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Abstract

Recent research has demonstrated that Large
Language Models (LLMs) can enhance their ca-
pabilities by utilizing external tools. However,
three pivotal questions remain unanswered: (1)
How effective are current LLMs in utilizing
tools? (2) How can we enhance LLMs’ ability
to utilize tools? (3) What obstacles need to be
overcome to leverage tools? To address these
questions, we introduce API-Bank, a ground-
breaking benchmark, specifically designed for
tool-augmented LLMs. For the first question,
we develop a runnable evaluation system con-
sisting of 73 API tools. We annotate 314
tool-use dialogues with 753 API calls to as-
sess the existing LLMs’ capabilities in plan-
ning, retrieving, and calling APIs. For the sec-
ond question, we construct a comprehensive
training set containing 1,888 tool-use dialogues
from 2,138 APIs spanning 1,000 distinct do-
mains. Using this dataset, we train Lynx, a
tool-augmented LLM initialized from Alpaca.
Experimental results demonstrate that GPT-3.5
exhibits improved tool utilization compared to
GPT-3, while GPT-4 excels in planning. How-
ever, there is still significant potential for fur-
ther improvement. Moreover, Lynx surpasses
Alpaca’s tool utilization performance by more
than 26 pts and approaches the effectiveness of
GPT-3.5. Through error analysis, we highlight
the key challenges for future research in this
field to answer the third question 1.

1 Introduction

Over the past several years, significant progress has
been made in the development of large language
models (LLMs), including GPT-3 (Brown et al.,
2020), Codex (Chen et al., 2021), ChatGPT, and
impressive GPT-4 (Bubeck et al., 2023). These
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1The data and code are publicly available at
https://github.com/AlibabaResearch/DAMO-ConvAI/
tree/main/api-bank

models exhibit increasingly human-like capabil-
ities, such as powerful conversation, in-context
learning, and code generation across a wide range
of open-domain tasks (Bubeck et al., 2023).

Despite their utility, LLMs are still constrained
by training data (Brown et al., 2020; Zhao et al.,
2023; Song et al., 2023). This data can quickly be-
come outdated and may not cover all scenarios (Mi-
alon et al., 2023). Consequently, there has been
a surge of research focused on enhancing LLMs
by enabling them to leverage external API tools,
such as accessing up-to-date information (Izacard
et al., 2022) and interacting with third-party ser-
vices (Liang et al., 2023). Traditionally, tool usage
has been viewed as a uniquely human behavior,
with its emergence considered a significant mile-
stone in primate evolution (Ambrose, 2001). Draw-
ing an analogy to the timeline of human evolution,
we argue that it is currently imperative to address
three pivotal questions: (1) How effective are cur-
rent LLMs at utilizing tools? (2) How can we
enhance LLMs’ ability to utilize tools? (3) What
obstacles still need to be overcome for LLMs to
effectively leverage tools?

To tackle these inquiries, we present API-Bank,
a groundbreaking benchmark specifically designed
for tool-augmented LLMs. In order to determine
the users’ needs regarding the utilization of tool-
augmented LLMs, we initially conducted inter-
views with 500 users. Taking into account their
feedback, we establish the design principles for
API-Bank. The evaluation scope of API-Bank must
encompass three essential capabilities: planning,
retrieving, and calling API tools, in order to ful-
fill the users’ requirements. Additionally, while
constructing the benchmark, it is imperative to con-
sider various aspects such as domain diversity, API
diversity, API authenticity, and evaluation authen-
ticity. Subsequently, to answer the first research
question, we implement the evaluation system of
API-Bank, adhering to design principles. The sys-
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tem comprises 73 commonly used APIs, along with
314 tool-use dialogues containing 753 API calls,
all manually annotated, thus forming the first exe-
cutable and authentic system capable of evaluating
the effectiveness of LLM utilizing tools.

