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Abstract

We illustrate how a calibrated model can help
balance common trade-offs in task-oriented
parsing. In a simulated annotator-in-the-loop
experiment, we show that well-calibrated con-
fidence scores allow us to balance cost with an-
notator load, improving accuracy with a small
number of interactions. We then examine how
confidence scores can help optimize the trade-
off between usability and safety. We show
that confidence-based thresholding can sub-
stantially reduce the number of incorrect low-
confidence programs executed; however, this
comes at a cost to usability. We propose the
DidYouMean system (cf. Fig. 1) which bet-
ter balances usability and safety by rephrasing
low-confidence inputs.

1 Introduction

Task-oriented dialogue systems (Gupta et al., 2018;
Cheng et al., 2020; Semantic Machines et al., 2020)
represent one path towards achieving the long-
standing goal of using natural language as an API
for controlling real-world systems by transforming
user requests into executable programs, i.e. trans-
lating natural language to code. Central to the
systems’ success is the ability to take rational ac-
tions under uncertainty (Russell and Norvig, 2010).
When model confidence is low and the system is un-
likely to succeed, we would prefer it defer actions
and request clarification, while at high confidence,
clarification requests may annoy a user. Relying on
model confidence requires it to be well-correlated
with accuracy, i.e. it requires a calibrated model.

Recent work has focused on the calibration of se-
mantic parsing models. Specifically, Stengel-Eskin
and Van Durme (2022) benchmarked the calibra-
tion characteristics of a variety of semantic parsing
models, finding some of them to be well-calibrated,
especially on parsing for task-oriented dialogue.
Given the relatively well-calibrated nature of these
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Figure 1: The DidYouMean system. At high confi-
dences, we simply execute the predicted parse. At low
confidences, DidYouMean rephrases the query based on
the predicted program and asks a user to confirm the
paraphrase. The program is executed if the user accepts.

models, we first examine how they could be used
in an annotation interface, with a view to balancing
the trade-off between annotation cost and correct-
ness. We simulate a human-in-the-loop (HITL)
experiment where high-confidence tokens are au-
tomatically annotated and low-confidence tokens
trigger a dialogue with an oracle annotator who
either picks the correct token from a top-K list or
manually inserts it. With a small number of inter-
actions we substantially boost annotator accuracy.

A similar trade-off exists between usability and
safety in task-oriented user interfaces. We exam-
ine how sequence-level model confidence scores
can be used to balance this trade-off by reducing
the number of incorrect programs executed while
also minimizing the number of follow-up user in-
teractions and their cognitive burden. We find that
thresholding outputs based on model confidence
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(i.e. rejecting outputs falling below a tuned thresh-
old) reduces the number of incorrect programs exe-
cuted by 76% compared to the baseline. However,
this comes at a cost to usability, as roughly half
the correctly-predicted parses are also rejected. To
strike a balance between safety and usability, we
introduce the DidYouMean system (cf. Fig. 1),
which rephrases the input conditioned on the pre-
dicted parse and asks users to confirm the accuracy
of the paraphrase. In a user study, we obtain an
36% improvement in usability over the thresholded
system while maintaining a 58% reduction in the
number of incorrect programs executed.

2 Related Work

Our experiments in Section 4 involve a predictive
model for human-in-the-loop coding: similar mod-
els have been integrated into IDEs, e.g. Chen et al.
(2021). DidYouMean relates to the interactive se-
mantic parsing domain (Li and Jagadish, 2014;
Chaurasia and Mooney, 2017; Su et al., 2018),
where humans are included in the semantic parsing
loop. In this domain, Yao et al. (2019) introduce
a confidence-based interactive system in which a
parsing agent can ask users for clarification. Our
work follows in this spirit, but asks the user to
confirm a parse rather than generating questions
for the user to answer; we also operate in a dif-
ferent parsing domain, preventing us from using
Yao et al.’s system as a baseline. DidYouMean
also relates broadly to selective prediction, where
a model is expected to abstain from making de-
cisions at low confidence (Chow, 1957; El-Yaniv
et al., 2010; Varshney et al., 2022; Xin et al., 2021;
Whitehead et al., 2022). Our system extends selec-
tive prediction’s setting by including a human-in-
the-loop. Finally, DidYouMean shares a motivation
with Fang et al. (2022), who introduce a method for
reliably summarizing programs. Their work pro-
vides post-hoc action explanations while we focus
on resolving misunderstandings before execution.

