-generation pipeline designed to further en-
hance the performance of the vanilla RAG method.
Specifically, for the i-th retrieval-generation (i > 1)
iteration, RepoCoder utilizes the previous model
prediction Ŷ i−1 to construct a new query for the
retrieval process. This leads to the generation
of another set of relevant code snippets Ci

ret =
R(Crepo, X, Ŷ i−1). Subsequently, a new prompt
is constructed using Ci

ret, resulting in the genera-
tion of a new prediction Ŷ i = M(Ci

ret, X). The
newly generated code completion can serve as ei-
ther the output of RepoCoder or be utilized for the
subsequent retrieval-generation iteration.

Importantly, it is worth noting that the param-
eters of M and R remain unchanged throughout
the entire process. Moreover, there is no require-
ment for static code analysis tools or heuristic rules
to construct the retrieval database. In the follow-
ing subsections, we provide a detailed explanation
of the code retrieval process (Section 2.2) and the
code generation process (Section 2.3).

2.2 Code Retrieval

The retriever utilized within the RepoCoder frame-
work can be any model capable of searching for
relevant documents given a specific query. To con-
struct the retrieval database, a sliding window ap-
proach is employed. The sliding window traverses
the files in the repository and extracts contiguous
lines of code that fit within the window size, de-
noted as Sw. The sliding window moves a fixed
number of lines at each iteration, which is referred
to as the sliding size, denoted as Ss.

During the initial retrieval process, when no
model prediction is available, the query is formu-
lated using the last Sw lines of the unfinished code
X . Consequently, the most similar code snippets
are retrieved using the retrieval model, resulting
in C1

ret = R(Crepo, X). However, a gap exists

Figure 3: A visual example demonstrating the format of
the RepoCoder prompt, which combines the retrieved
code snippets from the repository with the unfinished
code present in the target file.

between the retrieval context, based on X , and the
intended completion target, which is to continue
writing X . A possible solution is to adjust C1

ret by
shifting each code snippet down by a few lines to
include the subsequent code. Although this shift-
ing approach has shown effectiveness in previous
work (Lu et al., 2022), indiscriminately shifting all
retrieved code snippets without considering their
content may not always be appropriate.

To address this issue, RepoCoder augments the
retrieval query during the i-th iteration (i > 1)
with the previously generated code Ŷ i−1. Despite
the lack of customized information for new repos-
itories, pre-trained code language models have
demonstrated impressive general-domain under-
standing and generation capabilities. The generated
code Ŷ i−1 can provide valuable supplementary in-
formation for the retrieval process, even though
its correctness may not be guaranteed. There-
fore, for the i-th iteration of retrieval (i > 1),
the query is constructed by concatenating the last
(Sw−Ss) lines of X with the first Ss lines of Ŷ i−1.
This approach yields the grounded retrieval results
Ci
ret = R(Crepo, X, Ŷ i−1).

2.3 Code Generation

The generator employed within the RepoCoder
framework can be any pre-trained language model
capable of predicting subsequent tokens given a
specific prompt. As mentioned earlier, it is crucial
to incorporate both the context from the repository
Crepo and the context within the target file for ef-
fective code completion. This enables the model to
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ID Name License Created F. N.

Function Body Completion Dataset
1. imagen MIT License 2022-05-23 14 67
2. tracr Apache V2.0 2022-12-01 56 146
3. lightmmm Apache V2.0 2022-02-10 36 64
4. inspection Apache V2.0 2022-05-05 16 32
5. omnivore CC BY-NC 4.0 2022-01-20 66 22
6. redframes BSD-2-Clause 2022-08-21 49 42

Line and API Invocation Completion Datasets
7. rl MIT License 2022-02-01 165 400
8. ACE Apache V2.0 2022-11-23 425 400
9. vizier Apache V2.0 2022-02-16 188 400
10. fortuna Apache V2.0 2022-11-17 168 400
11. evaluate Apache V2.0 2022-03-30 180 400
12. diffusers Apache V2.0 2022-05-30 305 400
13. nerfstudio Apache V2.0 2022-05-31 157 400
14. FedScope Apache V2.0 2022-03-24 443 400

Table 1: The repositories utilized in our RepoEval
benchmark, presenting statistics obtained from the
Github API as of January 2023. ID denotes the reposi-
tory IDs. F. indicates the total number of Python source
files. N. represents the number of extracted test samples
from each repository. For brevity, additional repository
information can be found in Appendix A.

leverage grounding information and enhances its
generalization ability to unseen repositories.

In the RepoCoder framework, we retrieve the
most relevant code examples, denoted as Cret, from
the repository and concatenate them with the un-
finished code X . To ensure readability and com-
prehension, we create a prompt template that seam-
lessly integrates X and Cret, as illustrated in Figure
3. The retrieved code snippets are arranged in as-
cending order based on their similarity scores to
the query. Each code snippet is accompanied by
its original file path, and the maximum number of
code snippets included in the prompt, denoted as K,
depends on the available prompt length. Ultimately,
the prompt contains as much relevant information
as possible to facilitate code completion.

