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Abstract
Aspect Sentiment Triplet Extraction (ASTE)
is one of the compound tasks of fine-grained
aspect-based sentiment analysis (ABSA), aim-
ing at extracting the triplets of aspect terms,
corresponding opinion terms and the associated
sentiment orientation. Recent efforts in exploit-
ing span-level semantic interaction have shown
superior performance on ASTE task. However,
span-based approaches could suffer from ex-
cessive noise due to the large number of spans
that have to be considered. To ease this bur-
den, we propose a dual-channel span generation
method to coherently constrain the search space
of span candidates. Specifically, we leverage
the syntactic relations among aspect/opinion
terms and their part-of-speech characteristics
to generate useful span candidates, which em-
pirically reduces span enumeration by nearly
a half. Besides, the interaction between syn-
tactic and part-of-speech views brings relevant
linguistic information to learned span represen-
tations. Extensive experiments on two public
datasets demonstrate both the effectiveness of
our design and the superiority on ASTE task 1.

1 Introduction

Aspect Sentiment Triplet Extraction (ASTE) is a
compound task in fine-grained Aspect-Based Sen-
timent Analysis (ABSA) (Pontiki et al., 2014). It
is composed of three fundamental subtasks: As-
pect Term Extraction (ATE) (Yin et al., 2016; Ma
et al., 2019; Chen and Qian, 2020; Li et al., 2020),
Opinion Term Extraction (OTE) (Yang and Cardie,
2012, 2013; Wan et al., 2020) and Aspect Senti-
ment Classification (ASC) (Wang et al., 2016; Tang
et al., 2016; Xue and Li, 2018; Tang et al., 2020;
Li et al., 2021). In particular, ASTE aims to ex-
tract the sentiment triplet of aspect terms, corre-
sponding opinion terms and their associated senti-
ment polarity in a given sentence. For example, in

∗Corresponding author: dping.li@gmail.com
1We release our code at https://github.com/

bert-ply/Dual_Span

the sentence "My vegetable risotto was burnt, and
infused totally in a burnt flavor", there are two
sentiment triplets, namely, (“vegetable risotto”,

“burnt”, Negative”) and (“flavor”, “burnt”, Nega-
tive”), where “vegetable risotto” and “flavor” are
aspect terms, “burnt” is the opinion term corre-
sponding to the aspect of interest, and “Negative”
is the sentiment polarity of these two triplets.

Figure 1: A sentence with dependency tree and part-of-
speech in ASTE task.

When the idea of ASTE was first proposed, a
two-stage pipeline method (Peng et al., 2020) was
developed for this task. However, staged process-
ing scheme often lead to error propagation between
subtasks. More than that, opinion terms are gen-
erally associated with the aspect target, staged
pipeline method breaks this interaction. To ad-
dress those issue, some end-to-end approaches (Wu
et al., 2020a; Xu et al., 2021; Chen et al., 2021b,
2022b) are devised, which attempt to simultane-
ously extract aspect-opinion pairs and perform sen-
timent classification by introducing novel tagging
schemes. In particular, most of existing end-to-
end models (Wu et al., 2020a; Chen et al., 2021b,
2022b) build the interaction between aspect and its
corresponding opinion at token-level, i.e., word-to-
word interactions. Despite of its efficacy, it is hard
to guarantee the consistency of predicted sentiment
polarity between multiple word-to-word pairs when
many aspects/opinions are expressed using multi-
ple words. On account of this, recent work (Xu
et al., 2021; Chen et al., 2022d) adopt span-level
interactions in the sentiment triplet structure. Com-
pared with the token-level pairing, span-level in-
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teraction is proved to bring significant gains to the
model.

However, one prominent problem with span-
based methods is that they usually enumerate all
spans in a sentence, which will bring about high
computational cost and many noises. Specifically,
the number of enumerated spans for a sentence of
length n is O(n2), while the number of possible
interactions between all opinion and aspect candi-
date spans is O(n4) at the later span-pairing stage,
implying a lot of invalid aspect/opinion spans and
span pairs. Moreover, most of the existing span-
based methods model direct interactions between
two spans. The high-order interactions are gener-
ally overlooked.

To address those issues, we explore the linguis-
tic phenomena in the spans. Our observations are
two-fold: First, multiple words composed of the
span of an aspect/opinion target are generally syn-
tactically dependent, and multiple dependency re-
lations can transmit higher-order interactions be-
tween spans. For example, in Figure 1, the aspect
term “vegetable risotto” has an intra-span syntactic
dependency “compound” and an inter-span depen-
dency “nsubj” with “burnt”. On the other hand, the
span “flavor” is indirectly related to the first “burnt”
(i.e., the one associated with “vegetable risotto”)
within 2 hops in the syntactic tree. This indirect
relation may suggest the relevance of the sentiment
polarity of the two span pairs, namely, (“vegetable
risotto”, “burnt”) and (“flavor”, “burnt”). In ef-
fect, the ground truth of sentiment polarity of these
two aspect-opinion pairs are the same, as shown in
Figure 1.

Second, we also observe that there are some
frequent patterns in aspect and opinion spans in
terms of part-of-speech. For instance, in many
cases aspect terms are noun or noun phrase which
we refer to as NN and (NN −NN), respectively.
Moreover, it is fairly common that opinion terms
are adjective (denoted by JJ). As shown in Fig-
ure 1, the aspect “vegetable risotto” has the part-of-
speech structure (NN −NN), and opinion term
"burnt” is JJ . Therefore, it is possible to extract
the aspect/opinion spans according to the lexical
characteristics of the words so as to avoid enumer-
ating all word combination.