For the second question, we develop a com-
prehensive tool-augmented LLM training dataset
within API-Bank. This dataset comprises 2,138
distinct APIs and includes 1,888 dialogues with
a total of 4,149 API calls, reflecting three differ-
ent levels of API usage abilities. However, an-
notating thousands of APIs and the correspond-
ing dialogues, adhering to our design principles,
is not only prohibitively expensive but also time-
consuming. In this work, we introduce Multi-agent,
a novel method using LLMs instead of humans to
automatically mass-produce tool-augmented LLM
training data. Multi-agent consists of five collab-
orative agents that step-by-step generate domains,
APIs, user queries, API calls & responses, while
also ensuring the quality of the generated data
aligns with our design principles. Multi-agent re-
markably reduces the annotation cost by 98% com-
pared to human annotation. To verify the effective-
ness of our training set, subsequently, we fine-tune
a popular LLM Alpaca-7B (Taori et al., 2023), re-
sulting in our own tool-augmented LLM Lynx.

We conduct extensive experiments on API-Bank
and obtained insightful results regarding the API
tool usage capabilities of LLMs. Our findings re-
veal that even smaller models like Alpaca-7B and
ChatGLM-6.2B possess a certain level of API call
accuracy, about 20%. However, their proficiency in
API retrieval and planning is negligible. In contrast,
the larger-scale GPT-3 Davinci exhibits almost no
capability in API usage, indicating that API usage
might not be an inherent feature of LLMs. Our
Lynx, demonstrates an average improvement of
24% in the three API usage capabilities compared
to Alpaca-7B. While it approaches the performance
of GPT-3.5, there remains a 21% gap from GPT-4.
Additionally, we present a comprehensive exper-
imental analysis that sheds light on the primary
challenges encountered by GPT-4 and Lynx in uti-
lizing APIs, addressing the third research question.

2 Design Principles of API-Bank

Due to the absence of authoritative ability defini-
tions and benchmarks about tool-augmented LLM,
we conducted an extensive questionnaire survey
in the initial phase. Through interviews with over

500 users who expressed interest in incorporating
additional tools into LLM, we collected their re-
quirements. Based on this foundation, we provide,
for the first time, a definition to measure the abili-
ties of tool-augmented LLM and the data standards
for training and evaluating its abilities. We believe
that these design principles, which reflect the ac-
tual needs of users, can assist researchers in the
field and contribute to the future development of
tool-augmented LLM benchmarks.

2.1 Ability Grading
An ideal tool-augmented LLM should enable users
to define the APIs they require in a private API
Pool and request the LLM to invoke these APIs at
the appropriate times to fulfill their needs. Based
on our interviews with users, we have identified
two dimensions that encompass the requirements
for tool-augmented LLM:

• Few vs. Many APIs in Pool: Different users
may define varying numbers of APIs. When
users specify a small number of APIs (e.g.,
2-3), the relevant information of all the spec-
ified APIs (such as name, definition, input
parameters, and output parameters) and the
user’s query can be provided as input to the
LLM, allowing it to determine which API to
call to meet the user’s needs. However, when
users have defined a large number of APIs
(e.g., hundreds), it is not feasible to input all
the APIs to the LLM due to input length re-
strictions. In such cases, the LLM needs to
retrieve potentially suitable APIs to fulfill the
user’s needs before calling them.

• Single vs. Several API calls per Turn: Many
user requirements are complex and necessi-
tate the combination of multiple API calls to
achieve. Some users are willing to patiently
decompose requirements into multiple queries
and guide the LLM gradually to fulfill their
needs, with each query involving a single API
call. But some users prefer to directly present
complex requirements, expecting the LLM to
autonomously perform step-by-step API calls
within a single turn to meet their needs.

As shown in Figure 2, these two dimensions give
rise to four expected conditions: Few APIs, Single
Call; Few APIs, Multiple Calls; Many APIs, Single
Call; and Many APIs, Multiple Calls. During im-
plementation, we discovered that the difficulty level
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Figure 1: The abilities to Call, Retrieve+Call, and Plan+Retrieve+Call APIs of tool-augmented LLMs.
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Figure 2: Requirements of tool-augmented LLMs.

of the first two conditions is similar. Since planning
the call of multiple APIs is straightforward when
all the APIs are input, thus we merged the first two
conditions. The three remaining conditions assess
the following abilities:

1. Call: the ability to call APIs based on the
given query when the APIs are known;

2. Retrieval+Call: the ability to retrieve and call
a single API when the APIs are unknown;

3. Plan+Retrieval+Call: the ability to continu-
ously plan, retrieve, and call multiple APIs
when the APIs are unknown.

We also present visual examples of each ability in
Figure 1 and Appendix.