3 Methods

Datasets Our data is drawn from the SMCalFlow
(Semantic Machines et al., 2020) task-oriented dia-
logue dataset, which contains Lisp-like programs
(cf. Appendix A). We follow the same prepro-
cessing as Platanios et al. (2021), and use the SM-
CalFlow data splits given by Roy et al. (2022):
108,753 training, 12,271 validation, and 13,496
testing dialogue turns.

Models We use MISO (Zhang et al., 2019a,b),
a well-calibrated model from Stengel-Eskin and
Van Durme (2022). Rather than predict the SM-
CalFlow surface form, including syntactic tokens
like parentheses, MISO directly predicts the under-
lying execution graph. The graph can deterministi-
cally be “de-compiled” into its surface form, and
vice-versa. The fact that MISO predicts an underly-
ing graph makes it attractive for applications which
require confidence scores, as it only predicts con-
tent tokens (i.e. functions, arguments) rather than
structure markers, like parentheses. For details on
MISO’s architecture, see Zhang et al. (2019b) and
Stengel-Eskin et al. (2022).

For token confidence estimation, we use the
maximum probability across the output vocabu-
lary at each timestep. This has been shown to be
a relatively robust confidence estimator in classi-
fication (Hendrycks and Gimpel, 2016; Varshney
et al., 2022). For sequence-level scores, we follow
Stengel-Eskin and Van Durme (2022) and take the
minimum over token-level confidence scores.

4 Human-in-the-Loop Simulation
Production datasets like SMCalFlow are constantly
evolving as new functionalities are added. The ex-
pensive and time-consuming nature of annotating
data can be mitigated by the use of predictive pars-
ing models which suggest speculative parses for
new utterances. However, the model’s output can
be incorrect, especially given out-of-distribution
inputs. We need to ensure that annotators are not
introducing errors by overly trusting the model.

If the model is well-calibrated, we can use its
confidence to reduce such errors. For example, we
can alert annotators to low confidence predictions
and ask them to intervene (Lewis and Gale, 1994).
Using a threshold, we can prioritize time or cor-
rectness: a higher threshold would result in more
annotator-model interactions, decreasing the speed
but increasing program correctness (reducing the
need for debugging) while a lower threshold would
increase speed but also lower the accuracy.

Since we do not have access to expert SM-
CalFlow annotators, we simulate an oracle human-
in-the-loop (HITL) annotator who always provides
a correct answer by using the gold annotations pro-
vided in the dataset. Specifically, for a given input,
we decode the output tokens of a predicted pro-
gram o0, . . . on normally as long as predictions are
confident (above a given threshold). If at time t the
confidence p(ot) falls the threshold, we attempt to
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match the decoded prefix o0, . . . , ot−1 to the gold
prefix g0, . . . gt−1. If the prefixes do not match, we
count the example as incorrect. If they do match,
we replace ot with gt, the gold prediction from our
oracle annotator, and continue decoding. We con-
sider three metrics in this experiment: (1) The exact
match accuracy of the decoded programs (higher
is better). (2) The percentage of total tokens for
which we have to query an annotator (lower is bet-
ter, as each query increases annotator load). (3) The
percentage of uncertain tokens (below the thresh-
old) for which the gold token gt is in the top 5
predictions at timestep t. Here, higher is better, as
selecting a token from a candidate list is typically
faster than producing the token.

Results and Analysis Fig. 2 shows our three met-
rics as the threshold is increased in increments of
0.1. We see that accuracy grows exponentially
with a higher threshold, and that the percentage
of tokens for which an annotator intervention is
required grows at roughly the same rate. The ex-
ponential growth reflects the distribution of token
confidences, with most tokens having high confi-
dence. Finally, we see that while at low confidence,
most tokens must be manually inserted, the rate at
which they are chosen from the top 5 list rapidly
increases with the threshold. Thus, the increased
number of annotator interactions required at higher
thresholds may be offset by the fact that many of
these interactions are a choice from the top-5 list.
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Figure 2: Simulated annotator-in-the-loop results across
increasing confidence thresholds.