Motivated by the two observations, we propose a
dual-channel span generation approach for aspect-
level sentiment triplet extraction, which we term
as Dual-Span. Dual-Span utilizes two relational

graph attention networks (RGAT) to separately
learn high-order syntactic dependency between
words/spans and linguistic features in constructed
part-of-speech relations among words. Then a gat-
ing mechanism is adopted to fuse the syntactic and
lexical information of span candidates, which helps
to enhance the feature representation of spans. On
the other hand, instead of enumerating all possible
spans, the span candidates are extracted from two
channels, i.e., the syntactic dependency relations
and part-of-speech based relations, thus largely re-
ducing the noisy information in favor of valid span
pairing.

Our main contributions are as follows:

• We devise a dual-channel span generation
method for aspect sentiment triplet extraction,
which produces a span candidate set much
smaller than the greedily enumerated one by
leveraging the syntactic dependency and part-
of-speech correlation among tokens/spans in
a dual-channel manner.

• We construct the intra-span and inter-span re-
lations based on the part-of-speech correlation
of spans/words, on top of which the high-order
linguistic interactions is able to be captured
by relational graph neural networks.

• We combine the syntactic information learned
from dependency tree with the part-of-speech
information learned from constructed lexical
relations to enrich span representation. We
conduct extensive experiments on benchmark
datasets to evaluate the efficacy and efficiency
of the proposed method. The experimental
results show that our model Dual-Span out-
performs all state-of-the-art methods on the
ASTE task.

2 Related Work

Aspect-based sentiment analysis (ABSA) (Pontiki
et al., 2014; Schouten and Frasincar, 2016; Xue and
Li, 2018; Chen et al., 2022a; Trusca and Frasincar,
2023) is fine-grained sentiment analysis. The early
work of ABSA was to identify its three sentiment
elements (i.e., aspect, opinion, sentiment polarity)
as basic tasks: ATE (e.g., (Yin et al., 2016; Ma
et al., 2019; Chen and Qian, 2020; Li et al., 2020),
OTE (Yang and Cardie, 2012, 2013; Wan et al.,
2020)) and ASC (e.g., (Wang et al., 2016; Tang
et al., 2016; Xue and Li, 2018; Du et al., 2019;
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Figure 2: The overall architecture of our Dual-Span.

Li et al., 2021; Brauwers and Frasincar, 2023)).
Subsequently, some studies began to consider mul-
tiple sentiment element composite tasks in order to
better understand fine-grained sentiment analysis:
aspect term polarity co-extraction (APCE) (Li and
Lu, 2017; He et al., 2019; Li et al., 2019), Aspect-
Opinion Pair Extraction (AOPE) (Zhao et al., 2020;
Wu et al., 2020a; Gao et al., 2021; Chakraborty
et al., 2022) and Aspect Category Sentiment Analy-
sis (ACSA) (Schmitt et al., 2018; Hu et al., 2019;
Cai et al., 2020; Liu et al., 2021).

Some recent works started to consider the
integrity among the three sentiment elements
and thus proposed the ASTE task. A diversity
of techniques were proposed for it: two-stage
pipeline (Peng et al., 2020), multi-task unified
framework (Li et al., 2019; Zhang et al., 2020;
Yan et al., 2021), multi-round machine reading
comprehension method (Mao et al., 2021; Chen
et al., 2021a; Liu et al., 2022) and end-to-end
method (Wu et al., 2020a; Xu et al., 2020; Chen
et al., 2021b, 2022c; Xu et al., 2021; Chen et al.,
2022d). The span-level based approaches adopt
end-to-end implementation. For instance, Span-
ASTE (Xu et al., 2021) enumerates aspect and
viewpoint spans and directly exploits their interac-
tion to solve ASTE tasks, while SBN (Chen et al.,
2022d) proposed a span-level bidirectional network
that enumerates all possible spans as input, and
completes the ASTE task by designing two de-
coders and adopting inference strategies. Despite
that, it still remains an open challenge to improve
the search efficiency and feature representation for

the span of sentiment triplets.

3 Proposed Framework

In this section, the overall architecture of our pro-
posed model Dual-Span is shown in Figure 2,
which consists of four main components: sentence
encoding, feature enhancing module, dual-channel
span generation and triplet module.

3.1 Task Definition

For a sentence X = {w1, w2, . . . , wn} of length
n, the ASTE task is to extract the set of as-
pect sentiment triplets T = {(a, o, s)m}|T |m=1

from the given sentence X , where a, o and s ∈
{POS,NEU,NEG} represent the aspect term,
opinion term and sentiment polarity, respectively.
|T | is the number of sentiment triplets contained
sentence X .

3.2 Sentence Encoding

To obtain contextual representations for each
word, we explore two sentence encoding methods,
namely, BiLSTM and BERT.

BiLSTM We first use the GloVe (Pennington
et al., 2014) embedding to get the embedding ma-
trix E ∈ R|V |∗dw of the corpus, where |V | rep-
resents the vocabulary size, and ds represents the
embedding dimension. For the embedding tokens
Ex = {e1, e2, . . . , en} in the sentence, we use
BiLSTM to get its hidden representation H =
{h1, h2, . . . , hn}, where h ∈ R2dn is obtained by

splicing the hidden state
→
h ∈ Rdn generated by
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forward LSTM and the hidden state
←
h ∈ Rdn gen-

erated by backward LSTM:

h = [
→
h ;
←
h ] (1)

BERT An alternative approach is to utilize
BERT (Devlin et al., 2019) as the sentence en-
coder to generate contextualized word represen-
tations. Given a sentence X = {w1, w2, . . . , wn}
with n words, the hidden representation sequence
H = {h1, h2, . . . , hn} is the output of the encod-
ing layer of BERT at the last transformer block.

