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Abstract

Modern ML systems ingest data aggregated
from diverse sources, such as synthetic, human-
annotated, and live customer traffic. Under-
standing which examples are important to the
performance of a learning algorithm is crucial
for efficient model training. Recently, a grow-
ing body of literature has given rise to vari-
ous “influence scores,” which use training arti-
facts such as model confidence or checkpointed
gradients to identify important subsets of data.
However, these methods have primarily been
developed in computer vision settings, and it
remains unclear how well they generalize to
language-based tasks using pretrained models.

In this paper, we explore the applicability
of influence scores in language classification
tasks. We evaluate a diverse subset of these
scores on the SNLI dataset by quantifying ac-
curacy changes in response to pruning training
data through random and influence-score-based
sampling. We then stress-test one of the scores
– “variance of gradients" (VoG) from Agarwal
and Hooker (2022) – in an NLU model stack
that was exposed to dynamic user speech pat-
terns in a voice assistant type of setting. Our
experiments demonstrate that in many cases,
encoder-based language models can be fine-
tuned on roughly 50% of the original data with-
out degradation in performance metrics. Along
the way, we summarize lessons learned from
applying out-of-the-box implementations of in-
fluence scores, quantify the effects of noisy
and class-imbalanced data, and offer recom-
mendations on score-based sampling for better
accuracy and training efficiency.

1 Introduction

A salient challenge in training transformer-based
models is selecting which examples are most im-
portant for learning. Understanding the relative
importance of training examples towards model
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performance can inform data selection strategies
that minimize customer privacy risks associated
with the collection of training data, estimate the im-
pact of the removal of copyrighted or sensitive data,
determine mixing strategies to augment monolin-
gual and multilingual datasets to improve accuracy,
and identify defective subsets of data. At the same
time, in cases where it is desirable to train on as
much data as possible – such as large language
models – determining the influence of different
data instances (both contextually and during pre-
training) can help identify failure modes at the level
of specific tokens (Grosse et al., 2023), determine
the impact of removal of intellectual property, and
significantly reduce costs through more efficient
model training (Renduchintala et al., 2023).

A growing body of literature in the science of
deep learning aims to capture this hierarchy of
example importance and has led to a prolifera-
tion of a number of "difficulty" or "influence"
scores (e.g., Paul et al. (2021); Agarwal and Hooker
(2022); Toneva et al. (2019); Ethayarajh et al.
(2022); Garima et al. (2020); Sorscher et al. (2022);
Swayamdipta et al. (2020); see App. A for a more
complete review). These scores use various train-
ing artifacts, such as the margin of confidence or
the variance of loss gradients, to rank the rela-
tive contribution of each example to model perfor-
mance. This ranking of examples can then be used
in many downstream tasks that require intelligent
data selection, such as pruning datasets while main-
taining or even improving model accuracy (Paul
et al., 2021; Sorscher et al., 2022; Marion et al.,
2023); identifying outliers and misannotations in
labeled data (Garima et al., 2020; Ethayarajh et al.,
2022; Pleiss et al., 2020a; Carlini et al., 2019; Feld-
man and Zhang, 2020); or reweighting/reordering
training examples to increase model robustness
(Ren et al., 2018; Wu et al., 2021).

Apart from a few notable exceptions
(Swayamdipta et al., 2020; Ethayarajh et al.,
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2022; Marion et al., 2023), influence scores have
primarily been developed and demonstrated in
the context of image classification, and relatively
little is known about their efficacy in downstream
language-based tasks.1 The application of these
scores to data selection is further complicated
by the fact that during fine-tuning, modern ML
systems often ingest a vast amount of data that
come from multiple sources, such as synthetic,
weak signal,2 live customer data, and human-
annotated. Beyond quantifying the efficacy of
influence scores in this highly mixed data setting,
there is an operational question of the existence of
a simple, scalable influence score that can be easily
accommodated in a production workflow.

In this work, we take a first pass at answering
these questions. First, we benchmark a subset of in-
fluence scores on the SNLI dataset (Bowman et al.,
2015) in the downstream task of data reduction us-
ing a pretrained BERT model (Devlin et al., 2019).
Given the task of pruning a language dataset for
fine-tuning, are influence scores useful signals for
determining optimal data selection strategies? If so,
which scores work best? We evaluate these scores
against a random sampling baseline, in both noisy
and clean data settings.

User speech patterns are constantly evolving due
to current events as well as user-system interactions
that can be difficult to anticipate. Are influence
scores still effective in surfacing data critical for
model performance in this dynamic setting? To an-
swer this question, we build upon on our initial find-
ings on SNLI and implement one influence score
("variance of gradients" or "VoG", first presented
in Agarwal et al. (2022)) in a generic, large-scale
NLU model stack commonly found in commercial
voice assistants. We present results for existing
in-house test data as well as results for a live user
study in which we leveraged VoG scores for the pur-
pose of substantially reducing training data without
incurring model-performance degradation.

Among the five influence scores we evaluated
on SNLI, most out-of-the-box implementations do
not beat a baseline of randomly pruning the dataset.
The implementations can be improved to do better
than the random-pruning baseline, but this typically

1Large language models such as GPT-3 and T5 do imple-
ment some basic data mixing strategies (Brown et al., 2020;
Raffel et al., 2020). Our focus here, however, is the setting of
using a pretrained model in a downstream task.

2For example, data not associated with customer interrup-
tions in online traffic, which are then pseudo-annotated with
labels according to the top model hypothesis.

requires careful experimentation to tune hyperpa-
rameters specific to each score. Out of the scores
we tested, we find that VoG performs best rela-
tive to the random-pruning baseline, particularly
at large pruning fractions. Test accuracy is mostly
maintained after pruning ∼45% of the SNLI train-
ing data using VoG scores calculated in a “one-shot”
fashion, i.e. from a single training run, without any
score hyperparameter tuning.

In a large-scale user study performed using the
NLU stack, we find that sampling by VoG scores
is effective at surfacing training data that is particu-
larly efficient for learning. We prune roughly 50%
of training data without incurring statistically sig-
nificant regressions in key metrics that track NLU
errors, relative to a baseline model trained with all
data.

2 Experiments on SNLI

2.1 Selection of influence scores
We considered five different influence scores (de-
scribed in Table 1) to benchmark in data-reduction
tasks on SNLI (Bowman et al., 2015), based on
the following criteria: first, they should not require
extensive computational resources to implement.
For example, the score should not require exten-
sive ensemble averaging by training many (≫ 1)
copies of “replicate” models to refine the influence
measurement of any particular example since many
production models can only be trained once in op-
erational workflows.3 Second, the scores should
have a natural definition in language models. This
excluded some scores that were originally defined
in the context of computer vision, such as input-
pixel perturbation (Su et al., 2019). We report the
implementation details of these scores in App. B.1.
Our experiments on SNLI are run on BERTSMALL
(L = 4, H = 512, 29.1M parameters), but we
comment on the effects of model size in App. B.3.

2.2 Experimental Setup
We ran two sets of data-pruning experiments on
SNLI to understand the effectiveness of pruning
based on the influence scores in Table 1.

In Section 2.3, we describe data-pruning experi-
ments on the original SNLI dataset. First, we gen-
erated the influence scores in Table 1 for the entire

3We report on the results of scores that require a moderate
O(1) number of re-runs such as EL2N (Paul et al., 2021),
but our main motivation is to determine if there are influence
scores that can be used in a “one-shot” setting, using only
training artifacts generated from a single run.
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Score Description

VoG (Agarwal and
Hooker, 2022)

Variance of gradients of model outputs
with respect to the inputs.

EL2N (Paul et al.,
2021)

Norm of the margin of confidence be-
tween the model prediction and the
one-hot label.

Forgetting Score
(Toneva et al.,
2019)

How often an example is forgotten i.e.
goes from being classified correctly at
checkpoint i to incorrectly at i+ 1.

PVI (Ethayarajh
et al., 2022)

Fine-grained information-theoretic
quantity whose expectation value is
the amount of usable information (in
bits) by the model.

TracIn (Garima
et al., 2020)

Influence of any example z towards
another example z′ by tracking their
gradient dot products. We generate the
self-influence scores where z = z′.

Table 1: Description of the influence scores we gener-
ated on the SNLI dataset. See App. B.1 for implementa-
tion details.

SNLI training data. We then pruned the training
data by using the scores to sample either “easy” or
“hard” examples,4 and measured test accuracy for
a model trained on the reduced dataset. We com-
pared these score-sampling pruning results to prun-
ing by random sampling. We defer details of the
implementation of influence scores and additional
findings to App. B.1, but note here that we consider
two normalization schemes for VoG scores: class-
normalization5, where the scores are normalized
with respect to the mean and standard deviation
of each class, and dataset-normalization, with
respect to the full training dataset.

Results on a relatively clean public dataset like
SNLI may not always translate to results on large,
commercial datasets that are noisier and highly
class-imbalanced. In Section 2.4, we address this
concern by running similar pruning experiments
on SNLI with increasing levels of randomly gener-
ated label noise.6 We then computed VoG, TracIn,
and PVI scores7, pruned easy/hard examples based
on those scores, and compared test accuracy to a
random sampling baseline.

4We use the terminology “easy” and “hard” for pedagog-
ical reasons. Strictly speaking, we are running data-pruning
experiments where examples are sampled from either the head
or tail of the score distributions. Frequently, these examples
do correspond to what a human would find easy and hard,
respectively, but we clarify in Section 2.3 when they do not.

5As originally prescribed in Agarwal and Hooker (2022).
6Details about the label noise are given in App. B.6.
7These scores were chosen in the noisy label setting due

to their reported efficacy in surfacing defective data.

2.3 Results on SNLI

Fig. 1 shows test accuracy at the end of training as
a function of percent data pruned for each of the
five score-based pruning strategies.