3 Benchmark Construction

To facilitate the evaluation of code completion tools
in the repository-level scenario, we propose a novel
RepoEval benchmark. This benchmark is carefully
constructed using the latest high-quality reposito-
ries sourced from GitHub and encompasses three
levels of code completion granularity: line, API in-
vocation, and function body. To assess the correct-
ness of completed functions, we utilize unit tests
present in the repository instead of relying solely
on similarity-based metrics. Each sample in the
RepoEval benchmark is annotated with the corre-

sponding source repository, file path, line numbers,
and ground truth completion. For analysis and unit
test execution, complete copies of the repositories
are archived as of January 2023.

To construct RepoEval, we first meticulously
curate a collection of Python repositories from
GitHub that satisfy the following criteria: open-
source license, created after January 1, 20223, non-
fork original repositories, over 100 stars, over 80%
of files written in Python, and explicit unit tests.
Furthermore, to mitigate potential biases, we em-
ploy a random selection process for the repositories
and create three distinct datasets for line comple-
tion, API invocation completion, and function body
completion. Additional details regarding the se-
lected repositories can be found in Table 1.

Line completion: In adherence to the conven-
tions of code completion benchmarks (Lu et al.,
2021, 2022), we implement the line completion
scenario. First, according to the above-mentioned
criteria, we select 8 repositories that vary in size
and cover different domains. Then we randomly
select 200 lines to complete from each repository,
ensuring the lines are non-repetitive, not code com-
ments, and each line contains at least 5 tokens.
Eventually, a total of 1600 test samples are gener-
ated for the line completion dataset.

API Invocation Completion: We also choose
to test the API completion scenario, especially in-
repository defined APIs. It is a harder problem
than the completion of built-in or third-party APIs
due to the lack of customized training data (Hellen-
doorn et al., 2019). We utilize the same group of
repositories in the line dataset and parse the target
repositories to locate invocations of in-repository
APIs. From these candidates, we then randomly se-
lect 200 non-repetitive API invocations from each
repository, resulting in a total of 1600 test samples
for the API invocation completion dataset.

Function Body Completion: Alongside the line
and API completion evaluations, we also assess
the ability to complete function bodies, which re-
quires executing unit tests present in the repository.
However, running tests can be time-consuming and
computationally expensive. To address this, we ran-
domly select a separate set of smaller-scale reposi-
tories that are easy to deploy. Within these repos-
itories, we locate functions covered by unit tests

3The training data of GPT-3.5-Turbo and CODEGEN is up
to 2021. We use data from 2022 to prevent data leakage.

2474



and select function bodies containing 3 to 30 lines
of code to complete. This yields a total of 373 test
samples for the function body completion dataset.

4 Experimental Setup

4.1 Methods for Comparison
In-File Completion: Previous studies (Chen
et al., 2021; Nijkamp et al., 2022; Chen et al.,
2022) have demonstrated the effectiveness of uti-
lizing large pre-trained language models for code
generation in a zero-shot completion manner, con-
ditioned on the provided context. Furthermore,
it has been established that incorporating in-file
context is beneficial for code completion scenar-
ios (Clement et al., 2021). Hence, as a baseline, we
implement an In-File completion method by pop-
ulating the prompt with the unfinished code and
directly utilizing the pre-trained code generation
model to predict the code completion.

Oracle Method: A key contribution of Re-
poCode is the integration of model predictions for
retrieval, bridging the gap between retrieval and
the intended completion target. To showcase the
effectiveness of this approach, we devise an oracle
retrieval-augmented generation method for com-
parison purposes. This method performs a single
retrieval process to obtain relevant code snippets,
denoted as Cgt

ret, by utilizing the last Sw − Ss lines
of X and the first Ss lines of the ground truth code,
Y . Subsequently, the completion code, denoted as
Ŷ , is generated through M(Cgt

ret, X). This allows
us to achieve the upper bound of performance for
RepoCoder, conditioned on the retrieval model R
and the generation model M.

4.2 Implementation Details
Retrieval Model: For our main experiments, we
employ a sparse bag-of-words model as the re-
trieval model, which has demonstrated effective-
ness in retrieving similar code snippets (Lu et al.,
2022). This model transforms the query and candi-
date code snippets into sets of tokens and calculates
their similarity using the Jaccard index (Jaccard,
1912), computed as Jaccard(Sq, Sc) =

|Sq∩Sc|
|Sq∪Sc| ,

where Sq and Sc represent the tokens of the query
and candidate code snippets, respectively. We also
experiment with a dense retriever based on UniX-
coder (Guo et al., 2022), detailed in Appendix B.