3.3 Feature Enhancing Module

As aforementioned, spans (or intra-span words) in-
volve syntactical dependency and part-of-speech
correlation, therefore incorporating those informa-
tion into feature representations can be beneficial
for span pairing and sentiment prediction. To cap-
ture the high order dependency relations, here we
devise a graph neural network based method to en-
code the syntactic dependency and part-of-speech
relations of intra- and inter-spans in high orders.
In particular, we construct the part-of-speech re-
lational graph (corresponding to a multi-relation
matrix as shown in Figure 3 (b)). Then we apply
two relational graph attention networks to learn the
high order interactions between words on syntactic
dependency tree of the sentence in question and
constructed part-of-speech graph, respectively.

3.3.1 Part-of-speech Graph Construction
The goal of part-of-speech graph construction is to
characterize the word formation patterns of aspect
and opinion terms so as to better identify the pos-
sible spans. Specifically, we adopt the following
three rules to construct the part-of-speech graph
GPos = (V,RPos) of a given sentence X . First,
following previous work (Chakraborty et al., 2022),
assuming that aspect terms are usually nouns and
opinion terms are usually adjectives, we can define
part-of-speech relations based on part-of-speech
tags NN or JJ . In particular, we consider the
relations between words in a given window that
contains words tagged with NN or JJ . Therefore,
a relational edge RPos

i,j of GPos is defined for two
words i and j as the combination of part-of-speech
tags of the two words, whose representation vec-
tor is rpi,j ∈ Rdp , where dp is the dimension of
part-of-speech combination embedding. Besides,
we consider the special syntactic relation nsubj,
since opinion terms are usually directly used to

modify aspect terms, leading to better extraction of
aspect-opinion pairs. Finally, for each word’s part-
of-speech, we add a self-loop relational edge to
itself, as the diagonal elements shown in Figure 3.

Figure 3: An example sentence with dependency tree
and part-of-speech adjacency matrices in ASTE task.

On the other hand, the syntactic dependency
graph GSyn = (V,RSyn) is constructed according
to the dependency parsing tree, where edges are
represented by syntactic relation types. Moreover,
we define the self-dependency for each word. So
for a given sentence of length n, the syntactic rela-
tion between words wi and wj is denoted as RSyn

i,j ,
whose corresponding vectorization representation
is denoted as the vector rsi,j ∈ Rds , where ds is the
dimension of syntactic relation embeddings.

3.3.2 High-order Feature Learning with
Relational Graph Attention Network

Next, we use relational graph attention networks
(RGAT) to capture the multiple types of linguis-
tic features and high-order interaction between
spans/words on syntactic dependency graph and
part-of-speech graph, respectively. Moreover, we
use two graph attentional network based modules,
namely, SynGAT and PosGAT to learn syntactic
dependency graphs and part-of-speech graphs, re-
spectively, which will distinguish between vari-
ous syntactic relationships and part-of-speech re-
lationships when calculating the attention weight
between nodes. In particular, following previous
work (Bai et al., 2021), we denote two specific re-
lations on each edge by rsi,j and rpi,j , respectively.
Specifically, for the i− th node, the update process
is as follows:

hsyni (l) = ∥Zz=1σ


 ∑

j∈N (i)

α̂lz
i,j

(
W lz

s1h
syn
j (l − 1) +W l

s2r
syn
i,j

)

 (2)

hposi (l) = ∥Zz=1σ


 ∑

j∈N (i)

β̂lz
i,j

(
W lz

p1h
pos
j (l − 1) +W l

p2r
pos
i,j

)

 (3)
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where W l
s2 ∈ R

d
z
×d and W l

p2 ∈ R
d
z
×d are param-

eter matrices. z denotes the number of attention
heads, and σ is the sigmoid activation. Ni is the set
of immediate neighbors of node i. α̂(lz)

i,j , β̂(lz)
i,j are

the normalized attention coefficients for the z-th
head at the l-th layer.

To fuse syntactic dependency and part-of-speech
relation features, we introduce a gating mecha-
nism (Cho et al., 2014) to merge the two views
as follows:

g = σ (Wg [h
syn : hpos] + bg) (4)

h = g ◦ hsyn + (1− g) ◦ hpos (5)

where ◦ is element-wise product operation.
[hsyn : hpos] is the concatenation of hsyn and hpos,
and Wg and bg are model parameters. This way, g
is learned to optimize the feature fusion.

3.4 Dual-Channel Span Generation
In this section, we propose a dual-channel span
generation module, which consists of two parts:
dual-channel span generation and span classifica-
tion.

3.4.1 Dual-Channel Span Generation
Syntactic Span Generation Given a sentence X
whose syntactic dependency graph is GSyn =
(V,RSyn), if there is a dependency edge eij be-
tween words wi and wj , then all words positioned
between them are considered to be a span ssyni,j . In
particular, self-dependent edges represents spans
of length Ls = 1. We define the representation of
ssyni,j as follows

ssyni,j = [hi : hj : fwidth(i, j)], if ei,j = 1 (6)

where fwidth(i, j) denotes trainable embedding of
span length (i.e., j − i+ 1 ). ei,j = 1 suggests that
there is an edge between wi and wj .