5 User Correction via DidYouMean
Section 4 showed that token-level confidence
scores can be used to balance speed and correctness
in an annotation interface. We see a similar trade-
off between safety and usability in user interfaces
using semantic parsing models. Here, we define
safety as rejecting unsuccessful programs before
executing them. This strict definition is motivated
by physical domains: imagine that rather than con-
trolling a digital assistant, a user is guiding a robot
via language commands (e.g. Winograd (1972);
Lynch and Sermanet (2020); Stengel-Eskin et al.

(2021); Lynch et al. (2022); Nair et al. (2022)). In
this setting, actions may have irreversible conse-
quences, so determining safety before execution
is key. Safety considerations need to be balanced
with usability of the system: an unplugged agent
would be very safe but unusable. To increase us-
ability, an agent might make follow-up requests to
a user, like asking for clarification or confirmation.
The types of requests the agent makes have varying
cognitive load on the user: for example, providing
confirmation takes less effort than rephrasing.

We measure how well we can reject incorrect
programs before executing them. Following past
work in selective prediction (El-Yaniv et al., 2010;
Varshney et al., 2022, i.a.), we measure success by
coverage and risk, as well as F score w.r.t. program
correctness. Coverage is the percentage of inputs
for which a program is executed and risk is the per-
centage of executed programs that were incorrect.
Precision is inverse risk, and recall is the percent-
age of correct programs which were accepted. In
addition to F1, we consider F0.5, which upweights
precision (safety) by a factor of 2. A low-coverage,
low-risk system may be safer but have more false
negatives, i.e. reject more correct programs, de-
creasing its usability. A high-coverage, high-risk
system is more usable at the cost of false positives,
i.e. executing incorrect programs. We do not com-
mit to setting an optimal threshold for this trade-off,
since it is task-specific.

We consider 3 systems. As a baseline, we con-
sider a system that executes everything it predicts
(accept); this will result in the highest-possible cov-
erage, but also high risk. We can also use MISO’s
calibrated nature to improve safety outcomes by
tuning a sequence-level confidence threshold for
rejecting programs (tuned). We tune on the full val-
idation set using F1; we explore the range [0.0, 1.0)
in increments of 0.01, finding 0.40 to be optimal.
Finally, we introduce the DidYouMean system for
filtering low-confidence programs. For a given
utterance, DidYouMean shows the user a para-
phrase of the input; the user then decides to accept
the parse based on this paraphrase. This allows
correctly-predicted low-confidence programs to be
accepted and executed, while reducing the user
load: making a binary choice to accept a paraphrase
is a receptive task, while rephrasing an instruction
is a more costly productive task. Details of DidY-
ouMean’s components are given below.
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Glossing Model Since users are typically unfa-
miliar with formats like Lisp, we need to present
the user with a natural language paraphrase – or
gloss – of the candidate parse. To train a gloss-
ing model, we modify Roy et al. (2022)’s seq2seq
BenchCLAMP semantic parsing framework: rather
than using the user utterance with the previous
turn’s context (U0,A0,U1) as input and a program
P as output, we take the context and program
(U0,A0,P) as the input and user instruction U1

as the output. We use BART-large (Lewis et al.,
2020) and fine-tune it on the SMCalFlow training
split. See Appendix A for model details.

DidYouMean System When a low-confidence
parse is detected, DidYouMean triggers a dialogue
with the user in order to recover some usability over
simply rejecting all low-confidence parses. Fig. 1
shows the system workflow. DidYouMean shows
the original utterance U1 and the gloss Û∗ to the
user, who determines whether they are identical or
not. If they accept the gloss, we optionally re-parse
the gloss Û∗ rather than the original utterance U1;
this can remove typos and other idiosyncracies. We
call this the re-parsed setting, while choosing the
original prediction Û is the chosen setting. We pre-
dict that allowing users to accept and reject glosses
will improve the balance between safety and usabil-
ity (i.e. F1) over the threshold system by allowing
them to accept correct low-confidence parses. In
other words, adding human interaction will allow
us to achieve a balance which cannot be attained
given the tradeoffs resulting from thresholding.