Generation Model: We evaluate RepoCoder us-
ing four pre-trained language models with vary-

ing code generation capabilities. The first model,
GPT-3.5-Turbo, is a state-of-the-art commercial
code generation model with billions of trainable pa-
rameters and has been pre-trained on an extensive
code corpus. Access to GPT-3.5-Turbo is obtained
through the API provided by OpenAI. The second
model, CODEGEN, is an open-source code gener-
ation model that has multiple published versions
with varying model sizes and training data. In our
experiments, we utilize three versions of CODE-
GEN model with 6B, 2B, and 350M parameters.

Hyper-parameters: We found that RepoCoder’s
performance was not highly sensitive to changes in
hyper-parameters. Therefore, for our experiments
on RepoEval, we assign hyper-parameters based on
our experience. Specifically, the maximum number
of tokens for the combined input prompt and out-
put prediction is set to 4, 096 for GPT-3.5-Turbo
and 2, 048 for CODEGEN. The length of retrieved
code snippets is set to half the prompt length. For
line and API completion, the maximum number of
tokens in the generated completion (Ŷ ), the line
length of the sliding window (Sw), and the sliding
size (Ss) are set to 100, 20, and 10 respectively.
For function body completion, these values are ad-
justed to 500, 50, and 10. The maximum number of
retrieved snippets (K) is set to 10. The same hyper-
parameters were used for the single-iteration RAG,
iterative RepoCoder, and Oracle baselines, ensur-
ing a fair comparison between methods. Notably,
given that these parameters are intricately linked
to the programming language and contextual sce-
narios, practitioners should make adjustments to
ensure optimal real-world performance.

4.3 Evaluation Metrics

Similarity-based Evaluation: Following estab-
lished practices in code completion research (Lu
et al., 2021, 2022), we evaluate our line and API
completion datasets using two metrics: Exact
Match (EM) and Edit Similarity (ES). The EM
score is a binary metric that takes the value of 1 if
the predicted code exactly matches the ground truth
code, and 0 otherwise. The ES metric provides a
more fine-grained evaluation and is calculated as
ES = 1 − Lev(Ŷ ,Y )

max(|Ŷ |,|Y |) , where Lev represents the
Levenshtein distance (Levenshtein et al., 1966).

Execution-based Evaluation: For the function
body completion dataset, we utilize unit tests
present in the repository to evaluate functional
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Metric Oracle In-File
RepoCoder Iterations

1 2 3 4

GPT-3.5-Turbo
EM 57.75 40.56 55.31 56.81 57.00 56.63
ES 75.43 65.06 74.38 75.11 75.30 75.10

CODEGEN-MONO-6B
EM 48.81 34.56 45.81 47.06 47.75 47.44
ES 71.02 60.67 69.21 70.10 70.73 70.19

CODEGEN-MONO-2B
EM 47.31 33.63 44.56 46.94 46.69 47.13
ES 69.80 58.99 67.68 68.82 68.62 68.92

CODEGEN-MONO-350M
EM 45.19 29.56 41.88 43.06 43.94 43.06
ES 67.20 55.39 65.05 65.66 65.97 65.62

(a) Line Completion.

Metric Oracle In-File
RepoCoder Iterations

1 2 3 4

GPT-3.5-Turbo
EM 50.13 34.06 47.69 49.19 49.44 49.56
ES 74.50 63.22 73.63 74.43 74.59 74.48

CODEGEN-MONO-6B
EM 40.25 26.19 36.69 38.88 39.13 39.31
ES 67.94 56.45 64.20 65.52 65.53 65.90

CODEGEN-MONO-2B
EM 39.44 25.44 35.44 37.56 38.44 38.25
ES 66.78 56.88 63.47 64.15 64.53 64.60

CODEGEN-MONO-350M
EM 34.88 22.19 31.75 33.88 33.75 33.81
ES 63.06 52.24 59.82 61.03 60.96 61.06

(b) API Invocation Completion.

Table 2: Performance comparison on the line and API invocation completion datasets. Results present the average
performance of each method evaluated using Exact Match (EM) and Edit Similarity (ES) scores. Numbers are
shown in percentage (%), with the best performance highlighted in bold.

correctness. This approach is more reliable than
similarity-based metrics in assessing the behavior
of the completed functions. While collecting unit
tests can be time-consuming, we focus on a real-
istic scenario and utilize the unit tests available in
GitHub repositories to validate the generated code.
We execute the completed code and report the Pass
Rate (PR), where PR is 1 if the code passes all the
corresponding test cases, and 0 otherwise.