Part-of-speech Span Generation For a given
sentence X = {w1, w2, . . . , wn}, if the part-of-
speech tag of word wo is NN or JJ , the words in
a predefined window will be exhaustively enumer-
ated and then the enumeration is further combined
with central word wo to form spans. The part-of-
speech induced span sposk,l can be represented as:

sposk,l =[hk : hl : fwidth(k, l)],

if poso = NN or JJ , and o ∈ [k, l]
(7)

where fwidth(k, l) refers to the trainable embed-
ding of span length.

Finally, we merge the two types of span candi-
dates: S = ssyni,j ∪ sposk,l .

Compared to exhaustive enumeration on the
whole sentence in previous span-based approaches,
whose time complexity of enumerated spans is
O(n2), for a sentence of length n. However, in our
syntactic span generation, the parsing tree contain-
ing 2n edge dependencies (Qi et al., 2020) (includ-
ing self-dependent edges), so the number of gener-
ated spans is O(2n). On the other hand, the statis-
tics shows that in the benchmark datasets, there are
about 2.5 part-of-speech NN and JJ in each sen-
tence on average. Therefore, in the part-of-speech
span generation procedure, the number of span
candidates is O(2.5Swindow(Swindow − 1)) ≤ n,
where Swindow is the window size to restrict span
length and generally set to be a small value (e.g.,
Swindow = 3 in our experiments). That is, the time
complexity of our method to generate the span is
O(n), which significantly reduce the span candi-
date size.

3.4.2 Span Classification
After obtaining the span candidates S, we fur-
ther narrow down the pool of possible spans
by leveraging two auxiliary tasks, namely, ATE
and OTE tasks. Specifically, all span candi-
dates in S will be classified into one of the three
categories:{Aspect, Opinion, Invalid} by a span
classifier. Next, nz spans are singled out with
higher prediction scores Φaspect or Φopinion, where
z is the threshold hyper-parameter and Φaspect and
Φopinion are obtained by

Φaspect(si,j) = softmax (FFNNt=aspect (si,j)) (8)

Φopinion(si,j) = softmax (FFNNt=opinion (si,j)) (9)

where FFNN denotes a feed-forward neural net-
work with non-linear activation.

3.5 Triplet Module

Based on the shrinked candidate pool of aspect
and opinion terms, the aspect candidate saa,b ∈ Sa

and opinion candidate soc,d ∈ So are paired and
represented as

gsaa,b,s
o
c,d

=
[
saa,b : s

o
c,d : rsab,cd : fdistance(a, b, c, d)

]
.
(10)

where fdistance(a, b, c, d) denotes trainable em-
beddings of span length. rsab,cd is a trainable
embedding vector which is the average pooling
of the dependency vectors between words ab
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and cd. Additionally, since opinions are more
likely to modify the aspects that match them, we
consider the dependency relationship rsab,cd ∈
RSyn between them. Then, sentiment classifi-
cation is performed for the obtained span pairs,
where the sentiment types are defined as r ∈
R = {Positive, Negative, Neutral, Invalid} For-
mally, the triplet prediction is written as

P
(
r | saa,b, soc,d

)
= softmax

(
FFNNr

(
gsaa,b,s

o
c,d

))
(11)

3.6 Training objective

The loss function for training is defined as the sum
of the negative log-likelihoods from the span-pair
classification in the span-classification and triplets
modules:

L =−
∑

si,j∈S
logP

(
t̂i,j | si,j

)

−
∑

sta,b∈Sa,soc,d∈So

logP
(
r̂ | saa,b, soc,d

) (12)

where t̂i,j and r̂i,j are the ground truth labels for
span si,j and span-pair (saa,b, s

o
c,d), respectively. S,

Sa and So are the final span representation, pruned
aspect and opinion candidate pools in dual-channel
span generation, respectively.

4 Experiments

4.1 Datasets

To verify the effectiveness of our proposed model,
we conduct experiments on four public datasets,
i.e., Lap14, Res14, Res 15 and Res16, which
come from the sentiment evaluation benchmarks
SemEval 2014 (Pontiki et al., 2014), SemEval
2015 (Pontiki et al., 2015) and SemEval 2016 (Pon-
tiki et al., 2016), respectively. Moreover, the four
datasets have two versions: ASTE-Data-v1(D1 for
short) (Peng et al., 2020) and ASTE-Data-v2(D2
for short) (Xu et al., 2020). Statistics for public
datasets are shown in the appendix A.1.

4.2 Experimental Setting

We initialize word embedding with two different en-
coders: BiLSTM-based and BERT-based encoders.
The hidden dimension of BiLSTM-based encoder
is set to 300 with dropout rate 0.5. To alleviate
overfitting, the input embedding dropout rate is
0.7. For the proposed model, we use the AdamW
optimizer (Loshchilov and Hutter, 2017) with a

learning rate of 1e-3 in the training. In the imple-
mentation of BERT-based encoding, the model pa-
rameters are optimized using Adamw with a max-
imum learning rate of 5e-5 and weight decay of
1e-2. We run the model for 20 training epochs.
For other parameter groups, the same parameter
settings are used for both embedding initialization
schemes. The maximum span length Ls is fixed to
8, the span pruning threshold z is set to 0.5, and the
part-of-speech window Swindow is 3. We choose
the best model parameters based on the F1 score
on the validation set and report the average of the
results for 5 different random seeds.

4.3 Baselines

We compare our model to the following state-of-
the-art methods:

• Pipeline: including CMLA+ (Wang et al.,
2017), RINANTE+ (Dai and Song, 2019),
Li-unified-R (Li et al., 2019), Peng-two-
stage (Peng et al., 2020) and IMN+IOG (Wu
et al., 2020b).