2.2 Data Standards

After grading the abilities to be assessed in the
benchmark, another crucial aspect is ensuring the
quality of the data. Calling APIs occurs within
an open environment where we cannot predeter-
mine the domains and functionalities. Moreover,
API call is rigorous similar to mathematics, where

any errors during the call (such as incorrect API
names, input parameter errors, or incorrect API call
sequencing) can result in unfulfilled user require-
ments. Therefore, for the benchmark construction,
we need to consider the following criteria:

1. Domain diversity: The training and testing
data should cover a wide range of domains as
comprehensively as possible;

2. API authenticity: The name, definition, in-
put and output parameters of the APIs should
closely resemble those in the real world;

3. API diversity: The benchmark should include
a wide variety of API types and purposes.

4. Evaluation authenticity: The evaluation
should incorporate a functional system that
enables real-time interaction with the LLM.
The LLM offers an API call, which the system
executes and subsequently returns the results
to the LLM. The evaluation is based on the
impact of the execution on the system, assess-
ing whether the LLM adequately responds to
the user’s requirements.

3 Evaluation System of API-Bank

Based on the aforementioned principles, we first
introduce how to construct the evaluation system of
API-Bank, including the system implementation,
the data annotation, and the evaluation metrics.

3.1 System Implementation
We have implemented 73 APIs in our system, in-
cluding commonly used daily APIs such as weather
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forecast, and accessing other AI models like Text-
to-Image Generation. All APIs were implemented
within the same framework by senior research
and development engineers, with a total time in-
vestment of 98 person-days. For APIs related
to database operations, we establish the requisite
databases and initialize them with initial entries, a
pivotal step in constructing dialogues. For APIs
that access external information (e.g., search en-
gines), we must ensure the retrieved information
remains constant to ensure reproducibility. We
track all queries for each API in test dialogues and
record the retrieval results at a specific time point,
hard-coding them within the API to maintain result
consistency.

Among them, we developed a special API called
"API Search" to fulfill the evaluation requirements
of both Retrieval+Call and Plan+Retrieval+Call
abilities. Specifically, in these two scenarios, the
LLM is unaware of the APIs available in the API
Pool in advance, so it needs to make use of the
API Search to identify the potentially needed APIs
according to the user query. In the input given to the
LLM, we provide the instructions of the API Search
at the beginning, and an API Search is required
before every other API call. When performing an
API Search, the model should condense the user’s
demand into a few keywords. The API Search
obtains sentence embeddings from both the query
keywords and all API meta information in the API
Pool. It calculates the cosine similarity between
keywords and all API embeddings, returns the meta
information of the API with the highest similarity.

3.2 Dialogue Annotation

Based on the grading abilities defined by de-
sign principles, we annotate evaluation data
for the abilities of Call, Retrieval+Call, and
Plan+Retrieval+Call APIs.

For the Call ability, we firstly randomly sample
APIs from the API Pool. Then we instruct annota-
tors to first imagine a query that could be resolved
by these APIs based on the API document. They
then annotate the API call and have the system
execute it. Finally, they label the response based
on the execution output. Please note that the Call
data does not necessarily represent single-turn dia-
logues. We also require annotators to ask multiple
queries regarding the same set of APIs, providing
both the dialogue history and the API call history.

For the Retrieval+Call ability, we aim to obtain

a complex user requirement and decompose it into
multiple simple queries, each of which could be
fulfilled by executing a single API. To achieve this,
we initially obtaine a set of APIs from the Pool,
ranging from 1 to 5, and ask annotators to deter-
mine if they could collectively address a complex
requirement. If so, they divide it into several simple
queries. For each query, annotators label the API
to be called by the LLM and provided the input
parameters. They also label the response that the
LLM should generate based on the system’s output.

The annotation for Plan+Retrieval+Call is sim-
ilar to that of Retrieval+Call, with the difference
being that annotators don’t decompose the complex
query into simpler ones. They are required to anno-
tate a sequential chain of API calls and the response
derived from the execution of the last API.