5 Experimental Results

5.1 Line and API Completion Datasets

We compare the performance of RepoCoder with
the In-File completion method and the Oracle
method on the line and API invocation completion
datasets using four pre-trained language models
and different retrieval-generation iterations. From
the results listed in Table 2a and 2b, we find
that RepoCoder consistently improves the In-File
completion performance on both datasets across
all model sizes. The absolute improvements in
the Exact Match (EM) and Edit Similarity (ES)
scores exceed 10% and 8%, respectively. Re-
poCoder also shows competitive results compared
to the Oracle method. With two or more iterations,
RepoCoder consistently outperforms the vanilla
Retrieval-Augmented Generation (RAG) approach
for all language models. Additionally, the CODE-
GEN model with 350M parameters is comparable
to the GPT-3.5-Turbo model with In-File comple-
tion when integrated with RepoCoder. We also
test RepoCoder using a dense retriever powered

ID N. Oracle In-File
RepoCoder Iterations

1 2 3 4

1. 67 56.72 29.85 53.73 55.22 55.22 55.22
2. 146 43.84 27.40 41.78 43.84 44.52 44.52
3. 64 32.81 10.94 25.00 34.38 31.25 32.81
4. 32 34.38 28.13 34.38 37.50 34.38 34.38
5. 22 40.91 31.82 31.82 36.36 31.82 36.36
6. 42 38.10 9.52 28.57 38.10 38.10 38.10

All 373 42.63 23.32 38.34 42.63 41.82 42.36

Table 3: Performance comparison on the function body
completion dataset using GPT-3.5-Turbo. Results dis-
play the Pass Rate (PR) of each method as evaluated
using test cases. Numbers are presented in percentage
(%), with the best performance highlighted in bold. ID
represents the repository IDs, and N. indicates the num-
ber of test samples in each repository.

by UniXcoder (Guo et al., 2022) (detailed in Ap-
pendix B) and find that the simple sparse retriever
achieves equivalent performance, highlighting the
robustness of RepoCoder across different code re-
trieval and generation models.

5.2 Function Completion Dataset

We proceed to assess the performance of Re-
poCoder on the function body completion dataset.
To tackle the greater difficulty of function body
completion, we employ the GPT-3.5-Turbo model
due to its superior code understanding and genera-
tion capabilities, as well as its larger prompt length
suitable for longer function code snippets. The eval-
uation results, presented in Table 3, showcase simi-
lar trends to our findings on the line and API invo-
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Metric GT-Code In-File
RepoCoder Iter-

1 2

GPT-3.5-Turbo
EM 55.54 34.42 53.63 55.07
ES 77.67 62.75 77.68 78.40

Recall 100.0 - 86.04 90.34

CODEGEN-MONO-6B
EM 44.78 26.87 41.09 44.04
ES 71.47 56.42 67.10 68.55

Recall 100.0 - 76.27 82.92

CODEGEN-MONO-350M
EM 37.86 22.25 35.64 38.13
ES 66.20 52.40 62.82 64.26

Recall 100.0 - 76.27 80.89

Table 4: Performance comparison on the test samples
extracted from the API completion dataset using GT-
Code, In-File, and RepoCoder methods. Results present
the averaged performance of each method as evaluated
by Exact Match (EM), Edit Similarity (ES), and Recall.
Numbers are shown in percentage (%).

cation completion datasets. Across most reposito-
ries, RepoCoder exhibits significant improvement
over the In-File completion method and competi-
tive performance compared to the Oracle method.
Moreover, with additional retrieval-generation it-
erations, RepoCoder consistently outperforms the
vanilla Retrieval-Augmented Generation (RAG) ap-
proach. These results reaffirm the effectiveness of
our approach.

6 Analysis

In this section, we conduct further analyses on the
retrieved code snippets to gain a deeper understand-
ing of RepoCoder and provide valuable insights for
future research.

6.1 Quality of Retrieved Code

We observe a significant impact of the retrieved
code’s quality on code completion performance.
And the most helpful code snippets typically con-
tain code statements similar to the target comple-
tion or demonstrate example usages of the target
API invocation. Then, to validate the correlation
between retrieval quality and completion perfor-
mance, we design an analysis experiment using the
API invocation completion dataset. In this exper-
iment, we leverage a static code analysis tool to
locate code snippets in other files that include invo-
cations of the ground truth API. Subsequently, we
rank these code snippets based on their similarity
to the unfinished code and select the most similar

Method Oracle RepoCoder Iter-2

Dataset Line API Line API

Location Statistics
Imported 4.22% 8.16% 3.22% 9.06%
Current File 3.86% 4.05% 3.32% 4.10%
Current Directory 46.41% 58.40% 45.68% 59.58%
Similar Import 82.15% 86.71% 82.80% 87.70%
Similar Name 52.23% 65.10% 53.40% 64.20%
Others 7.27% 4.43% 7.77% 3.35%

Eligible Samples
Test Samples 333 294 312 276
Code Snippets 2202 1851 2047 1732

Table 5: Locations of retrieved code snippets when
the Oracle/RepoCoder method outperforms the In-File
completion method using GPT-3.5-Turbo on the line
and API completion datasets.

ones to include in the completion prompt. We refer
to this method as GT-Code and compare its perfor-
mance against the In-File and RepoCoder methods.
Additionally, we show the recall performance of
RepoCoder by counting the number of retrieved
code snippets containing invocation examples of
the ground truth API.