• End-to-end: OTE-MTL (Zhang et al., 2020),
JET (Xu et al., 2020), GTS-CNN, GTS-
BiLSTM, GTS-BERT (Wu et al., 2020a),
S3E2 (Chen et al., 2021b), BART-ABSA (Yan
et al., 2021), MTDTN (Zhao et al., 2022),
EMC-GCN (Chen et al., 2022c). These ap-
proaches are end-to-end models that include
a unified grid tagging scheme and a position-
aware tagging scheme.

• MRC: Dual-MRC (Mao et al., 2021),
BMRC (Chen et al., 2021a), COM-
MRC (Zhai et al., 2022). All these method are
based on the framework of machine reading
comprehension.

• Span-based: Span-ASTE (Xu et al., 2021),
SBN (Chen et al., 2022d). Span-based models
consider all possible spans in a sentence and
match aspect terms with opinion terms in an
end-to-end manner.

4.4 Main Results

We conduct experiments on the two versions of
four benchmark datasets, i.e., D1 and D2, whose
results are shown in Table 1 and Table 2, respec-
tively. As can be seen from the two tables, un-
der the comprehensive performance indicator F1,
the proposed Dual-span consistently outperforms
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Category Model
Lap14 Res14 Res15 Res16

P R F1 P R F1 P R F1 P R F1
B

iL
ST

M

Pipeline
Li-unified-R(2019) 42.25 42.78 42.47 41.44 68.79 51.68 43.34 50.73 46.69 38.19 53.47 44.51

Peng-two-stage(2019) 48.62 45.52 47.02 58.89 60.41 59.64 51.07 46.04 48.71 59.25 58.09 58.67
IMN+IOG(2020) 49.21 46.23 47.68 59.57 63.88 61.65 55.24 52.33 53.75 - - -

End-to-end
GTS-CNN(2020) 55.93 47.52 51.38 70.79 61.71 65.94 60.09 53.57 56.64 62.63 66.98 64.73

GTS-BiLSTM(2020) 59.42 45.13 51.30 67.28 61.91 64.49 63.26 50.71 56.29 66.07 65.05 65.56
S3E2(2021) 59.43 46.23 52.01 69.08 64.55 66.74 61.06 56.44 58.66 71.08 63.13 66.87

Span-based Span-ASTE(2021) 59.85 45.67 51.80 72.52 62.43 67.08 64.29 52.12 57.56 67.25 61.75 64.37
Ours Dual-Span 60.14 47.65 53.53 74.82 61.97 68.19 64.71 57.37 60.76 73.47 62.46 67.49

B
E

R
T

End-to-end
MTDTN(2022) 61.98 54.71 58.12 70.00 71.78 70.88 59.03 62.68 60.80 69.04 69.98 69.51

EMC-GCN(2022) 61.46 55.56 58.32 71.85 72.12 71.98 59.89 61.05 60.38 65.08 71.66 68.18

MRC-based
BMRC(2021) - - 57.83 - - 70.01 - - 58.74 - - 67.49

COM-MRC(2022) 64.73 56.09 60.09 76.45 69.67 72.89 68.50 59.74 63.65 72.80 70.85 71.79
Ours Dual-Span 64.50 58.59 61.36 77.55 73.52 75.47 67.66 66.14 66.85 72.44 73.47 72.94

Table 1: Experimental results on dataset D1, including two versions of BiLSTM and BERT. All baseline results are
from the original paper. Best results are in bold and the second best are underlined.

Category Model
Lap14 Res14 Res15 Res16

P R F1 P R F1 P R F1 P R F1

Pipeline

CMLA+(2017) 30.09 36.92 33.16 39.18 47.13 42.79 34.56 39.84 37.01 41.34 42.10 41.72
RINANTE+(2019) 21.71 18.66 20.07 31.42 39.38 34.95 29.88 30.06 29.97 25.68 22.30 23.87
Li-unified-R(2019) 40.56 44.28 42.34 41.04 67.35 51.00 44.72 51.39 47.82 37.33 54.51 44.31

Peng-two-stage(2019) 37.38 50.38 42.87 43.24 63.66 51.46 48.07 57.51 52.32 46.96 64.24 54.21

End-to-end

OTE-MTL (2020) 49.53 39.22 43.42 62.00 55.97 58.71 56.37 40.94 47.13 62.88 52.10 56.96
JET-BERTo

M=6(2020) 55.39 47.33 51.04 70.56 55.94 62.40 64.45 51.96 57.53 70.42 58.37 63.83
GTS-BERT(2020) 57.52 51.92 54.58 70.92 69.49 70.20 59.29 58.07 58.67 68.58 66.86 67.58

BART-ABSA(2021) 61.41 56.19 58.69 65.52 64.99 65.25 59.14 59.38 59.26 66.60 68.68 67.62
EMC-GCN(2022) 61.46 55.56 58.32 71.85 72.12 71.98 59.89 61.05 60.38 65.08 71.66 68.18

MRC-based
Dual-MRC(2021) 57.39 53.88 55.58 71.55 69.14 70.32 63.78 51.87 57.21 68.60 66.24 67.40

BMRC(2021) 70.55 48.98 57.82 75.61 61.77 67.99 68.51 53.40 60.02 71.20 61.08 65.75
COM-MRC(2022) 62.35 58.16 60.17 75.46 68.91 72.01 68.35 61.24 64.53 71.55 71.59 71.57