The introduction of APIs increases the difficulty
of annotation. Despite recruiting computer science
students for dialogue annotation, each dialogue re-
quires discussion between two annotators to decide
how to annotate. Additionally, two additional anno-
tators are involved to ensure the quality of annota-
tions, including the format, logical consistency, and
reasonability of API calls. The average annotation
cost per dialogue is $8. Out of the 400 dialogues
annotated, we discard 21.5% due to various annota-
tion issues. Ultimately, we retained 314 dialogues
with a total of 753 API Calls.

3.3 Evaluation Metrics

We evaluate model performance from two perspec-
tives: the correctness of API calls and the quality
of LLM responses. For the API call evaluation,
we employ the Accuracy metric, which is calcu-
lated as the number of correct predictions divided
by the total number of predictions. In each evalua-
tion, we start by initializing the evaluation system,
ensuring that the databases for each API contain de-
fault values. Then, we compare the predicted API
calls with the manually annotated API calls to de-
termine their consistency. We define consistency as
whether the same database queries or modifications
are performed and whether the returned results are
the same. Regarding the evaluation of responses
after API calls, we utilize the ROUGE-L metric.

4 Training Set of API-Bank

We hope API-Bank not only evaluate the effective-
ness of existing LLMs in utilizing tools but also to
enhance their performance in utilizing such tools.
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The most direct approach to achieve this goal is
creating a high-quality training dataset tailored to
tool-augmented LLMs. However, it is challenging
to construct a large-scale training dataset at a low
cost while meeting the our design principles of do-
main diversity and API authenticity. The manual
annotation cost for each dialogue in our evaluation
set reaches $8, making it expensive to create a large
dataset. Furthermore, it is challenging for the anno-
tators to design a diverse and authentic API pool.
Our recruited annotators could only come up with
100 APIs, which cannot satisfy our need for di-
verse training sets. Therefore, we propose a multi-
agent data generation method to rapidly and cost-
effectively construct tool-augmented LLM training
data that aligns with the design principles.

Domains Requirements

Query CallResponse

Agent

TesterGenerator

Figure 3: Five agents collaborate to accomplish the
training data generation of tool-augmented LLMs.

The emergence of LLMs has brought about a
paradigm shift in data annotation, offering an al-
ternative to human annotators for the automated
generation of labeled data. One representative ap-
proach is self-instruct (Wang et al., 2022). How-
ever, we have observed that while self-instruct is
effective in generating data for simple tasks such as
writing, it encounters difficulties in generating tool-
augmented LLM data that aligns with our design
principles. Specifically, we formulated a complex
instruction encompassing requirements for domain
diversity, API diversity&authenticity, and three spe-
cific abilities about planning, retrieving and call-
ing APIs. Nevertheless, the widely used ChatGPT
struggles to generate data that fully adheres to
our instructions, only 5% of the data is available.
Even upgraded to the more powerful GPT-4, the
available rate improves to 25%, but a significant

number of errors still persist. Our investigation
reveals that the errors stems from providing LLM
with an overwhelming number of requirements all
at once, making it difficult to comprehend them
effectively. Consequently, an intuitive approach
emerges: can we alleviate this issue by decompos-
ing the requirements into multiple simpler tasks,
allowing an LLM to execute one task at a time?

We commence by providing an overview of the
elements that should be incorporated in the data
based on our design principles: domain, API, query,
ability, and API call&response. The domain deter-
mines the functionality of the APIs, while the APIs
and ability determine the types of queries they can
handle. The combination of domain, APIs, query,
and ability determines how the LLM makes API
calls and generates an appropriate response.

To simulate the dependencies among these ele-
ments, we propose the utilization of five agents as
shown in Figure 3: (1) The first agent generates
several domains, such as healthcare and fitness. (2)
The second agent, considering the domain, gener-
ates potential APIs. It is worth noting that during
this stage, to ensure the authenticity of the simu-
lated APIs, we add examples from Public APIs1

into the agent input. (3) The third agent randomly
selects one or more APIs from the simulated APIs.
Additionally, it chooses an ability outlined in our
design principles. This information is then used
to create a query that matches the chosen ability
and can be fulfilled by calling the selected APIs.
(4) The fourth agent takes the domain, API, abil-
ity, and query as input. It is expected to make the
necessary API calls, simulate the execution of the
APIs, and generate a response that addresses the
query. (5) Finally, we introduce the fifth agent, act-
ing as a tester. This agent automatically verifies
whether the generated data adheres to our design
principles (it actually discard 35% instances). All
five agents are implemented by providing specific
prompts to ChatGPT. Together, they collaborate in
a step-by-step manner to accomplish the complex
data generation. Multi-agent eliminates the need
for human labelers, costing only $0.1 per dialogue
and saving 98% compared to manual annotation.