Since not every API in the test dataset has invoca-
tion examples in other files, and we also exclude the
invocation examples existing in the input prompt
for the model, we finally extract from the API in-
vocation dataset 1046 and 1083 eligible test sam-
ples respectively for the GPT-3.5-Turbo and CODE-
GEN models to conduct the experiment. From the
obtained results in Table 4, we observe that the
GT-Code method, which utilizes ground truth API
invocation examples, generally achieves the best
performance among all methods. Furthermore, Re-
poCoder with two iterations exhibits higher recall
for ground truth API invocations compared to a
single-iteration, which likely contributes to its su-
perior code completion performance. Notably, as
the language model grows more powerful, the re-
call value using RepoCoder Iter-2 also increases,
indicating the model predictions indeed assist the
retrieval process and emphasizing the effectiveness
of RepoCoder.

6.2 Locations of Retrieved Code

The retrieval of code snippets provides valuable
contextual information from other files to enhance
the context for language models. We conduct a
separate experiment to study the various locations
from which effective retrieval occurs. Specifically,
we select test samples that are successfully pre-
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dicted by the Oracle/RepoCoder method but not
by In-File completion using GPT-3.5-Turbo. This
yields a number of eligible test samples and re-
trieved code snippets for the line and API invoca-
tion completion datasets. To determine the original
source of these code snippets, we adopt a classifi-
cation scheme inspired by Shrivastava et al. (2022),
consisting of five distinct file locations: 1. Im-
ported: code from a file imported by the target file.
2. Current File: code from the excluded content of
the target file. 3. Current Directory: code from a
file in the same directory as the target file. 4. Sim-
ilar Import: code from a file sharing at least one
same API import with the target file. 5. Similar
Name: code from a file with a file name sharing
at least one token with the target file (assuming
snake-case style file names).

The results are as outlined in Table 5. Our
findings indicate a similar distribution of retrieved
code snippets between the Oracle method and Re-
poCoder. The majority of code snippets fall within
our defined categories, and a significant portion of
code snippets originates from files with “Similar
Import”, “Similar Name”, or “Current Directory”
locations, underscoring the importance of contex-
tual information in code completion tasks. Further-
more, we conduct an ablation study, wherein we
restrict the retrieval process to only the aforemen-
tioned file locations. The results reveal a degrada-
tion in performance, highlighting the efficacy and
simplicity of RepoCoder in the retrieval process.

7 Related Work

Repository Context in Code Completion: In-
corporating repository-level context into code com-
pletion tools has been a long-standing challenge.
Traditional code completion techniques typically
involve analyzing code to identify potential sugges-
tions, followed by re-ranking them (Raychev et al.,
2014; Svyatkovskiy et al., 2019, 2021). While this
approach offers efficient performance, it lacks the
flexibility to generate code at arbitrary granularity.
Another line of research treats code completion as
a language modeling task, where the next tokens
are generated based on the given context. Several
methods have been proposed to incorporate reposi-
tory context into the training of language models,
including n-grams (Tu et al., 2014), LSTMs (Hel-
lendoorn and Devanbu, 2017), and Transformers
(Svyatkovskiy et al., 2020; Liu et al., 2022; Ding
et al., 2022). However, the process of collecting

labeled data and fine-tuning models for different
applications remains resource-intensive. In recent
years, there has been significant attention on Large
Language Models (LLMs) for code completion. A
study by Shrivastava et al. (2022) also explores
the scenario of repository-level code completion.
Despite its innovative approach, the study relies
on inflexible heuristics and classifier training for
prompt construction. This highlights the ongoing
challenges in effectively leveraging LLMs for code
completion and the need for further research.

Joint Modeling Retrieval and Generation: De-
spite the impressive capabilities of LLMs (Brown
et al., 2020; Thoppilan et al., 2022; Chowdhery
et al., 2022), their offline training paradigm often
limits access to customized and up-to-date informa-
tion. Recent studies have started exploring the joint
modeling of retrieval and generation in knowledge-
intensive tasks, such as question answering (Guu
et al., 2020; Lewis et al., 2020; Izacard et al., 2022)
and dialogue generation (Zhang et al., 2022). This
approach has also been extended to code generation
by incorporating retrieved documents or code ex-
amples into the generation process (Rizwan Parvez
et al., 2021; Zhou et al., 2022; Lu et al., 2022; Zan
et al., 2022). As language models have become
increasingly sophisticated, there is a growing trend
towards in-context joint retrieval and generation,
treating the LLM as a fixed black box (Levine et al.,
2022; Ram et al., 2023; Shi et al., 2023). More-
over, some studies have investigated utilizing the
model’s predictions as supplementary context to
inform the retrieval process (Mao et al., 2020; Li
et al., 2022; Wang et al., 2023; Zemlyanskiy et al.,
2022). In this work, we demonstrate that adopting
an iterative paradigm that combines code retrieval
and generation can serve as an effective method for
repository-level code completion.