Span-based
Span-ASTE-BERT(2021) 63.44 55.84 59.38 72.89 70.89 71.85 62.18 64.45 63.27 69.40 71.17 70.26

SBN(2022) 65.68 59.88 62.65 76.36 72.43 74.34 69.93 60.41 64.82 71.59 72.57 72.08
Ours(BERT) Dual-Span 67.14 62.13 64.49 77.01 74.00 75.47 67.97 66.34 67.13 73.56 73.48 73.49

Table 2: Experimental results on dataset D2, all baselines are from the original text. Best results are in bold and the
second best are underlined.

all baselines both for BiLTSM encoder and BERT
encoder. Moreover, our model achieves the supe-
rior performance in precision and/or recall in most
cases. On the other side, the experimental results
suggest that non-pipeline methods (i.e., End-to-end,
MRC-based, Span-based) are better than pipeline
methods, which should be attributed to the fact that
the pipeline methods do not consider the correla-
tion between sentiment elements, thus leading to
error propagation between stages. It is notewor-
thy that among tagging based end-to-end methods,
some methods that employ syntactic structure of
the sentence such as S3E2, MTDTN and EMC-
GCN generally outperform the methods that only
learn tagging information (e.g., OTE-MTL, GTS
and JET), suggesting that the syntactic features of
sentences are meaningful for triplet representation.
In particular, our end-to-end Dual-Span model out-
performs all end-to-end based methods and span-
based methods Span-ASTE, SBN, which can be
attributed to the fact that our method not only uti-

Model Lap14 Res14 Res15 Res16
w/o Dual-RGAT 59.95 69.77 63.4 70.12

w/o SynGAT 61.62 70.12 63.02 70.13
w/o PosGAT 64.23 71.32 62.42 70.89
Transformer 63.16 72.14 63.32 72.49
Dual-GAT 61.71 72.67 64.23 72.13

w/o SynSpan 62.77 73.27 63.86 70.89
w/o PosSpan 64.39 73.46 65.51 71.34
Dual-Span 64.49 75.47 67.13 73.49

Table 3: Experimental results of ablation study.

lizes the syntactic relationship and other linguis-
tic features of sentences for span representation
learning, but reduce the noise for span generation
and pairing, which can facilitate valid span pairing.
Specifically, the F1 score of Dua-Span on datasets
D1 and D2 outperforms over other state-of-the-art
models by about 2% on average.
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D2 Model
ATE OTE

P R F1 P R F1

Lap14
GTS-BERT 76.63 82.68 79.53 76.11 78.44 77.25
Span-ASTE 81.48 86.39 83.86 83.00 82.28 82.63
Dual-Span 80.67 87.92 84.14 78.96 84.07 81.44

Res14
GTS-BERT 78.12 85.64 81.69 81.12 88.24 84.53
Span-ASTE 83.56 87.59 85.50 82.93 89.67 86.16
Dual-Span 83.19 89.95 86.44 83.38 88.99 86.10

Res15
GTS-BERT 75.13 81.57 78.21 74.96 82.52 78.49
Span-ASTE 78.97 84.68 81.72 77.36 84.86 80.93
Dual-Span 81.49 84.16 82.80 78.17 87.25 82.46

Res16
GTS-BERT 75.06 89.42 81.61 78.99 88.71 83.57
Span-ASTE 79.78 88.50 83.89 82.59 90.91 86.54
Dual-Span 78.45 90.24 83.93 82.24 88.26 85.14

Table 4: Experimental results of ATE and OTE tasks
on dataset D2.

4.5 Model Analysis

4.5.1 Ablation Study
To further explore the effectiveness of different
modules in Dual-Span, we conduct ablation ex-
periments on the D2 dataset. Table 3 shows the
experimental results in terms of F1 scores in D2.
W/o SynGAT and w/o PosGAT denote the removal
of syntactic graph attention network (SynGAT) and
part-of-speech graph attention network (PosGAT),
respectively, while W/o Dual-RGAT denotes the
removal of both SynGAT and PosGAT. We also
compare our approach with unitary graph atten-
tion networks Dual-GAT that performs attention
convolution on syntactic dependency graphs and
part-of-speech graphs respectively without distin-
guishing edge types. By comparing w/o SynGAT,
w/o PosGAT, w/o Dual-RGAT and Dual-Span, we
observe that both the dependency relationship and
part-of-speech features of the sentence are infor-
mative to the representation of spans. In particular,
the syntactic structural feature and part-of-speech
information can be complementary. This is mani-
fested by the outperformance of Dual-RGAT over
Transformer and Dual-GAT.When removing the
syntactic span generation module (corresponding
to w/o SynSpan) or part-of-speech span genera-
tion module (corresponding to w/o PosSpan), the
performance is also degraded. This observation il-
lustrates that span candidate size can be effectively
reduced. Overall, each module of our Dual-span
contributes to the overall performance of the ASTE
task.

4.5.2 Effectiveness of Dual-Span in Span
Generation

We use two subtasks, namely, ATE and OTE of
ABSA, to explore the effectiveness of dual-channel
span Generation strategy. We evaluate our model

Model Lap14 Res14 Res15 Res16
Span-ASTE 0.8579 1.1131 0.5368 0.6597
Dual-Span 0.4443 0.5587 0.2472 0.3169

Table 5: Experimental results of time consumption
(second) to generate spans on the D2 dataset.

on the D2 dataset with F1 metric and the results are
shown in the table 4. On ATE task, Dual-Span is
consistently superior to Span-ASTE and GTS, indi-
cating that syntactic and part-of-speech correlation
based candidate reduction and representation are
effective for aspect term identification. However,
on the OTE task, our model is slightly inferior to
Span-ASTE on most of the benchmark datasets,
which is caused by lower P values. We expect the
reason behind lies in the part-of-speech based span
generation. In effect, we only consider the spans
involving words that are tagged with JJor NN .
However, opinion terms can be tagged with V BN ,
which we do not include. We leave the expansion
of more valid part-of-speech spans in the future
work.