5 Benchmark Analysis

Statistics. In the end, we construct a bench-
mark consisting of 1,008 domains, 2,211 APIs,
2,202 dialogues, and 6,135 turns. Among them,

1https://github.com/public-apis/public-apis
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Benchmark Statistics Dialogue Type Evaluation Type Tool Usage Ability

# domains # APIs Multi-turn Multi-call API Call Response Call Retrieve Plan

DATESET (Schick et al., 2023) 1 1 ✘ ✘ ✔ ✘ ✔ ✘ ✘

APIBench (Patil et al., 2023) 90 1,645 ✘ ✘ ✔ ✘ ✔ ✔ ✘

ToolAlpaca (Tang et al., 2023) 50 426 ✔ ✘ ✔ ✔ ✔ ✘ ✘

ToolBench1 (Qin et al., 2023b) 49 16,464 ✔ ✔ ✔ ✘ ✔ ✔ ✔

ToolBench2 (Xu et al., 2023) 8 232 ✘ ✔ ✔ ✘ ✔ ✘ ✘

ToolQA (Zhuang et al., 2023) 6 13 ✘ ✔ ✔ ✔ ✔ ✘ ✘

API-Bank (ours) 1,000 2,138 ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 1: Comparison among API-Bank and existing benchmarks, where API-Bank comprehensively includes the
most domains and APIs, covers both multi-turn and multi-call dialogues, evaluate both API call and response, and
thoroughly consider three distinct tool usage abilities.

Statistics Training Evaluation
# of Domains 1,000 8
# of APIs 2,138 73
# of Dialogues 1,888 314
# of Turns 5,221 914
- # of single call 3,147 363
- # of multiple calls 493 122

# of Call 720 214
# of Retrieve+Call 719 50
# of Plan+Retrieve+Call 449 50

avg. turns per dialogue 2.76 2.91

Table 2: Statistics of API-Bank.

there are 934 dialogues in the Call category, 769
in the Retrieve+Call category, and 499 in the
Plan+Retrieve+Call category. Each dialogue has
2.76 turns in the training set and 2.91 turns in the
testing set. The training data is generated auto-
matically by the LLM, while the evaluation data
is manually annotated. Therefore, variations exist
among them in terms of domain, API scope, and
dialogue content. We aim to assess the generaliza-
tion of models trained on our benchmark by testing
their performance on distribution-shift evaluation
set. Please refer to Table 2 for detailed statistical
data. We also provide samples and running demo
of our benchmark in the Appendix.

Quality. Each instance in the evaluation set has
been reviewed by four annotators, allowing us to
primarily assess the quality of the training bench-
mark generated by Multi-agent. We randomly se-
lect 100 data samples from the training set and have
the annotators evaluate their quality. The results
demonstrate that the available rate of the Multi-
agent generated data is 94%, which is an 89% im-
provement compared to data generated solely by
a single agent (self-instruct), indicating that our
training set possesses a high level of quality and
reliability. Furthermore, upon examining the data
that was automatically filtered by the tester agent,

we discover that 78% of it does not adhere to our
design principles as intended. It shows that the
tester agent can process data well according to the
given principle.

Comparison. We have conducted a comparative
analysis of API-Bank in relation to recently re-
leased benchmarks, as presented in Table 1. To en-
sure the comprehensiveness of this table, we have
also incorporated some contemporaneous studies.
Leveraging the design principles derived from our
investigation of 500 user requirements, our API-
Bank stands out among all benchmarks currently
available for its: (1) Highest diversity: encom-
passing a wide range of domains and APIs. (2)
Highest realism: simulating multi-turn dialogues
that occur in real-world scenarios, including cases
where multiple APIs are called in each turn. (3)
Highest coverage: incorporating API call and re-
sponse annotations, taking into account the es-
sential capabilities required for tool-augmented
LLMs, such as planning, retrieving, and calling
APIs. Therefore, we firmly believe that API-Bank
represents the most comprehensive benchmark for
tool-augmented LLM available at present.