User Study We conduct a static user study of
DidYouMean with examples from the SMCalFlow
validation set. We sample 100 MISO predictions
with a confidence below 0.6 (to ensure that the set
contains a number of mistakes). This sample is
stratified across 10 equally-spaced bins with 10
samples per bin. MTurk annotators were shown the
dialogue history, the user utterance, and the gloss,
and asked to confirm that the gloss matched the
utterance’s intent. The template and instructions
can be seen in Appendix B. We obtained three judg-
ments from three different annotators per example.

Annotation Statistics In total eight annotators
participated in the task, with four completing the
majority of tasks. For each example, all three an-
notators agreed on 79% examples, indicating the
task is well-formulated. For the remaining 21%,
we use the majority decision to accept or reject.

Setting Cov. ↑ Risk ↓ FP ↓ F1 ↑ F0.5 ↑
Accept 1.00 0.67 67 0.50 0.38
Tuned 0.32 0.50 16 0.49 0.50
Chosen 0.68 0.54 37 0.61 0.51
Re-parsed 0.68 0.41 28 0.66 0.62

Table 1: Coverage, risk, number of false positives (FP),
and F measures for accepting correct parses and reject-
ing incorrect parses.

After majority voting, annotators accepted 68/100
glosses and rejected 32.

Results Table 1 shows the results of the user
study. In addition to standard selective prediction
metrics like coverage (the percentage of inputs for
which a program is executed) and risk (the per-
centage of executed programs that are incorrect)
we report the number of false positives (incorrect
programs executed) and F1 and F0.5 scores. Tun-
ing a threshold yields better safety outcomes than
accepting everything, with lower risk. However,
this safety comes at a cost to the usability of the
system; a coverage of only 0.32 indicates that only
32% of inputs have their programs executed. The
“tuned” system’s low usability is reflected in the F1
and F0.5 scores, which balance precision and recall.
The “chosen” system, while better in F1, is com-
parable to the “tuned” system in F0.5, which takes
both usability and safety into account but priori-
tizes safety at a 2:1 ratio. Users are able to recover
some usability (as measured by coverage) in this
setting but also add to the risk, which is higher for
“chosen” than “tuned”. The number of incorrect
programs executed increases when glosses are cho-
sen (as compared to the tuned threshold). When
the accepted glosses are re-parsed, we see a shift
back towards a system favoring safety, with fewer
incorrect programs being executed than in the “cho-
sen” setting; this is reflected in a lower risk score.
For both F1 and F0.5, the “re-parsed” system best
balances usability and safety.

These results show that a calibrated model can be
used with a threshold to greatly improve safety, re-
ducing the number of incorrect programs accepted
by 76%. DidYouMean allows users to recover
some low-confidence programs by accepting and
rejecting programs based on their glosses, result-
ing in the best aggregated scores. Note also that
the threshold was tuned on F1 score on the en-
tire dev set. This means that the F1 performance
of that tuned system is as high as possible for
confidence-threshold-based system. Thus, DidY-
ouMean achieves a balance outside what can be
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achieved by tuning: simply increasing the thresh-
old would decrease safety and result in a lower F1
than the current threshold of 0.40.

6 Selection Study

In Section 5 we presented the DidYouMean sys-
tem, which allowed users to confirm or reject a
potential gloss. The gloss was chosen from a larger
set of candidates; this naturally raises the ques-
tion of whether users can directly choose a gloss
from the candidate list, rather than accepting or
rejecting a single gloss at a time. Here, we exam-
ine to what extent it is helpful to users to choose
glosses from a list of options. We take a sample
of validation programs for SMCalFlow, stratified
across 10 evenly-spaced confidence bins from 0.0
to 1.0. Note that this differs from the setting in
Section 5, where the maximum bin was 0.6. We
then present the top predictions decoded with nu-
cleus sampling (Holtzman et al., 2019); the number
of predictions depends on the confidence of the
model. Specifically, we set a cutoff of 0.85 and add
predictions until the sum of the sequence-level con-
fidence scores is greater than the cutoff; this could
be achieved by a single very confident prediction
or multiple low-confidence predictions. To reduce
the load on the annotators, we limit the number of
predictions seen to a max of 10, even if the cutoff
is not reached.