General Findings: For most scores, we found
that pruning the hardest examples resulted in mod-
els with poorer test accuracy compared to pruning
the easiest examples. This supports the findings
of Sorscher et al. (2022), which hypothesized that
hard examples contain critical information about
the decision boundaries of classes in larger, less
noisy datasets. We also find that out-of-the-box
implementations of influence scores – with the ex-
ception of VoG – do not result in test accuracy
higher than the random sampling baseline with-
out score hyperparameter tuning. For example,
for EL2N scores, it is crucial that the scores are
computed early during fine-tuning for best results.
We explored different implementations and chose
those that gave best results for data pruning, while
adhering to the criteria listed in Sec. 2.1.

VoG: Remarkably, VoG required only a single
model training run and no hyperparameter tuning.
At 45% of training data removed, pruning class-
normalized VoG-easy examples led to a test accu-
racy of 85.04±0.20%, compared to 85.52±0.14%
with all of the data. At smaller pruning fractions
(≲10%), performance is roughly within the mar-
gin of error of sampling randomly. We find that
sampling dataset-normalized scores generally per-
forms worse than class-normalized (84.60±1.50%
at 45% easy pruned), which is due to the over-
representation of the “contradiction” class (Fig. 2)
in the tail. We will revisit the merits of class versus
dataset normalization in Sec 3.

EL2N: Best results were obtained by computing
EL2N scores early in training; we found epoch
∼ 2 outperformed the random pruning baseline
for small to moderate pruning fractions (between
0-25%), but worse beyond that.

EL2N is a margin-based metric, which means
that examples drawn from the tail of the EL2N
distribution should lie close to the decision bound-
ary between classes (Paul et al., 2021; Sorscher
et al., 2022). If that is true, then removing these
examples should dissolve the decision boundary
between different classes, and account for the drop
in test accuracy. We provide some evidence for this
in App. B.4 by clustering the t-SNE (Hinton and
Roweis, 2002) encoder representations of the train-
ing and test data, before and after pruning EL2N-
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Figure 1: Shows the test accuracy on SNLI as a function of training data pruned for different influence scores
(pruning easy examples is blue, random in gold, and hard in orange). Points show the mean test accuracy computed
over three training runs, and shaded regions indicate the 1-σ envelope.
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Figure 2: Distribution of VoG scores for SNLI dataset
with two different normalization schemes.
hard train data.

PVI: We found that beyond a small fraction
(5-10%) of data pruned, pruning by PVI scores
generally did not outperform random pruning.8

Although manual inspection of the top negative-
scoring PVI examples showed that this score was
effective at finding several misannotated examples
in SNLI (see App. B.5), the number of such mis-
annotations was quite small, and beyond a certain
pruning fraction, the test accuracy fell off rapidly9.

8Sampling examples from the head of the PVI score dis-
tribution corresponds to “hard” or potentially misannotated
examples, while the tail corresponds to “easier” examples.

9While outside the scope of this work, the explicit depen-
dence on the model inductive bias through the “null model" in
the definition of PVI suggests that it may be more effective at

Forgetting Scores: We observe consistent im-
provements over the random sampling baseline
when pruning the least forgotten examples, with a
test accuracy of 84.58±0.02% at 45% data pruned.
However, due to the rapid convergence of fine-
tuning (resulting in most examples having zero
forgetting score), forgetting events for the entire
training set had to be logged at a high cadence
(once every 50 training steps), making it challeng-
ing to apply in a production setting.

TracIn: Pruning up to ∼ 30% of training data
by TracIn scores led to consistent improvement
over training on randomly pruned data. Similar to
pruning EL2N-hard examples, pruning TracIn-hard
examples dissolves the decision boundary between
classes. The similarity index10 of the top 5% of
hard examples for these two scores is 0.37 (ver-
sus 0.11 for random sampling), indicating they are
roughly sampling the same difficult examples.

2.4 Results on SNLI with Added Label Noise

Fig. 3 shows the results of our noisy data reduc-
tion experiment, where the amount of isotropic
label noise was varied from five to 30 percent. We
observed that pruning VoG-easy examples outper-
formed the random-pruning baseline in all of the

iterative pruning, rather than single-shot pruning where scores
are computed only once for the model trained on all data.

10Given by the Jaccard index for two sets A and B: |A∩B|
|A∪B| .
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Figure 3: Shows the results of pruning VoG-easy (blue), TracIn-hard (orange), PVI-hard (purple), or randomly
selected (gold) examples for noisy SNLI. The amount of added isotropic label noise is given in the orange inset.
Points indicate the average of three runs and shaded regions indicate the 1-σ envelope.

noisy settings, for large pruning fractions. In some
cases, pruning based on VoG scores even clawed
back a fraction of the initial accuracy loss due to
noisy labels. However, somewhat surprisingly, this
was likely not because VoG-based selection was
pruning the misannotated examples themselves.
The similarity index between the easiest VoG exam-
ples and all of the introduced misannotated exam-
ples in the 30% label-noise setting was only≈ 0.11.
Compared to random sampling (≈ 0.11), we con-
clude that VoG does not do better than random
chance at finding misannotated SNLI examples,
but does reliably extract more influential examples
that partially mitigate the effects of label noise. In
all noisy settings, we found that pruning VoG-hard
examples did worse than pruning randomly.

Pruning by TracIn and PVI scores resulted in a
small but persistent accuracy increase when ∼ 5-
10% of the hard data was pruned. In the 30% noise
setting, the similarity index between the TracIn-
hard and PVI-hard examples and misannotated ex-
amples was ≈ 0.11, 0.09, respectively, again indi-
cating that the accuracy gains are not due to the
removal of defects. The number of instances with
a PVI score of < 0 (indicating a potential mis-
annotation) comprises only 6% of the mislabeled
data. Nevertheless, it appears beneficial to use
these scores to prune 5-10% of overall hard data
that adversely impacts training in a noisy setting.

3 VoG in the Context of NLU

Given its promising results for data reduction on
SNLI, we set out to evaluate VoG in an environment

typically found in large, general-purpose commer-
cial voice assistants. This setting poses practical
challenges often not reflected in public datasets,
such as noisy and evolving speech patterns, di-
verse vocabularies, dialects, carrier phrases, and
out-of-distribution named entities. As an added
challenge, we focus on Japanese-data trained mod-
els and datasets to determine if VoG-based influ-
ence scoring could function in a lower-resource
setting. The statistical-model component in this
setting consisted of generic domain classifier (DC),
intent classifier (IC), and named entity recognition
(NER) models organized in a coupled, hierarchical
manner: a single multi-class DC model is trained
on all domains’ data to first predict the domain for
a given utterance, which then invokes a domain-
specific joint IC-NER model trained on in-domain
data11. Both sets of models were based on dis-
tilled Japanese BERT models and VoG scores were
computed using the procedure given in App. B.1.

Fig. 4 shows the class-normalized scores for a
subset of five domains that differ in the proportion
of the overall training data they represent and intent-
label complexity12 within that domain. We observe
that smaller domains tend to have higher scores
(e.g., HealthAndFitness vs. HomeAutomation) and
more complex domains tend to have higher scores
(Shopping vs. Video). In some cases, domains
that are similar in size and complexity still exhibit
different VoG score distributions (Music vs. Video)
which reflects differing influence of domain data

11See App. C.1 for additional context.
12As measured by Shannon entropy; see App. C.6.
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Figure 4: Probability density of class-normalized VoG
scores for data used to train in-house models, grouped
by ground-truth domain.

due to factors that cannot be easily discerned with-
out extensive manual analysis.13

3.1 Experiment Setup

Here we describe in-house experiments which
leverage VoG scores for frugal data selection. We
present evaluation results on both existing internal
data and live user interaction data to determine the
impact of pruning training data. In both sets of
experiments, models were trained and evaluated on
de-identified, historical user data.

Sampling Technique: We benchmarked VoG-
based data sampling against random sampling and
stratified sampling.14 In stratified sampling, we
sample utterances randomly while preserving the
domain distribution of the training data. Fig. 5
shows the relative reduction of a few domains’
training data when pruning using different sam-
pling techniques. Sampling by dataset-normalized
VoG scores led to highly non-uniform reductions,
as expected since those scores reflect data influence
with respect to all domains’ training data.

For VoG-based sampling, we used a probabilistic
method where the sampling likelihood was propor-
tional to the score (see App. C.3 for details). This
results in higher likelihood of pruning training data
with scores located near the head (low-score por-
tion) of the VoG distribution. We computed scores
using training checkpoints of a baseline model and
used those scores as sampling weights to create a
new pruned training dataset used for the candidate
model.

13We include additional domain-level analysis in App. C.4.
14In each case, sampling was performed without replace-
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Figure 5: Reduction of training data using different
sampling techniques for three large domains (left), two
medium domains (middle), and a small domain (right).

Experiments on De-identified Historical Data:
We compared the performance of models trained
on the complete de-identified historical training
data versus on a reduced subset of it. The sampled
data was used for fine-tuning of the DC model and
the in-domain subset of that sample was used for
fine-tuning IC-NER stat models. Each model was
trained for the same number of epochs without
early stopping.

Due to the non-deterministic nature of proba-
bilistic sampling, we averaged over three random
seeds for each sampling technique, trained models
on those samples, and report evaluation results.

The majority of experiments investigated model
performance and efficiency in the context of aggres-
sive reduction of training data (roughly 50%). We
performed additional experiments on VoG-based
sampling techniques in which we pruned roughly
14% of historical data, in order to understand the
impact on model performance when targeting less
aggressive data-reduction targets.