6 Related Work

Recent research in language modeling has explored
the use of external tools to supplement the knowl-
edge stored in the model’s weights (Qin et al.,
2023a). This approach allows for tasks such as
exact computation or information retrieval to be
offloaded to external modules such as a Python in-
terpreter or a search engine (Mialon et al., 2023).
These tools can include other neural networks or
even the language model itself. Socratic Mod-
els (Zeng et al., 2022) is a modular framework that
allows for the composition of different pre-trained
models on various modalities. Alternatively, natu-
ral language knowledge can be retrieved from exter-
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Ability LLM Call Retrieve+Call Plan+Retrieve+Call Total

Correctness Rouge Correctness Rouge Correctness Rouge Correctness Rouge

Zero-shot

Alpaca-7B 24.06% 0.0204 5.19% 0.0019 0.00% 0.086 15.19% 0.0318
ChatGLM-6B 23.62% 0.2451 13.33% 0.2173 0.00% 0.1522 16.42% 0.2191
GPT-3 Davinci 0.50% 0.1035 1.48% 0.091 0.00% 0.0156 0.57% 0.0814
GPT-3.5-turbo 59.40% 0.4598 38.52% 0.3758 22.00% 0.3809 47.16% 0.4267
GPT-4 63.66% 0.3691 37.04% 0.351 70.00% 0.4808 60.24% 0.3910

Fine-tuning Lynx-7B 49.87% 0.4332 30.37% 0.2503 20.00% 0.3425 39.58% 0.3794

Table 3: Main results of different LLMs on the API-Bank evaluation system.

nal sources, as demonstrated by WebGPT (Nakano
et al., 2021) and ReAct (Yao et al., 2022) through
the use of search APIs. Other approaches, such as
Toolformer (Schick et al., 2023), ART (Paranjape
et al., 2023), ToolkenGPT (Hao et al., 2023) and
TRICE (Qiao et al., 2023) leverage a combination
of search APIs, question-answering APIs, machine
translation APIs, calculators, and other tools to
solve various NLP tasks. ChatGPT Plugins 1 and
TaskMatrix.AI (Liang et al., 2023) demonstrate
the potential for language models to integrate with
thousands to millions of APIs. LATM(Cai et al.,
2023) and CREATOR (Qian et al., 2023) leverage
GPT-4 to make API tools. Despite the promising
demonstrations of these approaches, researchers
have limited knowledge regarding three key issues:
(1) How effectively can current LLMs utilize tools?
(2) How can we enhance LLMs’ ability to utilize
tools? (3) What obstacles still need to be overcome
for LLMs to effectively leverage tools? In this pa-
per, we introduce API-Bank, the first benchmark
specifically designed for tool-augmented LLMs, to
address these three questions. As analyzed in Ta-
ble 1, API-Bank is also the most diverse, realistic,
and comprehensive tool-augmented LLM bench-
mark currently available.

7 Experiments

We proceed to fine-tune Lynx, a model based on
LLaMA-7B (Touvron et al., 2023), using our API-
Bank training dataset. The fine-tuning process con-
sists of three epochs, with a batch size of 256 and a
learning rate of 2e-5. Subsequently, we conduct a
series of experiments on our API-Bank evaluation
system, wherein we benchmark our model Lynx
against other LLMs. The prompts used for eval-
uation are given in the Appendix. Through these
experiments, we aimed to identify the remaining
challenges that hinder the effective utilization of

1https://openai.com/blog/chatgpt-plugins

LLMs in conjunction with tools.