8 Conclusion and Future Work

In conclusion, we introduce RepoCoder, a straight-
forward and effective framework for the repository-
level code completion task. By leveraging
a retriever and a language model, RepoCoder
effectively utilizes repository-level information.
Through an iterative process of retrieval and gen-
eration, RepoCoder bridges the gap between re-
trieval context and the target code, resulting in im-
proved code completion performance. Our exten-
sive experiments conducted on the RepoEval bench-
mark demonstrate that RepoCoder consistently and
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significantly enhances In-File completion perfor-
mance, surpassing the vanilla Retrieval-Augmented
Generation (RAG) approach. Furthermore, our
analysis provides valuable insights into the ratio-
nale and limitations of RepoCoder. With its sim-
plicity, versatility, and effectiveness, RepoCoder
has the potential to become an indispensable tool
in real-world software development, and we aim to
further enhance its usability and robustness.

Limitations

Limited Effectiveness for Repositories with Low
Code Duplication: Despite we have demon-
strated the effectiveness of RepoCoder through ex-
tensive experiments and analysis, RepoCoder may
not bring significant performance improvements
when a repository has few instances of code dupli-
cation. In such scenarios, the code retrieval pro-
cess struggles to find sufficient relevant information
from the repository to facilitate code completion.
This issue is further highlighted in the study pre-
sented in Appendix C.

Difficulty in Identifying the Optimal Number
of Iterations: While RepoCoder with two itera-
tions outperforms the RAG method, determining
the optimal number of iterations remains a chal-
lenge. Subsequent iterations of RepoCoder may
exhibit unstable performance compared to previous
iterations. Appendix D provides a demonstration
of this issue. To mitigate this, we have explored
different approaches to automatically terminate the
iteration process when necessary. However, finding
an optimal stopping criterion without significantly
impacting RepoCoder’s performance remains an
ongoing challenge. Further research is required to
develop techniques that can identify the iteration at
which RepoCoder achieves the best performance.

Time Efficiency for Real-Time Deployment:
While RepoCoder demonstrates promising gains
in code completion accuracy through iterative re-
trieval and generation, concerns may arise due
to the latency of additional retrieval-generation
steps. For real-time deployment scenarios with
strict latency requirements, we can further improve
RepoCoder through model optimizations such as
quantization, distillation, and hardware accelera-
tion to expedite inference. Techniques like caching
frequent code snippets and pre-processing reposi-
tories can also boost speed. The model iterations
can be dynamically adapted based on latency goals

and contextual needs to balance accuracy and effi-
ciency. Nevertheless, improving time efficiency is
another important topic that is out of the scope of
our current paper.

Limited Exploration of Different Experimental
Settings: First, while we have validated the effec-
tiveness of RepoCoder, we have not yet explored
the potential improvements that can be achieved
through different prompt templates. We believe
that more careful prompt engineering could en-
hance the performance of our approach even fur-
ther. Second, our focus in this study has primarily
been on exploring similarity-based retrieval mod-
els. The reason for this limited scope is rooted in
the complexity of code retrieval, which involves
numerous intricate details that are not directly rel-
evant to the RepoCoder framework. Considering
alternative retrieval models or expanding the ex-
ploration to other code retrieval techniques could
provide further insights and comparative evalua-
tions. Third, we have observed significant advance-
ments in code generation models, such as GPT-
4 (OpenAI, 2023), StarCoder (Li et al., 2023), and
WizardCoder (Luo et al., 2023). While our ex-
periments demonstrate the efficacy of RepoCoder
across different language models (GPT-3.5-Turbo
and CODEGEN), it would be valuable to investigate
how our approach performs with these advanced
code generation models. Incorporating them into
our experimental setup would provide a broader
evaluation of RepoCoder across a wider range of
language models. Fourth, our experiments primar-
ily use the In-File and Oracle methods as baselines.
This decision stems from the fact that repository-
level code completion using language models is a
relatively new task, lacking well-established and
reproducible baselines. To provide further insights,
we include comparisons to other commercial code
completion products. Nonetheless, it is impractical
to systematically benchmark against complex, con-
fidential commercial products. We instead conduct
a study in Appendix E showcasing the repository-
level completion ability of RepoCoder and another
three major commercial products, where we can
illustrate their qualitative differences. In summary,
future work should aim to explore different prompt
designs, consider alternative retrieval or generation
models, and incorporate additional baselines.
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A Repository Details

As mentioned in Section 3, we meticulously se-
lected repositories for our RepoEval benchmark
based on criteria such as open-source license, cre-
ation date, code quantity, and quality. Detailed
information about these repositories is provided in
Table 7.