User Study: In a randomized user study, we
investigated the impact of pruning roughly half of
the training data. The scaled user study exposes
the model to unconstrained human speech, which
varies (often dramatically) in carrier phrase fre-
quency, vocabulary, and named entities distribution
compared to public datasets, offering a challeng-
ing setting to evaluate the efficacy of VoG-based
scoring. To ensure that the most frequent user re-
quests are captured, large-scale NLU systems often
consist of both statistical models as well as de-
terministic model artifacts. In addition, although
these statistical models are primarily trained on
historical data, they also are trained on additional
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in-house synthetic data. Thus, in order to under-
stand how our results might generalize to a produc-
tion system, we compared composite NLU models
containing both statistical and deterministic com-
ponents, trained on both historical and synthetic
data. The total training-data size reduction for the
candidate model versus the baseline model was
approximately 40%.

The user study was performed using an in-house
experimentation platform that provided signals of
model performance that captured potential degrada-
tions to the user experience. Pruning solely by DC
VoG scores led to some downstream NER-related
regressions for the composite model when evalu-
ated on historical data. Therefore, as an extra pre-
caution, we pruned training data based on a mod-
ified version of DC-model VoG scores. We first
estimated NER complexity for each intent using the
Shannon entropy of slot-label-trail annotations (i.e.
all data labeled with a given intent were assigned
the same complexity score). The final sampling
scores were taken to be the mean of the DC VoG
scores and estimated NER complexity scores. For
details, see App. C.6.

The user study ran for 11 days, with users dis-
tributed equally between the baseline and candidate
models.

3.2 Experiment Metrics

In experiments on historical data we measured
performance on held-out test data15 in terms of
component-wise error rates. We measured do-
main and intent classification performance using
the recall-based classification error rates DCER and
ICER.

To evaluate slot-filling performance, we mea-
sured semantic error rate (SEMER):

SEMER ≡ # Intent errors+ # Slot errors

# Test data+ # Slots
.

Specifically, we measured F-SEMER, the harmonic
mean of SEMER using predicted labels as the refer-
ence and SEMER computed on ground-truth labels
as the reference; this score balances precision/recall
equally. We also report the interpretation error rate
IRER, which reflects the rate of any kind of error
(slots, intents, domain). For all error-rate metrics,
we report the error rate of the model trained on

15This evaluation data consisted of roughly 3 million test
cases that were sampled from user data and subsequently
annotated by humans.

pruned data relative to the model trained on all
data:

Relative ER ≡ ∆ER

ERno-pruning
.

It is useful to define a metric that measures accu-
racy loss per utterance, relative to the no-pruning
baseline. We report relative data-score efficiency,
originally proposed by Çano and Bojar (2019):

σER ≡
∆ER/ERno-pruning

∆d/dno-pruning
, (1)

where ERno-pruning and dno-pruning correspond to the
error rate and number of training instances for the
model trained on all data.16 σ values express the ra-
tio of relative-change in performance to the relative-
change in training data. In our data-pruning setting,
∆d is negative. More positive values of σER indi-
cate less model degradation due to pruning, and a
σER score of zero indicates no model-performance
regression relative to the no-pruning baseline.

We analyzed model performance in the user
study using two in-house proprietary metrics de-
veloped to detect model defects involving user re-
quests:

Predicted Defect Rate (PDR): PDR is a model-
based metric that uses both the system response
and user-provided signals (e.g., whether they in-
terrupted the device response) as features to pro-
duce a binary prediction for each request indicat-
ing whether that request likely resulted in a user-
perceived defect. We also report tail-PDR, which
is PDR corresponding to the bottom 40% of user
traffic. These less common requests are much less
likely to be covered by deterministic components.

Unrecoverable Error Rate (UER): This metric
tracks cases where the utterance cannot be acted
on. This can happen, e.g., if no domain picks up a
request with a high enough confidence threshold,
or if there are no clarifying questions that could
help to recover from the failure state.

3.3 Results on De-identified Historical Data

Table 2 shows the results of experiments on de-
identified historical data, comparing relative-error
and relative data-score efficiency metrics for VoG,
random, and stratified sampling. Overall, the best

16In Çano and Bojar (2019), the relative data-score effi-
ciency metric σ was used to evaluate how well model accuracy
scaled as the amount of training data was increased. We use
use σ in a slightly different but analogous manner to quan-
tify how well model errors are avoided as the training data is
pruned using a given sampling technique.

2491



Samp. technique ∆train ∆DCER ↓ ∆FSEMER ↓ ∆ICER ↓ ∆IRER ↓ σDCER ↑ σFSEMER ↑ σICER ↑ σIRER ↑
Random −52% 6.04% 5.56% 5.26% 4.98% −11.7 −10.78 −10.19 −9.64
Stratified −52% 5.23% 5.14% 4.87% 4.92% −10.14 −9.96 −9.43 −9.54
VoG-class-norm −52% 5.48% 5.08% 5.20% 4.40% −10.53 −9.76 −10.01 −8.47
VoG-dset-norm −52% 2.94% 3.65% 3.18% 3.34% −5.65 −7.02 −6.11 −6.42

VoG-class-norm −46% 3.62% 3.77% 3.63% 3.39% −7.87 −8.18 −7.87 −7.36
VoG-dset-norm −46% 1.52% 2.20% 1.72% 2.09% −3.25 −4.73 −3.69 −4.50

VoG-dset-norm −14% 0.53% 1.02% 0.53% 0.97% −3.86 −7.44 −3.92 −7.09

Table 2: Comparison of offline-test error-rate and data-error efficiency metrics for models trained on in-house data,
sampled according to different techniques. All pairwise comparisons were relative to a baseline trained on all data.
For each technique, we report the average change in performance for three models trained on independently sampled
training data.

performance for 52%-pruned data was obtained
by models trained on VoG-dataset-norm-sampled
data, while random sampling was associated with
the worst model performance across all evaluation
metrics. The stratified-sampling pruning baseline
improved over random sampling, particularly with
respect to domain-classification accuracy (∆DCER
of 5.23% for stratified sampling vs. 6.04% for ran-
dom sampling). In fact, except for ∆FSEMER and
∆IRER that track slotting errors, models trained on
stratified-sampled data even slightly outperformed
models trained on VoG-class-norm-sampled data.

The experimental results in Table 2 demonstrate
the importance of score normalization: models
trained on data pruned by dataset-normalized VoG
scores outperformed models trained on data pruned
by class-normalized VoG scores across all evalua-
tion metrics we considered, for both pruning per-
centages. Using class-normalized scores as sam-
pling weights increased overall relative DCER by
roughly 1.9x when pruning 52% and by roughly
2.4x when pruning 46%, compared to when sam-
pling from dataset-normalized scores. In App. C.5,
we provide a detailed domain-level analysis to
understand which data contributed most to the
improvement associated with pruning by dataset-
normalized VoG scores versus class-normalized.

Table 2 also shows that the efficiency metric σ
for dataset-normalized VoG-pruning was higher
when pruning 46% compared to when pruning 52%
or 14%. These findings can be used to help in-
fer appropriate pruning targets for a given training
dataset that minimize the need for historical train-
ing data without regressing on model performance.

3.4 User Study Results

Table 3 shows the results of our user study com-
paring the baseline model to a model trained on

Metric Rel. change 95% CI

UER −1.18% [−2.00%, −0.35%]
PDR * 0.45% [−0.18%, 1.09%]
PDR-tail 0.56% [0.003%, 1.09%]

Table 3: Comparison of top-level UER, PDR, and PDR-
tail metrics for baseline model vs. VoG model candidate
that has been trained on roughly half of the live data
used for training the baseline model.
* Not a stat. sig. difference (p = 0.16).

roughly 50% of historical data.17

The reduced-train-data model surprisingly
achieved slight statistically significant improvement
in overall UER and with no statistically significant
change to PDR. We saw a small but statistically sig-
nificant degradation in PDR-tail, which indicates
that this type of aggressive data reduction can lead
to regressions for less common requests. We also
present a domain-level analysis of these top-line
results in App. C.5.

Taken together, these results suggest that our
NLU training data is highly redundant, and that
comparable performance can be had by training
on an intelligently chosen subset of it. While re-
gressions in per-domain UER and PDR suggest
potential downsides of pruning data based solely
on DC-model gradients for all statistical models of
a hierarchical NLU system, these results neverthe-
less confirm the overall practical utility of pruning
data by VoG scores in commercial settings.

17As discussed in Section 3.1, the candidate model also
included other non-live training data (e.g., synthetic) in model
training, which was also the case for the baseline.
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4 Discussion

In this work, we initiated a study of the application
of influence scores in efficient language data sam-
pling. First, we benchmarked a diverse subset of
influence scores in a data reduction task and found
promising results pruning using VoG scores. In
the second part, we used these preliminary results
on SNLI as impetus to scale VoG up to a model
stack commonly used in commercial voice assis-
tants. We provided a detailed account of how score
normalization affects final results and again found
encouraging results on experiments involving his-
torical data using dataset-normalized VoG scores,
as well as in a user study. In particular, we did not
see any overall regressions when a model trained
only on ∼50% of historical data was deployed.

This work mainly focused on data reduction; it
would be interesting to reverse some of the pre-
sented analysis for data mixing/augmentation in
order to identify economical ways of surfacing new
model data. Our work also focused on supervised
settings using BERT architectures; an obvious path
forward would be to extend the definition of these
scores to model pretraining and to, e.g., decoder-
only architectures that are commonly used for large
language models (see, e.g., Marion et al. (2023)
along similar lines). While this may be difficult to
implement at a microscopic level for a corpus of
pretraining data such as the Common Crawl, one
avenue could be to apply this method at a coarse-
grained level by grouping together texts by simi-
larity. Given the recent results of Sorscher et al.
(2022) and Abbas et al. (2023), this suggests a path
towards training data-efficient large language mod-
els that could, in principle, outperform empirically
observed scaling laws (Kaplan et al., 2020; Hoff-
mann et al., 2022).