7.1 Baselines

We evaluate the following models for our analy-
sis: GPT-3 Davinci (Brown et al., 2020), the first
powerful variant of the GPT-3 family of models.
GPT-3.5-turbo with the gpt-3.5-turbo-0613 check-
point; GPT-4, utilizing the gpt-4-0613 checkpoint;
ChatGLM-6B (Du et al., 2022), a bilingual chatbot
with 6B parameters; Alpaca-7B (Taori et al., 2023),
an instruction-tuned variant of LLaMA-7B, lever-
aging 52K instruction-following data. Notably, Al-
paca is currently recognized as the most widely
used open-source LLM.

7.2 Main Results

We present the experimental results of currently
public LLMs and our trained Lynx model on the
API-Bank evaluation system, as shown in Table 3.
As expected, the performance of each model grad-
ually decreases with the increasing required ability.
Given the API description, calling the API can be
seen as a slot filling task. Both the 7B Alpaca and
6B ChatGLM achieve about 20% accuracy in API
call, indicating that basic language models possess
some tool-utilization ability. Surprisingly, GPT-3
Davinci, despite being a well-known 175B LLM,
exhibits an extremely low correctness in this task.
We speculate that this is because API call requires
a strong understanding of instructions, which can
only be unlocked through instruction tuning, a step
omitted in GPT-3’s training process.

On the other hand, the instruction-tuned GPT-
3.5 demonstrates outstanding performance in this
aspect, surpassing Alpaca-7B by 35 points in API
call correctness and 0.44 in the response Rouge-L
score. However, the effectiveness of GPT-3.5 de-
creases by 21% when compared to simple API calls
in the Retrieve+Call setting, and a further 17%
decrease is observed in the Plan+Retrieve+Call
setting. This is because knowing which API to
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call and planning how to use the API both require
certain reasoning abilities beyond instruction com-
prehension. GPT-4, currently known as the most
powerful LLM, shows a 4 points improvement in
API calls compared to GPT-3.5. Its performance in
Retrieve+Call is similar to GPT-3.5, but it achieves
a nearly 50% improvement in the most difficult
Plan+Retrieve+Call setting. We hypothesize that
this is due to GPT-4’s emphasis on reasoning and
planning abilities, similar to its performance in
tasks involving mathematical reasoning.

An exciting discovery is that the Lynx model,
trained on our API-Bank with Alpaca-7B initializa-
tion, outperforms Alpaca-7B by 26 points in API
Call correctness and 0.41 in the response Rouge-L
score, approaching the effectiveness of GPT-3.5.
This strongly indicates the satisfactory quality of
training data generated through our Multi-agent
automated construction strategy.

Here, we would like to emphasize the differences
between our developed API-Bank and the concur-
rently released APIBench(Patil et al., 2023) and
ToolAlpaca(Tang et al., 2023) based on experimen-
tal results. GPT-3.5 achieves an API usage accu-
racy of 80% to 90% on their datasets. However,
there is still significant room for improvement in
our benchmark. This is because our evaluation set
is manually constructed, considering design princi-
ples and closely resembling real-world scenarios.
In contrast, their evaluation set is generated through
self-instruct by the LLM and lacks diversity due to
its narrow domain focus.

7.3 Error Analysis

Error Type Rate

No API Call 36.77%
API Hallucination 15.93%
Invalid Input Parameters 7.96%
False API Call Format 23.65%
Miss Input Parameters 1.17%

Table 4: Distribution of errors in the Alpaca evaluation.

In this study, we systematically categorize six
primary error types, with detailed definitions pro-
vided in the Appendix. Notably, the primary issue
identified during our evaluation of the original Al-
paca model, as depicted in Table 4, is the frequent
occurrence of "No API Call." However, it is worth
mentioning that this issue exhibits a significant re-

Error Type Rate

API Hallucination 61.38%
Has Exception 16.40%
Invalid Input Parameters 8.47%
False API Call Format 6.88%
No API Call 5.29%
Miss Input Parameters 1.59%

Table 5: Distribution of errors in the Lynx evaluation.

Error Type Rate

Failed API Retrieval 67.86%
False API Call Format 17.86%
Invalid Input Parameters 7.14%
Miss Input Parameters 7.14%

Table 6: Distribution of errors in the GPT-4 evaluation.

duction in the Lynx model following fine-tuning
with the API-Bank training dataset. This observed
improvement suggests that disparities between the
patterns of API calls in Alpaca’s training dataset,
which is constructed using 52,000 instruction data,
and the actual API calls may contribute to this prob-
lem. It is plausible that the original Alpaca model
encounters challenges in comprehending the API
calls instructions in the evaluation system.