B Using the Dense Retriever

In our main experiments (as described in Sec-
tion 4.2), we utilize a sparse retrieval model for
RepoCoder due to its acceptable performance and
computational efficiency. However, RepoCoder is
a versatile framework that can be applied with other
code retrieval models as well. To further validate
the effectiveness of RepoCoder, we conduct addi-
tional experiments using a dense code retriever.

Specifically, we employ UniXcoder (Guo et al.,
2022), a state-of-the-art code embedding model, to
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Metric Oracle In-File
RepoCoder Iterations

1 2 3 4

GPT-3.5-Turbo
EM 57.25 40.56 54.56 56.25 56.31 55.31
ES 75.80 65.06 73.96 74.70 74.31 74.04

CODEGEN-MONO-6B
EM 47.25 34.56 45.56 46.75 46.56 46.63
ES 70.03 60.67 68.89 69.51 69.33 69.41

CODEGEN-MONO-2B
EM 45.75 33.63 44.94 45.13 45.81 45.50
ES 68.35 58.99 67.43 68.01 68.35 68.20

CODEGEN-MONO-350M
EM 42.88 29.56 41.50 42.69 42.13 42.31
ES 65.97 55.39 64.71 65.64 65.13 65.53

(a) Line Completion.

Metric Oracle In-File
RepoCoder Iterations

1 2 3 4

GPT-3.5-Turbo
EM 50.06 34.06 47.56 49.13 49.19 49.63
ES 74.95 63.22 72.66 74.22 72.83 74.41

CODEGEN-MONO-6B
EM 39.56 26.19 37.00 38.44 39.13 38.44
ES 66.82 56.45 64.21 65.33 65.26 65.53

CODEGEN-MONO-2B
EM 37.06 25.44 35.00 37.19 36.13 36.63
ES 64.69 56.88 62.22 63.39 63.17 63.65

CODEGEN-MONO-350M
EM 33.13 22.19 31.50 32.69 32.75 31.94
ES 61.37 52.24 59.35 60.69 60.49 60.34

(b) API Invocation Completion.

Table 6: Performance comparison on the line and API
invocation completion datasets using the dense retriever.
Results display the average performance of each method
evaluated using Exact Match (EM) and Edit Similarity
(ES) scores. Numbers are presented in percentage (%),
with the best performance highlighted in bold.

transform code snippets into hidden vectors. We
then calculate the similarity between code snippets
using cosine similarity. The experimental results
on the line and API invocation completion datasets
using the dense retriever are presented in Table 6a
and Table 6b. Notably, the performance of Re-
poCoder using the dense retriever is comparable
to that using the sparse retriever. Furthermore, the
findings remain consistent across both retrievers,
highlighting the robustness and generalizability of
RepoCoder.

C Code Duplication in Repositories

We explore the relationship between the perfor-
mance of RepoCoder and the code duplication ratio

Figure 4: Correlation between the absolute performance
improvements achieved by RepoCoder Iter-2 over the
In-File method and the repository duplication ratios.

of the repositories. Intuitively, since RepoCoder
utilizes similarity-based retrieval to find code ex-
emplars, one might expect a positive correlation
between its performance and the code duplication
ratio. To assess this relationship, we calculate the
code duplication ratio of the repositories by deter-
mining the ratio of duplicated code lines to the total
code lines.

Figure 4 presents the results, demonstrating the
correlation between RepoCoder’s performance, as
measured by the Exact Match (EM) metric, and
the code duplication ratio on the line and API com-
pletion datasets using GPT-3.5-Turbo. Notably,
the repository “diffusers” exhibits the highest du-
plication ratio, which corresponds to a significant
performance improvement for RepoCoder on both
datasets. Conversely, “rl” and “vizier” have low
duplication ratios, resulting in comparatively lower
performance for RepoCoder. However, the corre-
lation between RepoCoder’s performance and the
code duplication ratio is not absolute. For example,
“FedScope” and “evaluate” have similar duplica-
tion ratios but show different performance gains
for RepoCoder.

D Failed Cases between Iterations

In Section 5, the evaluation results demonstrate
that increasing the number of RepoCoder iterations
does not necessarily guarantee performance im-
provements. To further investigate this issue, we
analyze the changes in the number of correct code
completions achieved by different methods on the
API invocation completion dataset. The predic-
tion is considered correct when the EM score is
1. Table 8 presents the results, showing the counts
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ID Name Github Link License Created Stars F. L.