Another highly promising application of our re-
sults is determining the influence of specific exam-
ples in in-context learning. One concrete general-
ization of VoG scores to this setting would be to
look at variance of model weights (e.g., in attention
heads) in specific layers over the length of the input
sequence. This could provide an interpretable met-
ric for identifying influential contextual examples
and failure modes, at the level of specific tokens
(Grosse et al. (2023) propose similar methods using
influence functions). Given the increased recent
interest in this area of research due to concerns
over bias, toxicity, and fairness in large language
models, there is a critical need for simple, inexpen-

sive, and empirical metrics that can estimate the
the influence of examples to in-context learning.
Our work develops the foundational understand-
ing necessary to make progress on that problem
by generalizing results from the computer vision
field (such as those scores that approximate more
computationally expensive influence functions) to
language-based tasks.

Limitations

We hope that our in-house experiments provide a
useful data point on the practical utility of influence
scores. However, we note that we could not experi-
ment with the same number of sampling techniques
or prune sizes as we did in SNLI experiments due
to computational overheads, and acknowledge that
our in-house results are not readily reproducible.
In addition, the customer data available for model
training and experimentation changes frequently,
e.g. due to data-expiration policies or customer
data-deletion requests, which limited our ability
to strictly control the training data between all re-
lated model-training runs. However, this limitation
applied equally to each experimental sampling tech-
nique and only impacted the relative training-data
reductions for a given pruning fraction by less than
0.01% for all sampling techniques.

We also note that the goal of our paper was not to
find the absolute, best-performing influence score
through extensive score-hyperparameter tuning. It
is highly possible, for example, that the bench-
marking measurements reported in Fig. 1 can be
refined for better accuracy (though we have aimed
to provide a thorough documentation in App. B.1
of our initial pass at score-hyperparameter tuning
on SNLI). Instead, our results should be taken as
a proof-of-concept of the existence – and applica-
bility – of a simple, scalable, one-shot influence
score in both public and production language data
reduction settings.

Finally, our public data experiments primarily
focused on a controlled setting using the SNLI
dataset, which may not generalize to other pub-
lic datasets. To address this, we conducted the
scaled user study which exposed the model to un-
constrained human speech, which varies (often dra-
matically) in carrier phrase frequency, vocabulary,
named entities distribution and other aspects from
publicly available datasets such as SNLI.

2493



Ethics Statement

Influence-based filtering can have disparate impact
on predictions for classes with less annotated data.
This can increase the likelihood of training data as-
sociated with less frequent language patterns being
filtered out, which can increase bias in data that
then propagates to the trained model. We have at-
tempted to quantify this bias and correct it through,
e.g., dataset-normalization.

Acknowledgements

We are grateful for the helpful discussions and
feedback provided by Jason Crowley and Kay
Rottmann.

References
Amro Abbas, Kushal Tirumala, Daniel Simig, Surya

Ganguli, and Ari S. Morcos. 2023. Semdedup: Data-
efficient learning at web-scale through semantic dedu-
plication. CoRR, abs/2303.09540.

Chirag Agarwal, Daniel D’souza, and Sara Hooker.
2022. Estimating example difficulty using variance
of gradients. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10368–10378.

Chirag Agarwal and Sara Hooker. 2022. Estimating
example difficulty using variance of gradients. 2022
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10358–10368.

Robert J. N. Baldock, Hartmut Maennel, and Behnam
Neyshabur. 2021. Deep learning through the lens
of example difficulty. In Advances in Neural In-
formation Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
10876–10889.

Jacob Bien and Robert Tibshirani. 2011. Prototype
selection for interpretable classification. The Annals
of Applied Statistics, 5(4):2403 – 2424.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew E. Peters, Ashish
Sabharwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
1078–1088. PMLR.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.
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A Review of Influence Scores and Related
Work

In this work, we use “influence scoring” as a broad
term to refer to the large body of scientific literature
focused on using artifacts of the learning algorithm
– such as the loss, model confidence, etc. – to
determine the relative importance of specific data
instances. Many of these methods can be used to
determine influential test examples, in addition to
training. This review section should not taken to
be comprehensive or exhaustive, but rather as a
starting point to delve into subtopics in this area of
research. We suggest the “Related Works” section
in Swayamdipta et al. (2020) for a nice review of
these methods as well.

There are a number of works that aim to use
empirically formulated scores to approximate or
improve upon influence functions – formulas that
estimate the impact of training examples on test
examples (see, e.g., Koh and Liang (2017) and
references therein). TracIn (Garima et al., 2020)
is one such example. Similarly, there are a num-
ber of methods that center around explainability
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and interpretability; e.g., finding representer points
by decomposing pre-activation predictions (Yeh
et al., 2018), methods that aim to extract feature
importance (Sundararajan et al., 2017; Lundberg
and Lee, 2017), develop reliable models of predic-
tions (Ribeiro et al., 2016), and capture learning
order in neural networks (Hacohen et al., 2020).

Next, there is a body of literature that broadly
includes methods that aim to quantify data quality
and difficulty. This includes core-set methods that
select an intelligently weighted subset of training
data (Hwang et al., 2020; Har-Peled and Kushal,
2007), information-theoretic measures of data qual-
ity (Song et al., 2012; Ethayarajh et al., 2022), train-
ing dynamics based methods to diagnose and map
out datasets (Swayamdipta et al., 2020; Agarwal
and Hooker, 2022; Siddiqui et al., 2022), and pa-
pers that provide empirical and theoretical defi-
nitions of dataset difficulty (Meding et al., 2022;
Baldock et al., 2021; Sorscher et al., 2022). Simi-
larly, previous works have used adversarial filters
(Bras et al., 2020) and proxy selection methods
(Coleman et al., 2020) to score examples. A differ-
ent approach taken by several works is to identify
certain types of examples such as prototypical ex-
amples that match human expectations (Kim et al.,
2014; Bien and Tibshirani, 2011), memorized ex-
amples (Liu et al., 2021), or outliers and tails in
distributions (Carlini et al., 2019).

There are also several methods that leverage
training dynamics to explicitly maintain/improve
accuracy and learning efficiency (Hara et al., 2019;
Pleiss et al., 2020b; Toneva et al., 2019; Paul et al.,
2021; Jiang et al., 2019; Fayyaz et al., 2022; Jiang
et al., 2020), and those that quantify bias in com-
pressed models (Hooker et al., 2021).

In this paper, we could not exhaustively cover
each of these scores, but as outlined in Sec. 2.1,
we aimed to select a sufficiently diverse subset that
could plausibly scale to a production stack.

B Additional Details about SNLI
Experiments

B.1 Score Implementations

Our implementation for the scores we tested in Ta-
ble 1 aims to mirror the implementations given
in the original references as closely as possi-
ble. Our experiments were mainly carried out on
BERTSMALL (L = 4, H = 512, 29.1M parame-
ters), trained for 10 epochs (with a batch size of
128) using the Adam optimizer with a learning

rate of 1 × 10−4 for the encoder and 1 × 10−3

for the classifier head. The classifier head was a
three-layer fully connected neural network with an
intermediate dimension of 64×64, with 10% prob-
ability drop-out. We specify our implementations
below for the influence scores:

VoG: VoG scores were computed adhering
closely to the method described in Agarwal and
Hooker (2022), with the exception that the input
pixels were replaced with the input embeddings.
Gradients were computed at the locations of the
ground-truth labels. The pseudo-code given in al-
gorithm 1 describes our implementation in full.
The computation is split into two steps for clarity:
in the first, we compute the gradients of the pre-
softmax model outputs at the location of ground
truth labels with respect to the outputs of the embed-
ding layer, for the desired number of model check-
points Nc (we used 10). For each example i, these
gradients will be of dimension (input_length,
embedding_dim), which we denote by G

(c)
ijk where

c is the checkpoint, or in matrix form G
(c)
i :

G
(c)
i =

∂A
(c)
i

∂E
(c)
i

, (2)

where A
(c)
i denotes the pre-softmax model outputs

at the location of the ground truth label and E
(c)
i de-

notes the embeddings. Next, the VoG score for each
example i can be computed by first computing the
gradient means and variances across checkpoints:

µi =
1

Nc

∑

checkpoints c

G
(c)
i ,

V i =
1√
Nc

(G
(c)
i − µi)

2.

(3)

The (unnormalized) score vi for each example is
then given by the mean of V i (that is, we average
over the input embeddings, analogous to how the
scores were averaged over pixels in Agarwal and
Hooker (2022)). The final scores VoGi can be com-
puted by normalizing vi with respect to either the
score mean and standard deviation in each class,
as originally prescribed in Agarwal and Hooker
(2022), or the score mean and standard deviation
for the full dataset:

VoGi =
vi − µclass

σclass
(class-norm),

VoGi =
vi − µdset

σdset
(dataset-norm).

(4)

2497



VoG scores were computed in a “one-shot” manner,
using gradients logged from a single training run.

Algorithm 1 VoG implementation for language
data.

load model m used for training
gradients G← empty dict
for checkpoint c in training checkpoints do

load m← c
set m to inference
for batch ∈ DataLoader do

x, y ← batch
outputs← m(x)
get embedding layer E from m
set embeddings to retain grad
Y ← one-hot vector encoding of y
compute back. pass on outputs w.r.t Y
G[c][batch]← detached gradients of E
zero-out model gradients

end for
end for
VoG scores v ← empty dict
for batch b ∈ G[·] do

for example i ∈ batch do
V ← Var(G[c][i]) across checkpoints c
v[i]← mean of V

end for
end for
return v

TracIn: TracIn scores were computed using eq.
1 given in Garima et al. (2020), reproduced here
for convenience:

TracIn(z, z′) =
k∑

i=1

ηi∇wL(wti , z) · ∇wL(wti , z
′).