Annotators were asked to choose one of the
top predictions or to manually rewrite the query
if none of the predictions were adequate; the cho-
sen or rewritten query was then re-parsed and com-
pared to the gold parse. Further annotation de-
tails are given in Appendix C. Of the 100 exam-
ples sampled, annotators manually rewrote 7 and
chose from the top-k list for the other 93. Ignor-
ing the rewritten examples, 39 model predictions
were incorrect and 54 were correct; by choosing
glosses, annotators correct 5 incorrect predictions.
However, they also inadvertently changed 4 cor-
rect predictions to incorrect. Figure Fig. 3 shows
the exact match accuracy before and after annota-
tors selected glosses at each confidence bin. At
low confidence, we see very minor increases on
the order of a single program being corrected. At
high confidence, annotators generally have only
one or two options, and are able to choose the
correct one, resulting in similar performance to nu-
cleus decoding. However, at medium confidence,
annotators often choose the wrong gloss, leading

0.2 0.4 0.6 0.8
Confidence

0.2

0.4

0.6

0.8

1.0

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

Human correction via choosing
Human-corrected
Nucleus

Figure 3: Selection experiment. Annotators sometimes
select accurate glosses, but often have trouble deciding
between seemingly invariant glosses, lowering perfor-
mance especially at medium confidences.

to lower performance. Qualitatively, many incor-
rect choices are driven by glosses that appear to be
paraphrases, but in fact correspond to subtly dif-
ferent Lisp programs. These results suggest that
accepting/rejecting glosses is more promising than
choosing them.

7 Conclusion
We examine two common trade-offs in semantic
parsing, and how a well-calibrated model can be
used to balance them. In Section 4 we illustrated
how token-level model confidences could be used
in a simulated HITL task-oriented parsing annota-
tion task. Our experiments in Section 5 extended
these results to sequence-level confidences and non-
expert users; we found that model confidence could
be used to improve the usability-safety trade-off
and introduced DidYouMean, which improved us-
ability by asking users to accept predictions.

Limitations

Our study is limited by the models, datasets, and
languages we consider. Firstly, we examine only
English datasets, limiting the impact of our results.
We also only consider one task-oriented parsing
dataset, and focus on one model architecture.

We make several limiting assumptions in Sec-
tion 4 and Section 5. Foremost amongst these is
the assumption of access to an oracle annotator in
Section 4; clearly, no such annotator exists. Our
results may vary when real annotators are brought
into the loop. For one, we do not know exactly
how choosing from the top-k list will compare to
insertion w.r.t. speed. We also do not know how
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automation bias (Cummings, 2004) would affect
the top-k list: given that the correct answer is of-
ten in the list, real annotators might overly rely on
the list and prefer it to token insertion, resulting in
incorrect programs.

The experiments in Section 5 rely on a glossing
model to translate predicted programs into natural
language (NL). We approached with a neural Lisp-
to-NL model; this has several limitations. Neural
text generation models often hallucinate outputs,
i.e. generated glosses may not be faithful to their
corresponding programs. Unlike Fang et al. (2022),
who use a grammar-based approach for response
generation, we do not assume access to a gram-
mar but note that our method is compatible with
grammar-based constraints. Our annotators in Sec-
tion 5 face the additional challenge of interpreting
and choosing glosses. SMCalFlow programs are
nuanced and slight input variations can result in dif-
ferent programs. These nuances are often obscured
by the glossing model, resulting in two different
programs glossing to semantically equivalent ut-
terances; we explore this further in Appendix C.
Annotators might mistakenly accept glosses from
incorrect programs or reject correct glosses; this
would be difficult to address even with a faithful
translation method.
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A Model and Data

Data We use version 2.0 of SMCalFlow, which
contains language inputs paired with Lisp-like pro-
grams. Fig. 4 shows an example input and output
for SMCalFlow. Unlike many other task-oriented
formalisms, SMCalFlow contains salience oper-
ators like refer, which allow for deixis in the
input.