In order to verify that our proposed dual-channel
span generation strategy can noticeably reduce the
computational cost of span enumeration, we test the
time consumption of Dual-span and Span-ASTE on
span enumeration under the same runtime environ-
ment. From the results shown in Table 5, we can
see that the proposed dual-channel span generation
strategy cuts time cost in half.

5 Conclusion

In this work, we present a Dual-Span model for
improving the performance on ASTE task. Based
on the observations of syntactic relations and part-
of-speech features among spans, we design a dual-
channel span generation method to refine the span
candidate set so as to mitigate the negative impacts
of invalid spans. Moreover, we employ relational
graph neural networks to capture the high-order in-
teractions between possible spans from both views:
syntactic dependency relation and part-of-speech
relation. Our experimental results demonstrate that
the proposed method brings meaningful gains to
ASTE as well as ATE task, compared to all base-
lines. We also note that for OTE task, our method is
generally inferior to the vanilla span-based method
that enumerate all possible spans. The reason may
lie in the limited part-of-speech relations, which
will be considered in the future work.
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A Appendix

A.1 Dataset statistics

We counted the data of the two versions sepa-
rately 2 3. As shown in the Table 6, in addition to
the number of sentences and triples in the dataset,
the number of words and multi-word spans is also
counted. In addition, we perform part-of-speech
statistics on the D1 and D2 data sets. The results are
shown in Table 7. The number of parts of speech
with JJ or NN accounts for a relatively high pro-
portion of the overall A&O, and the distribution
of the rest of the parts of speech is scattered and
unrepresentative. As there is a trade-off between
prediction accuracy and time consumption, we only
consider spans involving words tagged with JJ or
NN in Section 4.5.2.

A.2 Hyperparameter analysis

Figure 4 shows the sensitivity analysis of the hyper-
parameters Swindow, Ls, on the D2 dataset. From
the figure, we can observe that the effect is the
best when the part-of-speech window Swindow is 3.
In fact, when the part-of-speech window is set to
Swindow = 3, it can basically cover all aspect terms
and opinion terms whose parts-of-speech are NN
and JJ . When Swindow exceeds 3, more noise and
complexity may be introduced. When the hyperpa-
rameter Ls=8, the performance is the best.

A.3 Impact of SynGAT and PosGAT Layers

To explore the impact of the number of layers of
SynGAT and PosGAT in Dual-Span, we evaluate
the number of layers of SynGAT and PosGAT on
the D2 dataset, where multiple layers indicate that
node information can be propagated to higher-order
neighbors. As shown in Figure 6, our model
achieves the best performance when both SynGAT
and PosGAT are two layers. Specifically, on the
syntactic dependency tree of a sentence, 2-hops are
helpful for the interaction between aspect and opin-
ion terms, while on the part-of-speech graph, 2-hop
relations involving NN or JJ are conducive for
capturing valid spans. Note that, the performance
declines as the Dual-RGAT goes deeper, which
may be due to the oversmoothing (Li et al., 2018)
of graph neural networks.

2https://github.com/xuuuluuu/
SemEval-Triplet-data

3https://github.com/xuuuluuu/
SemEval-Triplet-data/tree/master/
ASTE-Data-V2-EMNLP2020
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Figure 4: Sensitivity analysis of the hyperparameters
Swindow and Ls on dataset D2.
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Figure 5: Performance v.s the number of layers in graph
networks.

A.4 Visualization of Linguistic Correlations

To explore how the syntactic dependency and part-
of-speech correlation between words contribute to
valid span generation, we visualize the attention
scores of the syntactic relations and part-of-speech
adjacency matrix in two RGAT modules, where
rows are queries and columns are keys. As shown
in the figure 6, the sampled text “Good creative
rolls !” (i.e., the fourth example in the section A.5)
contains the triplet: (“rolls”, “good creative”, “pos-
itive”). Since our model employs syntactic depen-
dency relation to learn representations, and exploits
the part-of-speech information around indicative
words (e.g., the words with “NN" tag) as well, the
inter-span and intra-span relations can be success-
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Dataset
Lap14 Res14 Res15 Res16

#S #T #SW #MW #S #T #SW #MW #S #T #SW #MW #S #T #SW #MW

D1
Train 899 1452 815 637 1259 2356 1614 742 603 1038 696 342 863 1421 931 490
dev 225 383 213 170 315 580 386 194 151 239 165 74 216 348 232 116
test 332 547 291 256 493 1008 674 334 325 493 303 190 328 525 351 174

D2
Train 906 1460 824 636 1266 2338 1586 752 605 1013 678 335 857 1394 918 476
dev 219 346 190 156 310 577 388 189 148 249 165 84 210 339 216 123
test 328 543 291 252 492 994 657 337 322 485 297 188 326 514 344 170

Table 6: Statistics for the two versions of the dataset. #S and #T represent the number of sentences and the number
of triplets, respectively. #SW indicates that the aspect and opinion terms in the triplets are both single-word spans,
while #MW indicates that at least one of the aspect or opinion terms are multi-word spans.