(5)

The content of the above equation is that TracIn
computes a score for pairs of examples z, z′, such
that high (low) scores correspond to proponents
(opponents) to z. ηi denotes the learning rates for
checkpoints i ∈ 1, . . . , k. Gradients are taken with
respect model weights at these checkpoints. In
our fine-tuning experiments, the learning rates are
constant across checkpoints ηi = η, and thus en-
ter as an overall factor to the scores that can be
normalized away.

Following the original paper, for generating
scores for training examples, we compute the self -
influence scores i.e. we set z′ = z. It is not
tractable to compute the gradients with respect to

all of the model weights. A key question, then, is
which layer the above gradients should be taken
with respect to. We experimented with two possi-
bilities: using the last-layer classifier weights and
using the last encoder hidden layer. We found that
in both clean and noisy SNLI settings, using the
encoder hidden state gave more stable and better
results for data pruning, relative to the random sam-
pling baseline (this is what was used in Figs. 1
and 3). The final scores were computed from the L2
norm of the gradient dot products in eq. 5. Scores
were computed using 10 model checkpoints from
a single training run, logged every 500 iterations
during training.

Forgetting Scores: Forgetting scores measure
the number of times an example moves from being
classified correctly to classified incorrectly. A key
hyperparameter we had to tune was the cadence
at which forgetting events are computed for each
training example. In Toneva et al. (2019), this mea-
surement was done at the batch-level granularity –
that is, forgetting scores were updated each time
the example was seen in the minibatch. We found
that due to the rapid convergence of fine-tuning,
this resulted in too many examples having a zero
forgetting score. Fig 6 shows the distribution of
forgetting scores for two different cadences; we
see that the number of zero forgetting events in-
creased by approximately 26% when the scores
were computed every 500 iterations as opposed to
every 50 iterations. To get enough resolution, we
compute forgetting scores for the entire training
dataset every 50 training iterations for the first 2
epochs of training, averaged over three random
seeds in order to obtain sufficient precision in the
head of the score distribution. For future work,
it may be best to go to even finer resolution and
compute forgetting scores as frequently as possible
early in training, e.g., the first dozen iterations in
training.

EL2N: EL2N scores were computed in the man-
ner described in Paul et al. (2021) by the equation:

EL2N(z) = ∥softmax[f(z)]− y∥2, (6)

where softmax[f(z)] indicates the softmax of the
model outputs and y indicates the one-hot encod-
ings of the labels.

Final EL2N scores were obtained by averaging
scores over 10 training runs. Consistent with the
findings of Fayyaz et al. (2022), we found that
it is critical that the scores are computed early in
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Figure 6: Distribution of forgetting scores for SNLI
training data at two different sampling frequencies.

training. We hypothesize that this is due to the rapid
convergence of BERT on the training set; after
only 6 epochs of training BERTSMALL has nearly
memorized the training set (achieving close to 97%
accuracy), which results in an EL2N score close
to zero for many examples for which the margin is
large (i.e. these examples are always learned). This
is confirmed in the distribution of EL2N scores
seen in Fig. 7, where there is a greater spread
in EL2N scores computed at epoch 2 compared
to epoch ∼7. When computed at epoch ∼7, the
standard deviation of the scores corresponding to
50% of the head of the distribution (i.e. the easiest
examples) is on the order of 10−4. 10−2 is roughly
the mean standard deviation for individual scores
between 10 re-runs, so the precision with which we
can measure the score of an individual example is
roughly on the order of ∼ 1/

√
10× 10−2 ≫ 10−4.

This back-of-the-envelope calculation means that
in order resolve the easiest examples correctly for
scores computed late in training, one would need
to average EL2N scores over an increased number
of training re-runs.

PVI: Pointwise V-information (PVI) scores
from Ethayarajh et al. (2022) were computed using
eq. 4 of their paper, reproduced here:

PVI(x→ y) = − log2 f [∅](y) + log2 f [x](y).
(7)

The scores require fine-tuning a “null” model, de-
noted by f [∅](y) that is trained on empty or null
inputs. f [x](y) denotes the model fine-tuned on
training data. Both models were trained for 2
epochs (we find that empirically this is approxi-
mately when the V-information is maximized18)

18Interestingly, we also find that at late training times, PVI
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Figure 7: Distribution of EL2N scores for SNLI dataset
at two different checkpoints.

and final scores were obtained from averaging over
10 random seeds. The scores were computed for
models trained on all of the data (and subsequent
models were trained on pruned data according to
those scores). In future work, it would be inter-
esting to consider iterative pruning, where scores
are recomputed for models trained on data pruned
using the previous models’ scores.

B.2 Probabilistic Sampling vs. Hard Cut-Off
in SNLI

Each influence score provides a ranking of exam-
ples that orders their importance. We considered
two different strategies for selecting data once the
scores are computed: hard cut-off and probabilis-
tic sampling. For the hard cut-off method, we
only retain examples with scores above a certain
threshold (e.g., to prune 30% of the “easy" data, we
would prune the 30% of examples corresponding to
the head of the score distribution). The probabilis-
tic method relaxes this condition, and each example
has a chance of being retained with a probability
equal to the softmax of its score. We used the
probabilistic sampling method in two cases: first,
in sampling from forgetting scores since this was
a discrete score with a vast majority of examples
sharing an example score of 0. Therefore, setting
a hard cut-off would have removed all of these ex-
amples. Second, we used probabilistic sampling
for dataset-normalized VoG scores, since pruning
from the tail with a hard cut-off resulted in too
many examples from the “entailment” class being
removed (see Fig. 2). For our in-house experiments
on customer data, we opted for linear probabilistic

and EL2N scores become correlated. This offers another
explanation for why EL2N scores have be to computed early
in training – the amount of usable bits of information decreases
over the course of model training.
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sampling instead of softmax sampling (described
in Sec. C.3).

B.3 Impact of Model Size

We investigated the effect of model capacity on
pruning by VoG-sampling. Fig. 8 shows test
accuracy versus percent of SNLI training data
pruned, for both (class-normalized) VoG-score
sampling and random sampling, for BERTSMALL
and BERTBASE (L = 12, H = 768, 110.1M pa-
rameters) (Turc et al., 2019). The BERTBASE en-
coder was trained using the Adam optimizer with
a learning rate of 0.9× 10−4, along with a 3-layer
classifier head with an intermediate layer dimen-
sion of 256 and a learning rate of 0.95×10−3, with
10% drop-out probability.

Aside from having a somewhat larger spread in
final test accuracy, we see that the rough qualitative
effect of the larger architecture is an overall shift
in accuracy for each of the sampling methods. At
45% of the data pruned, sampling by VoG-easy
on BERTBASE has a test accuracy of 86.70±0.8%,
compared to BERTSMALL which had 85.04±0.2%.
This provides some encouraging evidence that VoG-
based pruning is useful for performance-efficient
sampling of training data across different BERT
models.
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Figure 8: Shows test accuracy versus percent of SNLI
training data pruned by VoG and random sampling, for
both BERTSMALL and BERTBASE. Each data point rep-
resents the mean over three training runs while shaded
region shows the 1-σ envelope.

B.4 Encoder Representations of Scored Data

In our data pruning plots (Fig. 1), we observed
a drop in test accuracy when pruning hard exam-
ples for most of the influence scores. In Sorscher

et al. (2022), it is hypothesized that this happens be-
cause these examples are support vectors critical in
forming the decision boundary between classes and
removing them does not result in usable representa-
tions of the test data. Phrased differently, we have
seen that most training examples can be removed
without dramatically impacting test accuracy; the
converse of this statement is that a small number
of training examples have an outsized impact on
test accuracy. We can visualize this explanation
in the case of EL2N scores, which are explicitly
defined to be the marginal distance between the
model predictions and the one-hot encoded labels.

In Fig. 9, the left subplot shows the t-SNE rep-
resentation of the SNLI training data, with five
percent of the most difficult EL2N examples high-
lighted in red. The bulk of these difficult exam-
ples lies on the decision boundary between entail-
ment and neutral classes. When none of the data
is pruned, the center plot shows the t-SNE rep-
resentation of the SNLI test data, comprised of
three well-defined clusters. When the most diffi-
cult EL2N examples are removed from the training
set, we see that the representation of the test data
(rightmost subplot) is comprised of a less defined
clusters of roughly uniform density. In particular,
the boundary between contradiction and neutral
classes almost completely disappears, indicating
that the model cannot resolve the differences be-
tween the two classes as well as in the no-pruning
scenario.

B.5 Score Distributions and Examples in
SNLI

Score distributions for SNLI are shown in Fig. 10.
Examples from the head and tail of each of these
distributions is given in Tables 11 through 15.

B.6 Noisy Data-Reduction Experiment Details

For experiments on SNLI with added noise, we
chose to experiment using VoG, TracIn, and PVI
scores. These were selected because VoG outper-
formed other metrics in the non-noisy data reduc-
tion setting, and TracIn and PVI due to their poten-
tial efficacy in identifying misannotated data.

Noisy versions of the SNLI datasets were created
by shuffling of labels in an isotropic manner, which
meant there was a chance (roughly 30%) that any
given label would not flip. Therefore, the label
noise quoted in Fig. 3 should be taken as an upper
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bound to the true number of misannotations19, as
quantified in Table 4.

% noise added # misannotations % of train data

5 18433 3.35
10 36693 6.67
15 55083 10.01
20 73724 13.40
25 91535 16.63
30 110189 20.02

Table 4: Shows the number of misannotations for each
version of noisy SNLI data, determined by comparing
against the version of SNLI with no added label noise.
The last column shows the percent of mislabeled train-
ing data.