Function Body Completion Dataset
1. imagen lucidrains/imagen-pytorch MIT License 2022-05-23 6, 160 14 7, 324
2. tracr deepmind/tracr Apache V2.0 2022-12-01 284 56 9, 110
3. lightmmm google/lightweight_mmm Apache V2.0 2022-02-10 353 36 9, 676
4. inspection amazon-science/patchcore-inspection Apache V2.0 2022-05-05 304 16 2, 532
5. omnivore facebookresearch/omnivore CC BY-NC 4.0 2022-01-20 459 66 11, 797
6. redframes maxhumber/redframes BSD-2-Clause 2022-08-21 283 49 3, 881

Line and API Invocation Completion Datasets
7. rl pytorch/rl MIT License 2022-02-01 873 165 59, 522
8. ACE opendilab/ACE Apache V2.0 2022-11-23 299 425 66, 497
9. vizier google/vizier Apache V2.0 2022-02-16 688 188 43, 393
10. fortuna awslabs/fortuna Apache V2.0 2022-11-17 373 168 18, 738
11. evaluate huggingface/evaluate Apache V2.0 2022-03-30 1, 082 180 21, 418
12. diffusers huggingface/diffusers Apache V2.0 2022-05-30 9, 521 305 98, 181
13. nerfstudio nerfstudio-project/nerfstudio Apache V2.0 2022-05-31 3, 151 157 27, 289
14. FedScope alibaba/FederatedScope Apache V2.0 2022-03-24 811 443 48, 545

Table 7: Detailed information of the Github repositories used for RepoEval. ID represents the repository IDs. F.
denotes the total number of Python source files, while L. indicates the total number of non-empty Python code lines.
Statistics are accurate as of January 2023.

In-File →
RepoCoder Iterations

1 → 2 → 3 → 4

GPT-3.5-Turbo
+545 −40

+258 763 −46
+70 787 −83

+90 794 −14
+10 790

CODEGEN-MONO-6B
+424 −57

+220 587 −35
+70 622 −12

+16 626 −7
+10 629

CODEGEN-MONO-2B
+412 −64

+219 567 −32
+66 601 −12

+26 615 −16
+13 612

CODEGEN-MONO-350M
+352 −46

+202 508 −25
+59 542 −18

+16 540 −11
+12 541

Table 8: The changes in the number of correct code
completions achieved using different methods on the
API invocation completion dataset.

of correct code completions for each iteration of
RepoCoder. We observe that each iteration of Re-
poCoder both passes cases that the previous itera-
tion failed and fails cases that the previous iteration
has passed.

Upon manually examining the failed cases, we
have the following observations: Firstly, a majority
of failures are caused by misleading retrieved code,
which leads to incorrect predictions. For instance,
the same API may have different sets of parameters
across different files, and the retrieved API usage
example can be misleading in such cases. Secondly,
the model’s predictions are not always suitable for
retrieval. This is because the query is constructed
using a fixed length of the predicted code, which
may include noisy code beyond the initial lines of

helpful code completion. Furthermore, our investi-
gation reveals that many cases in the line and API
datasets are actually correct despite being evalu-
ated as incorrect by the EM score. This highlights
the importance of considering the actual function-
ality of the code, rather than solely relying on exact
matching, and suggests incorporating unit tests to
assess code correctness.

E Case Study of Commercial Products

We conduct a study to showcase the repository-
level code completion ability of RepoCoder and
another three major commercial code completion
tools: Github Copilot 4, Tabnine 5, and Amazon
CodeWhisperer 6. The experiment was conducted
using the Visual Studio Code IDE, with each prod-
uct providing completions as a plugin. These prod-
ucts are based on large language models pre-trained
on code data and can perform line-level and block-
level completion, similar to our study scenario. We
selected a simple API invocation example from the
RepoEval dataset. The task was to complete the
function body for initializing a StableDiffusionKD-
iffusionPipeline, where the prefix in-file context
provided little information. As shown in Figure 5,
none of the commercial products generated the cor-
rect completion. The implementation details of
these commercial products are confidential, it is

4https://github.com/features/copilot
5https://www.tabnine.com
6https://aws.amazon.com/codewhisperer
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(a) Incorrect code completion of Github Copilot.

(b) Incorrect code completion of Tabnine.

(c) Incorrect code completion of Amazon CodeWhisperer.

(d) Correct code completion of RepoCoder.

Figure 5: Code completion examples of RepoCoder and three major commercial products.

difficult to perform systematic comparison. How-
ever, in our case, RepoCoder successfully predicted
the correct completion by retrieving a relevant code
snippet from the repository context. This demon-
strates the need for state-of-the-art tools to effec-
tively leverage repository-level context.
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