Dataset
Lap14 Res14 Res15 Res16

A&O JJ&NN Rat A&O JJ&NN Rat A&O JJ&NN Rat A&O JJ&NN Rat
D1 4447 2949 0.66 7350 5944 0.81 3282 2714 0.83 4262 3523 0.83
D2 4698 3113 0.66 7818 6346 0.81 3494 2882 0.82 4494 3707 0.82

Table 7: Aspect and opinion term part-of-speech statistics on public datasets. Among them, A&O, JJ&NN represent
the number of aspect and opinion terms and the number of parts of speech are JJ and NN, respectively, and Rat
represents their ratio.

Review Ground-truth Span-ASTE Dual-Span
The baterry is very longer. (baterry, longer, P) (baterry, longer, N) (baterry, longer, P)
And windows 7 works like a charm. (windows 7, charm, P) ∅ (windows 7, charm, P)
I wanted it for it ’s mobility and man,this
little bad boy is very nice.

(mobility, nice, P)
(mobility, wanted, P),

(mobility, nice, P)
(mobility, nice, P)

Good creative rolls ! (rolls, good creative, P) (creative rolls, good, P) (rolls, good creative, P)
The wine list was extensive-though the staff did
not seem knowledgeable about wine pairings .

(wine list, extensive, P),
(staff, not seem knowledgeable, N)

(wine list, extensive, P)
(wine list, extensive, P),

(staff, not seem knowledgeable, N)
for 7 years they have put out the most tasty,
most delicious food and kept it that way ...

(food, tasty, P),
(food, delicious, P)

(food, delicious, P)
(food, tasty, P),

(food, delicious, P)

Table 8: Case study on dataset D2.

Review Ground-truth(part of speech) Dual Span(part of speech)
The OS is fast and fluid, everything
is organized and it ’s just beautiful.

fast(JJ), organized(VBN),
fluid(NN), beautiful(JJ)

fast(JJ),
fluid(NN), beautiful(JJ)

This place has ruined me for neighborhood sushi. ruined(VBN) ∅
I think the pizza is so
overrated and was under cooked.

overrated(JJ),
under cooked(IN, VBN)

overrated(JJ)

Decor needs to be upgraded but the food is amazing! upgraded(VBN), amazing(JJ) amazing(JJ)

Table 9: A case study of prediction errors in OTE tasks on the D2 dataset.
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Review A&O(part of speech) Ground-truth Dual-Span
The OS is fast and fluid, everything
is organized and it ’s just beautiful.

os(NNP), fast(JJ), fluid(NN),
organized(VBN), beautiful(JJ)

(os, fast, P), (os, organized, P),
(os, fluid, P), (os, beautiful, P)

(os, fast, P), (os, fluid, P),
(os, beautiful, P)

This place has ruined me for neighborhood sushi. sushi(NN), ruined(VBN) (sushi, ruined, P) ∅
I think the pizza is so
overrated and was under cooked.

pizza(NN), overrated(JJ),
under cooked(IN, VBN)

(pizza, overrated, N),
(pizza, under cooked, N)

(pizza, overrated, N)

Decor needs to be upgraded but the food is amazing!
’decor(NN), food(NN),

upgraded(VBN), amazing(JJ)
(decor, upgraded, N),

(food, amazing, P)
(food, amazing, P)

The manager was rude and
handled the situation extremely poorly.

manager(NN),
rude(VBN)

(manager, rude, N)
(manager, rude, N), (manager, poorly, N),

(situation, poorly, N)

Table 10: A case study of prediction errors on the D2 dataset.

fully captured by graph attention networks. So the
aspect term “rolls” pays attention to opinion terms
“good" and “ creative" (the last row of the left plot
in Figure 6), while the two words with “JJ" tag, i.e.,
“good" and “ creative" shows more strong correla-
tion than with “rolls" in part-of-speech graph (cor-
responding to the right plot of Figure 6), demon-
strating that they are more likely to fall into the
same category. As a result, our model gives the
correct triplet, in contrast to Span-ASTE whose
prediction is (“creative rolls”, “good”, “positive”).

(a) Review: “Good creative rolls!”

(b) Review: “for 7 years they have put out the most tasty,
most delicious food and kept it that way...”

Figure 6: Visualization of adjacency tensors of syntactic
(left) and part-of-speech combination features (right).

A.5 Case Study

We use several examples from the test set of dataset
D2 to analyze and validate our method, as shown
in the Table 8. For the first example, our method
Dual-Span may perform better in predicting sen-
timent consistency than Span-ASTE. On the 2nd,

5th, and 6th examples, it can be shown that our
method makes full use of syntactic and semantic
information to improve the accuracy of effective
span capture. It can be shown in the fourth example
that our method reduces the span boundary error
by using part-of-speech structural features.

A.6 Error analysis
In order to explore the reason behind the slight in-
feriority of our model on the OTE task, compared
to Span-ASTE on most benchmark datasets, we
conduct error case study analysis on the datasets
of the D2 version. As shown in Table 9, since we
do not use the tag “V BN” in constructing part-
of-speech graph, our method fails to extract the
opinion words with the part of speech "V BN" in
the four examples, e.g. “organized (V BN )” and
“upgraded(V BN )”. Additionally, to identify the
limitations of our work and potential areas for im-
provement in the future, we perform error sample
analysis on the D2 dataset. As shown in Table 10,
for opinions whose part of speech is not JJ , our
method is more likely to give wrong prediction
results. Moreover, there are some non-aspect or
opinion words whose part-of-speech are NN or
JJ , which also mislead the model to make wrong
span identification.
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