C Additional Details about In-House
Experiments

C.1 Overview of Common Commercial NLU
Systems

The natural language understanding (NLU) com-
ponent of common commercial systems consist of
deterministic systems that cover the most critical
and frequently occurring utterances (e.g., “stop!”),
while other utterances are covered by multiple sta-
tistical (“stat”) models organized in a hierarchical
fashion. For example, an utterance spoken to a
conversational assistant not covered by determin-
istic artifacts will typically first be classified to an
appropriate domain by a BERT-based domain clas-
sifier (DC) model, then a specific intent within that
domain by intent classifiers (IC) models, followed

19In historical data, we often do not have an exact count of
the misannotations, but only a rough estimate of the overall
noise.

by named entity recognition (NER) to resolve en-
tities (such as city names, times, etc.) within the
utterance. Each BERT-based statistical model was
trained on spoken-form Japanese data. Our ex-
periments focus on the fine-tuning stage of model
training, performed on in-house data.

In our experiments we computed VoG scores for
the DC model, but we measure the performance
impact of doing so for the composite hierarchical
model, including the impact on the accuracy of
downstream IC and NER models.

C.2 Distribution of Types of Training Data
Model training data is collated from multiple,
varied sources (e.g., synthetic, human-annotated,
weak-signal). Data from different sources may
have different label-noise distributions and class
distributions, which in turn can impact influence
scores computed on that data. Table 5 shows
the distribution historical and synthetic data in in-
house data.

Domain % of total % historical % synth.

Music 18% 89% 11%
Home Automation 12% 89% 11%
Knowledge 11% 85% 15%
Notifications 7% 86% 14%
Video 6% 74% 25%
Shopping 5% 93% 7%
Health & Fitness <1% 4% 96%
Overall 100% 81% 19%

Table 5: Distribution of data sources used for training
the model used for in-house experiments.

In in-house experiments, training-data pruning
was performed on de-identified historical user data.
In the experiments on historical data, this was the
only training data used; models were fine-tuned
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Figure 10: Shows the distribution of influence scores in Table. 1 computed for SNLI data.

solely on user data. In the user study experiments,
stat-model training data was performed on histor-
ical data as well as additional supplemental data
(e.g., resampled, synthetic, etc.).

This difference was motivated by practical con-
cerns. For some smaller (e.g. newly introduced, or
low traffic) NLU domains, the amount of histori-
cal data available for model training was small in
size (less than 20 instances). This combined with
domain-wise data imbalance led to regression in
that subset of domain. That was fine in offline anal-
yses (since it applied to all pruning conditions) but
unacceptable for exposure to real users.

Due to the cost and operational overheads in-
volved with running the user study, we could not
try the same number of sampling techniques as
we did for the historical data experiments. In our
user study, we tested our most promising technique
from the historical data experiments, sampling by
dataset-normalized VoG scores, and compared rel-
ative to the baseline model.

C.3 Filtering Train Data via Score-Weighted
Sampling

Our approach for filtering in-house data based on
influence scores used a slightly different approach
than the softmax probabilistic sampling described

in Appendix B.2.
The motivation behind this was that we did not

have a robust characterization of the noise in our
customer data and found that softmax sampling was
too aggressive in downsampling easy-to-learn utter-
ances (and perhaps retaining too many noisy, hard-
to-learn examples). In order to preserve a larger
fraction of these easiest utterances, a sampling ap-
proach was used where the probability of sampling
was directly proportional to the VoG score. This
was accomplished by linearly transforming normal-
ized VoG scores VoGnorm (including negative and
positive values) to the range [ϵ, 1]. The positive-
transformed scores were them normalized by divid-
ing by the sum of all positive-transformed scores
in order to produce sampling probabilities. This
type of transformation aims to preserve the rela-
tive ratios between old and new values that existed
pre-transformation. That is, if the VoG score of
Utterance A was twice the VoG score of Utterance
B, the sampling probability for Utterance A will be
approximately twice the sampling probability for
Utterance B.

Finally, in order to filter training data by sam-
pling scores we first decide on a proportion of data
to prune. This in turns determines the number of
training examples to sample via weighted random
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sampling without replacement. See Figure 12 for
an example of 50% train-data reduction using this
method.

C.4 VoG Distributions on In-House Data:
Additional details
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Figure 11: VoG scores for 10.9 million de-identified
historical data instances downsampled to train candidate
models.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
dataset-normalized VoG Score

0.00

0.05

0.10

0.15

0.20

0.25

pr
ob

. d
en

si
ty

live training data
original
retained after pruning

Figure 12: Dataset-normalized VoG scores in the orig-
inal training data vs. for the -52%-reduced subset ob-
tained via VoG-score-based sampling. VoG scores for
the reduced-size subset have been re-normalized ac-
cording to the mean and std of the reduced-size subset
scores.

Fig. 11 shows the distribution of VoG scores for
the subset of historical training data used to train
the statistical models, which comprises a majority
of the overall training data. Compared to the SNLI
VoG distribution in Fig. 2, the VoG distribution of
the historical data looks roughly similar, but has
more power in the low-scoring, “easy” bins. While
in historical data 72% of class-normalized scores
were less than 0, for SNLI only 66% of scores were
less than 0.

Fig. 12 shows the distribution of data re-
tained using dataset-normalized VoG scores. Fig-
ure 13 shows the VoG distribution using dataset-

normalized VoG scores for the same subset of do-
mains shown in Figure 4.
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Figure 13: Dataset-normalized VoG scores for historical
data downsampled to train candidate models, grouped
by ground-truth domain. (Top) Cumulative probability-
density distribution. (Bottom) Probability-density distri-
bution for the same data, using a score bin size of 0.05.

VoG scores appear to capture more than just the
influence of a domain’s data related to the size that
domain’s data, but also align with the intuition that
training data associated with domains that have
more complex domain definitions provide more of
a challenge for the model to predict correctly, and
that training on these challenging examples is more
likely to influence the learned model parameters
than training on easy examples would.

For example, while HomeAutomation and
HealthAndFitness training data are similar in intent-
label diversity (2.3 bits of entropy for both), they
differ greatly in training-data representation (12%
vs. <1%). Intuitively, we would expect smaller do-
mains such as HealthAndFitness to exhibit higher
average VoG scores than larger domains such as
HomeAutomation, which we indeed find. The me-
dian class-normalized VoG score for HomeAutoma-
tion was -0.31 compared to a median of -0.22 for
HealthAndFitness). As shown in the top of Fig. 4,
a larger proportion of HomeAutomation training
instances were associated with negative VoG scores
than for HealthAndFitness (roughly 80% vs. 60%).

While Shopping and Video constitute similar
proportions of the training data (6% vs 5%),
the intent-label distribution for Shopping exhibits
greater diversity than the intent-label distribution
for Video (2.5 vs. 1.6 bits), indicating a more com-
plex and difficult prediction task. This difference
in intent diversity appears to be reflected in class-
normalized VoG scores; Shopping scores tend to
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be higher (more positive) than Video scores (me-
dian of -0.30 in Shopping vs. -0.39 in Video). As
shown in Fig. 4, VoG scores for Video data were
more densely located in the low-scoring, “easy” re-
gion; 37% of Video vs. 32% of Shopping data were
associated with VoG scores below -0.5.

In some cases, it can be difficult to reason about
the relative influence of one domain’s data on a
trained model compared to another domain’s data.
For example, in our real-world setting, the Mu-
sic and Video domains capture similar NLU func-
tionality (media playback) and are associated with
comparable intent-label entropy estimates (1.5 vs.
1.6 bits). Unlike for HealthAndFitness, both Mu-
sic and Video out-represent the majority of other
domains in the training data (Music is the second
largest domain at 18%, while Video is the eighth
largest at 6%). In this case, which domain provides
redundant or extraneous data not needed in order to
maintain model performance? Appeals to intuition
may fail us here, but VoG scores can still be helpful.
As shown in Fig. 4, we find that Video training data
contains a larger proportion of low-influence data
instances than Music (37% of Video vs. 2% of Mu-
sic of VoG scores were less than -0.5), potentially
signaling the existence of redundant or duplicate
Video training instances.

VoG-score summary statistics for de-identified
historical training data used to train the candidate
model are shown in Table 6 (normalized by class)
and in Table 7 (by dataset).

Domain Median Mean Std

Health & Fitness -0.22 0.0 1.0
Notifications -0.27 0.0 1.0
Knowledge -0.28 0.0 1.0
Shopping -0.30 0.0 1.0
Home Automation -0.31 0.0 1.0
Music -0.35 0.0 1.0
Video -0.39 0.0 1.0

Table 6: Class-norm VoG scores by domain, for a subset
of domains in in-house training data. Within each class
(domain), the mean score is 0 and the standard deviation
is 1.

C.5 Domain-Level Analysis of In-House
Experiments

Per-domain offline results from the user study ex-
periment are shown in Table 8. Per-domain user
study results are shown in Table 9.

Domain Median Mean Std

Health & Fitness 1.17 1.52 1.63
Video 0.08 0.86 2.00
Knowledge -0.12 0.11 0.83
Shopping -0.13 0.15 0.93
Music -0.34 0.10 1.27
Notifications -0.44 -0.29 0.54
Home Automation -0.45 -0.24 0.69

Table 7: Dataset-normalized VoG scores by domain, for
a subset of domains in in-house training data. Across all
domains, the mean score is 0 and the standard deviation
is 1.

Experiments on Historical Data: In our exper-
iments on de-identified historical data, increased
representation of smaller domains when sampling
by dataset-normalized scores translated to im-
proved DC and IC recall. For HealthAndFitness,
dataset-norm VoG sampling was associated with
∆DCER of 4% vs. 29% for class-norm sampling.
A primary contributor to improved DC and IC re-
call were improvements in Video, which under
dataset-normalized sampling increased in training-
data representation by relative 43% but under class-
normalized sampling decreased in representation
by relative 1%.

For domains such as HomeAutomation and No-
tifications that decreased in representation when
sampling by dataset-norm scores, models trained
on dataset-normalized VoG scores were associated
with improved DC performance and comparable
downstream NLU performance compared to class-
norm models where those domain’s training-data
representation actually increased.