Input Output

Remove the even for the 
23rd from the calendar.

I didn’t find any events on 
Tuesday the 23rd.

No I meant the annual 
general meeting, change 
the dates from the 23rd to 
7th may

(Yield	
(UpdateCommitEventWrapper	
(UpdatePreflightEventWrapper	
(Event.id	(singleton	
(QueryEventResponse.results	
(FindEventWrapperWithDefaults	
(EventOnDate	(nextDayOfMonth	
(Today)	23L)	(Event.subject_?
(?~=	"annual	general	
meeting")))))))	(Event.start_?	
(DateTime.date_?	(?=	(MD	7L	
(May))))))))

Figure 4: Input-output example for SMCalFlow

Input Representation We follow Stengel-Eskin
et al. (2022) and Roy et al. (2022) in using the previ-
ous dialogue turn as input if available. Thus, each
datapoint consists of an input X = (U0,A0,U1)
and an output program P , where U0 is the previous
user utterance (if it exists), A0 is an automatically-
generated agent response to the previous utterance,
and U1 is the current user utterance.

Paraphrasing To find a good paraphrase of each
predicted parse, we generate N glosses Û1, . . . , ÛN

via beam search and take the one that yields the
highest probability of the predicted parse P̂ , i.e.
Û∗ = argmaxi PMISO(P̂|U0,A0, Ûi).

Evaluating the glossing model Instead of evalu-
ating the glossing model using string metrics such
as BLEU (Papineni et al., 2002) which can be
noisy, we choose to evaluate the output programs
using cycle-consistency. Specifically, we evalu-
ated trained models by glossing programs in the
gold test set and then parsing those glosses with
a fixed MISO parser. We explore T5-base, T5-
large, BART-base, and BART-large architectures.
All accuracy scores are reported in Fig. 5 along
with the baseline accuracy obtained by parsing
the gold test inputs. The best-performing gloss
model is BART-large. Note that all glossing mod-
els outperform MISO without glosses. This can
be explained by the fact that we gloss the inputs
from the gold program, which we then evaluate on,

2628



allowing for information leakage. We also hypoth-
esize that the gloss model, having been trained on
the entire dataset of utterances, averages out many
annotator-specific idiosyncracies which may make
inputs hard to parse. This result does not imply that
glosses generated from predicted programs would
yield better performance when parsed than the user
input.

T5-base T5-large BART-base BART-large
Model

75

80

85

Ex
ac

t M
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ch

79.51

82.99 82.78
84.00

Figure 5: Exact match for programs parsed from glossed
inputs from the SMCalFlow test set. Performance with-
out glosses is overlaid in black.

B User study details

Fig. 6 shows the template for the confirmation HIT.
The instructions asked users to read the paraphrase
produced by the agent and determine whether the
agent had correctly understood the user. Annotators

Figure 6: Template for the confirmation HIT.

were recruited from a list of qualified annotators
on Amazon Mechanical Turk and paid $0.05 per
example, averaging to roughly $16 per hour.

C Selection study details

The template for the selection study is shown in
Fig. 7; each example gives the gloss as well as
a rounded confidence score for the predicted pro-
gram. Annotation was run with the same group of
annotators as the experiments in Section 5; annota-
tors were paid $0.11 per example, or about $16 per
hour of annotation. Each example was annotated by
a single annotator, all of whom had been vetted in
a pilot annotation task. Annotators were instructed
to help a robot named SvenBot, who had recently
learned English and was not confident about its un-
derstanding, disambiguate between several options.
The interface contained a text box where annota-
tors could optionally manually re-write the input;

this was only to be done in cases where none of
the options reflected the intended meaning of the
original utterance.

Figure 7: Template for the selection HIT.
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