User Study: We analyzed the per-domain results
to understand which domains/intents contributed
to the observed top-level UER and PDR relative
changes (Table 9).

A primary contributor to the observed top-level
UER improvement were Video-related requests.
Video UER decreased by relative -11.6%. Post-
experiment deep dives show that for the VoG model
requests that previously were classified as Video
were now classified as Music or Knowledge. We
saw that Music traffic slightly increased (rel. +1%)
without an associated increase in Music UER, sug-
gesting the majority of requests newly interpreted
as Music in the VoG model could by served by the
Music domain. On the other hand, Music PDR
increased by relative 2.6%, which was a primary
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Dataset-norm Class-norm

Domain ∆train ∆DCER ∆FSEMER ∆ICER ∆IRER ∆train ∆DCER ∆FSEMER ∆ICER ∆IRER

Music < 0% -4% 4% -3% 4% 1% -3% 5% -1% 5%
Knowledge 27% 12% 4% 12% 4% <0% 16% 6% 16% 6%
Video 43% -1% 2% 1% 1% -1% 9% 4% 7% 4%
Shopping 18% -11% 4% -8% 4% -5% -3% 6% -1% 5%
Notifications -37% -2% 2% 2% 2% -7% 22% 2% < 0% 1%
HomeAutomation -29% -6% 1% -3% 1% 2% -16% 4% -8% 3%
HealthAndFitness 84% 4% 3% 6% 5% -6% 29% - 35% -

Table 8: Comparison of per-domain offline-test relative-error-rate metrics for models trained on historical data,
sampled according to class-normalized or dataset-normalized VoG scores. Results were averaged over three training
runs.

Domain ∆traffic ∆UER ∆PDR

Music 1.0% -2.1% 2.6%
Knowledge 5.3% 0.6% 0.7%
Video 9.0% -11.6% 1.9%
Shopping -2.6% 12.8% 4.0%
Notifications 1.2% 6.6% 3.0%
HomeAutomation -1.1% -5.0% -2.9%

Table 9: Relative change to UER, PDR, and domain traf-
fic for a subset of domains in the the user study, compar-
ing a baseline model to a version of that model trained
on only 50% of historical training data. Model results
reflect metrics for the full NLU system comprised of
statistical and non-statisical model components. These
relative-change results were not compared using hypoth-
esis tests and may not be statistically significant.

contributor to the observed increase in top-level
PDR. The simultaneous decrease in Music UER
but increase in Music PDR suggests that Music
domain could provide some kind of interpretation
for a request, but that overall those interpretations
were associated with a slight increase in defect rate
(e.g. defects related to searching for the wrong
artist name, or searching for an album rather than
an artist).

The user-study impact on VoG-based pruning
on the performance of individual domains was not
solely determined by whether or not a given do-
main’s representation was increased/decreased in
training data. Both HomeAutomation and Notifi-
cations increased in their training-data representa-
tion (Figure 5), however we observed opposite-
direction impacts in metrics for those domains.
HomeAutomation was associated with reduced traf-
fic (rel -1.1%), UER (rel. -5.0%), and PDR (-
2.9%); whereas Notifications was associated with
increased traffic (rel. 1.2%), UER (rel. 6.6%) and

PDR (rel. +3.0%).

C.6 Label-Value-Trail and Intent-Label
Entropy

In the experiment on in-house data, VoG scores
were measured with respect to DC model gradients,
which can overlook training utterances that are in-
fluential especially for training IC-NER models. In
order surface training utterances influential for not
only DC model but also IC-NER model training,
we combined DC Vog scores with slot-label-trail
entropy estimates, which provide a coarse-grained
intent-level estimate of NER difficulty.

As an example, consider the customer re-
quest “play music by Howard Shore
please”, which has the annotation “Play|Other
music|Other by|Other Howard|ArtistName
Shore|ArtistName please|Other”. We define
the slot-label-trail as the sequence of slots labels
and non-Other slot-label values for a given anno-
tation. The slot-label-trail for this example would
be “Other Other Other Howard|ArtistName
Shore|ArtistName Other”. The frequency of
each such slot-label-trail found in the training data
is used to compute Shannon entropy estimates for
each intent, given by:

Hintent(T ) = − E
t∼P

[log2 P (t)] , (8)

where P (t) is based on label-trail frequencies
found in training data, and T is all label trails
in a given intent. Eq. 8 is the formula for com-
puting the Shannon entropy of the distribution of
annotation-label-value trails in the training data
and is computed separately for each domain-intent
combination. Since the log is computing using base
2, resulting entropy estimates are measured in units
of bits.

The intent-label entropy can be calculated at a
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domain level in a similar manner. These results are
summarized in Table 10.

Domain Intent-label entropy (bits) Slot-trail entropy (bits)

Music 1.5 14.8
Knowledge 0.1 14.5
Video 1.6 13.8
Shopping 2.5 12.9
Notifications 2.1 10.2
Home Automation 2.3 8.5
Health & Fitness 2.3 6.1

Table 10: Domain-level intent-label entropy calculations
and intent-level slot-label-trail, for a subset of domains
in historical data. For intent-level entropy, the weighted
average across intents is reported per domain.

We used the same approach to calculating sam-
pling scores from entropy estimates as we did in the
case of converting VoG scores to sampling scores.
For a given utterance, the final sampling score was
the average of the VoG-based and entropy-based
sampling scores. weight. In offline tests, we found
that this modification to sampling scores helped
to slightly improve composite model performance
as measured by SEMER (rel. -1.39%) and IRER
(rel. -1.5%), which was reflected in per-domain im-
provements for the largest-traffic Music and Video
intents. This came at the expense of a slight in-
crease in Shopping slotting errors on Shopping
offline tests (rel. +6.1%).
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Premise Hypothesis Gold Label Score Measurement

VoG (class-normalized) Tail (hardest)

An African woman is standing near a well filling a jug near a hut
with a thatched roof.

A woman fetching water from a well beside an African Hut with a
straw roof.

- 1e4

A man in black is applauding a runner wearing a red jersey and the
number 281.

The man is running - 1e4

People sitting down by a stream of water. They are enjoying the stream outdoors. - 1e4
the man is celebrating a big win and he opened a bottle of wine, but
it squirted out all in the air.

A man is celebrating his sports team win with alcohol. - 1e4

A skier is skiing on a snowy slope. A person is enjoying gravity and snows low friction to increase
velocity down an incline.

- 1e4

A bearded man in a black coat and black cap stands near a young
girl who is inside a large brown open container.

The man does not like to shave. - 1e4

A girl in a blue sweater sits on a person’s shoulders and carries a
pinwheel.

A girl enjoying with a topy on a person’s shoulders - 1e4

A girl in a silk shirt plays pool A woman in a green skirt is in a bar. - 1e4
A group of three people pose for a picture with smile while another
sits aside without smiling.

Three guys are smiling, while a fourth is running away. - 1e4

A man working on a ticket machine as two women stand near. A man is giving out tickets. - 1e4

VoG (class-normalized) Head (easiest)

A man in a black coat and gray scarf walks on a sidewalk in between
a fence and a row of hedges.

A woman eats her lunch in the cafeteria. C -0.880

Two women are singing on a stage while a man in red plays the
guitar.

The three people are riding jet skis in the ocean. C -0.880

A construction crew in orange vests working near train tracks. The crew is eating dinner at a seaside restaurant. C -0.880
a woman wearing a black helmet riding on a bike A man is sleeping alone in bed. C -0.880
A black and white dog with a spotted face is running through a dirt
field.

A dog is sleeping in his bed by the fireplace. C -0.880

Different people are walking on a sidewalk, in both directions, in
front of an orange canopy.

People are sitting on a couch watching tv. C -0.879

Four dogs stand in the snow. A cat is sleeping on the fridge. C -0.880
A male is standing on a base pitching a ball. The woman is singing in the shower. C -0.880
A backpacker points to the snowcapped mountains as he stands on
a rocky plain.

A woman is laying in her hospital bed. C -0.880

A woman in a wetsuit in surfing in the ocean. A woman is sleeping in her bed at home. C -0.879

VoG (dataset-normalized) Tail (hardest)

MMA fighter in white shirt with Black and white shorts practices a
kick in the gym.

An MMA fighter is using a punching bag. C 24.921

Glossy red apples lay stacked in a metal bowl. There are a bunch of pears on a plate. C 26.670
A woman and a girl are sitting on a tile floor behind a wooden rack
for weaving.

The lady and her daughter are riding horseback. C 41.494

An elderly white man is playing a trumpet into a microphone. An elderly man plays yellow drums. C 25.417
Two people with hard hats and orange vests are working. The people with the hard hats on have yellow vests on as well. C 48.367
Two women are drinking from yellow cups and laughing. The two women in the corner are drinking from red cups and

laughing.
C 45.679

A group of people, of all ages, listening to a concert being per-
formed by a solo practitioner.

A single muscian entertains a diverse audience E 36.737

a teenager is wearing a gray hooded top and some red beads around
her neck.

The teenager is wearing a red beaded necklace. E 32.429

The cat is squinting. There are cats playing with yarn. C 28.069
A boy on a skateboard grinding down a handrail. A boy does a bike trick at the park. C 27.373

VoG (dataset-normalized) Head (easiest)

A boy in camouflage pants and his ball lying in front of a blue car. A boy is laying on the sidewalk next to the car. - -0.714
An asian child sits on the ground eating from a bowl outside a hut
on a sunny day.

An asian child sits on the ground eating from a bowl is inside the
hut

- -0.714

Two men are using two horse to help with farm work. The men are at a farm - -0.714
Three people skydiving, one of them is sticking there tongue out
making a silly face.

The people skydiving are scared and shaking. - -0.714

A girl in a blue sweater sits on a person’s shoulders and carries a
pinwheel.

A girl enjoying with a topy on a person’s shoulders - -0.714

Young boy with long blond-hair running with a large bouncy ball
and had two people playing piggyback chasing him.

The boy is playing a game with the other two people. - -0.714

Man is demonstrating to a student. Man showing student how to paint - -0.714
A man wearing a helmet is riding his bike down rocky terrain. a man is chasing after a deer - -0.714
Three young adults building a large sand castle at the beach. The adults are by the beach. - -0.714
A girl on monkey bars. She has climbed up. - -0.714

Table 11: Shows the highest and lowest scoring VoG examples from SNLI. Gold labels are denoted by
(C)ontradiction, (E)entailment, (N)eutral, or - which indicates that annotators could not come to a consensus
on the label. A numerical cutoff of 104 was used to truncate high VoG scores.

2507



Premise Hypothesis Gold Label Score Measurement

EL2N Tail (hardest)

two teams playing rugby, there seems to be more
of one team than the other in the picture.

Two teams are sitting inside watching a movie. - 1.412196

A group of men haul black trash bags across the
beach, nearby a pickup truck and a bulldozer.

Two women are swimming in the ocean. N 1.412198

Children playing on a merry-go-round on a chilly
day.

The children are sleeping N 1.412257

A man is working on a laptop computer in an open
air cafe.

A man is surfing the web on the couch. N 1.412444

Two men are practicing a dance routine while their
friend captures it on camera.

Two men are sleep N 1.412286

A man with a red beard pushing a shopping cart
on a busy street.

A dog sits inside a shopping cart. N 1.412446

A person doing a jump with their snowboard over
a orange and white caution sign.

A person is sleeping N 1.412697

A girl in pink stands in front of a Mud coffee truck. A group of boys playing marbles. N 1.412732
Three ice skaters round a corner. The skaters are sleeping. N 1.412452
A male and female are at a table with a drink. Two cats are at a table. E 1.412773

EL2N Head (easiest)

a brown and white dog jumping over a red, yellow
and white pole

a cat sleeps on a pillow C 0.000646

A dog with a ball that is running in a field. Cats sleeping on a porch. C 0.000657
A dog runs on a field with its mouth open. Two cats sleep in a bed. C 0.000600
A large brown dog is running through a grassy
backyard.

A cat sleeps inside. C 0.000646

A brown dog is crouching and looking up in a field
of grass.

A cat is inside sleeping on a couch. C 0.000630

Two dogs are fighting over a red Frisbee outside. Two cats sleep on a shelf. C 0.000610
A boy wearing a red sweater runs along a colorful
beach.

A girl sleeps on the couch in front of a TV. C 0.000650

Two dogs playing with a small blue ball in a grassy
field.

two cats are sleeping inside. C 0.000663

Two dogs run in a field of brown grass. the cats are sitting on a couch C 0.000665
A brown and white dog runs through a grassy area. A cat sits in the living room. C 0.000668

Table 12: Shows the highest and lowest scoring EL2N examples from SNLI.

Premise Hypothesis Gold Label Score Measurement

PVI Tail

A large crowd of people are outside and a big sign
reads "AIDS WALK" in the background among
trees.

The crowd marches in front of the sign. - 3.094221

Girl hangs up in midair by two bungee cords. A GIRL IS SWINGING FROM A ROPE. - 3.095381
A blond woman tips a young blond girl upside-
down.

The woman is holding the girl upside-down over the pol. - 3.170588

A man is gathering hay on a horse drawn wagon. Three horses are pulling a wagon covered in hay - 3.120966
A rugby player wearing white short and shirt being
tackled by another player wearing blue shorts and
trunks; a teammate of he player being tackled is
coming up behind the tackled player.

A rugby player wearing white short and shirt being tackled by
another player wearing blue shorts and tree trunks

- 3.123245

The young boy sleds down the hill in the snow. A boy is at the top of a snow-covered hill. - 3.183291
A man in a white jacket standing in front of an
older woman in a white jacket playing crochet.

The man was playing crochet with the two women. - 3.322716

A crowd of people at a market near a highway. There are 2 people in the marker - 3.187976
A antiquated soldier stands in salute holding a rifle. A statue of a soldier with a rifle. - 3.221569
Five people are on their yard with two of them
climbing a ladder to a tree in the background.

Two people are climbing a tree behind three other people. - 3.283761

PVI Head (potentially ambiguous or misannotated)

A group of people sitting outdoors. The people are inside. E -11.263250
Three dogs, two black one brown, are playing in a
grass field.

Three cats, two black one brown, are playing in a grass field. E -13.630976

Lacrosse players struggling for control of the ball. Nobody is in control of the ball. E -12.107733
A bunch of people sitting outside a building at
night.

the dogs were fighting to get a bone from each other E -14.055565

A male and female are at a table with a drink. Two cats are at a table. E -12.030568
A group of men in a blue car driving on the track. One woman is driving the blue car. E -11.397809
A man jumps into a bed that is set up on a public
walkway.

A female leaps on a bed in a public walkway. E -11.016526

People at a marketplace selling watermelons. Dogs at a marketplace selling watermelons. E -10.657009
Three people are using a net on a beach. Three people are sitting on a bench. E -11.001061
A little boy sits on the tail of a fake alligator. The woman is sitting on a fake alligator. E -10.811694

Table 13: Shows the highest and lowest scoring PVI examples from SNLI.
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Premise Hypothesis Gold Label Score Measurement

Forget Scores Tail (hardest)

A man with a white shirt, brown shoes, and blue
socks is reading near other people and piles of
books.

The man is fully clothed. E 6.67

The woman is sitting in the boat being rowed by
the man.

The woman is sitting on the beach. C 6.67

A lady is in a wheelchair on the corner of a street,
and a man in a white shirt is about to cross the
street.

There are people waiting to cross the street. E 6.67

A woman carrying shoes is walking barefoot on
the beach.

A woman walks barefoot by the ocean E 6.67

Two men sit next to each other on the water in a
boat.

The boat is floating. E 6.67

Toddler boy wearing airplane shirt, in stroller with
large beads.

The toddler is riding the stroller. E 7.0

A woman with glasses is looking at a gray laptop
with two other people at a table in a yellow room.

Three people are having lunch at an upscale restaurant. C 7.33

Lady wearing a green work helmet and holding a
bag.

The woman is wearing a straw hat. C 7.0

Men and women in Scottish garb play the bagpipes
as a runner approaches on the street.

People wear traditional clothes and play the bagpipes E 6.67

This man is fit and well toned running enthusiast. This man likes to run. E 7.67

Forget Scores Head (easiest)

A woman with black hair is typing on a laptop
computer.

A woman in front of computer. E 0.0

A woman wearing a blue shirt typing on a laptop. Someone is typing. E 0.0
Woman in black shirt walking along pier. The woman is outside. E 0.0
Woman in black shirt walking along pier. The woman is walking to meet a friend. N 0.0
A woman with black hair is typing on a laptop
computer.

A woman typing in the computer. N 0.0

A married woman in blue and black types. A single mother on the run. C 0.0
A woman with black hair and jewelry on her left
hand and arm typing on a keyboard.

A woman has hair. E 0.0

In a white-walled gymnasium, a shirtless male
gymnast does a handstand on the parallel bars as
another man watches him in the background.

In the school’s gymnasium, a gymnast performs a handstand that
scores a perfect score by the men rating him.

N 0.0

A married woman in blue and black types. A woman works on her novel. N 0.0
A woman wearing a blue shirt typing on a laptop. Someone is replacing the battery on a laptop. C 0.0

Table 14: Shows the least and most forgotten examples from SNLI.
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Premise Hypothesis Gold Label Score Measurement

TracIn Scores Tail (hardest)

Three people playing rock music, one of them is
wearing a hat and a black pants with a black t-shirt
and singing and playing the guitar.

Out of three people playing music, one with black shirt and pants,
playing piano.

E 3.30

A lady is giving a presentation to an all-female
class.

There are no men in the room. E 3.30

A man in a gray shirt is drilling into a silver can. A lady drilling a can. E 3.32
Several people on a stage with a blue background. The humans are on the ground. E 3.40
Three female bikers travel swiftly through a school
zone.

two boys ride skateboard E 4.20

A older man holds an object and is looking at two
young girls that sit across from him at a table that
is outside.

A man is holding an object, but is not looking at it. E 3.76

Two teenage girls, one is smiling. A girl is not smiling. E 3.62
Group of men at a business meeting. There are no women at the business meeting E 3.65
A guy on a bike goes vertical near a ramp with a
grassy, hilly terrain behind him.

A man is inside. E 3.51

The sky appears clear. There is nothing visible in the sky E 3.77

TracIn Scores Head (easiest)

A bicyclist rounds a turn, followed by a camera-
man.

A man is driving a car around the roundabout C 0.00

A young man on a bicycling is jumping up the
stairs on his bike.

A man is eating lunch in the park. C 0.00

The racing dog has a muzzle and is wearing striped
jersey # 8.

The dog is sleep outside. C 0.00

2 men are sparing, 1 is in the process of taking
down the other.

Nobody is sparing. C 0.00

a tennis player hits the ball. A tennis player is swimming across the ocean. C 0.00
An old man is holding two ice cream cones as he
walks through the park.

The person is sitting in the car. C 0.00

A man with a big backpack is walking through a
grass trail up a hill.

A woman with a big backpack is walking through a grass trail up a
hill.

C 0.00

A man in a yellow jumpsuit is working. Nobody is working. C 0.00
A construction worker walks down the street, while
others are at work.

A construction worker is sitting in his car. C 0.00

A biker, wearing full protective gear including hel-
met, is jumping over a rock.

The biker is paralyzed in the hospital. C 0.00

Table 15: Shows the highest and lowest TracIn examples from SNLI.
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