Another noteworthy issue we encounter is the
presence of "False API Call Format." Given that
our testing prompts are presented in a zero-shot
format, the model has to rely solely on guidance
about making API calls in instructions. This re-
liance on instruction-based guidance may cause
difficulties for the model in learning the correct
API call format. The application of fine-tuning re-
sults in a substantial enhancement in this regard,
underscoring the significant benefit of fine-tuning
in improving the model’s capacity to generate ac-
curately formatted API calls.

The analysis of the Lynx model results is given
in Table 5, where the most significant type of error
is the API name mismatch, accounting for 61%
of the total errors. This occurs when the model
makes API calls that do not match the annotated
API calls in Ground Truth. In some cases, Lynx
generates fake APIs that are unrelated to the user’s
intent, even if they are not provided in the test
prompt. This issue arises due to Hallucination in
Lynx, where it incorrectly calls APIs that it has
encountered during training.
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Number of training samples Accuracy (Call) Rouge (Call)

ToolAlpaca 10,366 53.88 39.75
Lynx (Ours) 6,184 54.64 39.80

Table 7: Results of the fine-tuned Alpaca on the ToolAlpaca dataset and Lynx.

The second major category of errors is related
to problematic input parameters, which can lead
to three types of errors: triggering an Exception
within the API, being identified as an invalid input
parameter, and generating an API call that fails to
be parsed. These errors collectively contribute to
32% of the overall errors. Representative examples
of problematic input parameters include passing a
placeholder as a value, using an illegal format (such
as not following the given date format, resulting
in parsing failure), missing input parameters, and
misunderstanding the requirements of the input
parameter (e.g., requesting a stock code but passing
in a company name). In addition, a few other issues
exist, such as forging user or AI utterances instead
of making an API call.

As shown in Table 6, the primary issue with GPT-
4 is its inability to effectively use API search for
retrieving specific APIs, which accounts for 68%
of the overall problems encountered. This problem
does not occur in the evaluation of the fine-tuned
Lynx model. Fine-tuning appears to facilitate teach-
ing the model the Retrieve+Call pipeline, unlike
In-Context Learning, which makes it challenging to
control the model’s API calls as expected. The sec-
ond common problem with GPT-4 is the API calls
it gives cannot be parsed by the evaluation system.
This issue arises because GPT-4 sometimes makes
multiple simultaneous API calls, which violates the
tested prompt’s instructions.

Therefore, we aim to highlight three potential
directions worth exploring: (1) Improved API call-
ing methods: The direct generation of API calls,
similar to Toolformer (Schick et al., 2023) , is lim-
ited by the number of available APIs. Introducing
additional API retrieval tools is challenging due to
issues such as hallucination and difficulties in accu-
rately calling retrieval. (2) Enhanced API decoding
algorithms: It is essential to demand strict adher-
ence to the input parameter definitions when gener-
ating API calls with LLMs. (3) Larger-scale train-
ing data: While Lynx has demonstrated promising
API usage capabilities, we wonder if scaling up the
training data further could yield even better results.

We eagerly anticipate investigating this possibility.

7.4 Dataset Comparison
To assess the quality of the dataset created, we con-
ducted experiments to fine-tune Alpaca using the
training dataset of ToolAlpaca. ToolAlpaca auto-
matically creates a tool-use corpus, which contains
3938 tool-use instances from more than 400 real-
world tool APIs spanning 50 distinct categories.
We convert the training set of ToolAlpaca into the
training format consistent with ours, and finally ob-
tained 10366 training samples. Since ToolAlpaca
does not involve API Retrieval in its process, our
evaluation focused only on its ability to Call APIs,
ensuring fairness in the comparative analysis.

The results, presented in Table 7, reveal that our
model Lynx, fine-tuned on the API-Bank dataset,
outperforms the fine-tuned Alpaca on the ToolAl-
paca dataset, even with fewer training data. This
observation underscores the superior data quality
of our constructed dataset and validates the efficacy
of the multi-agent data synthesis methods.

8 Conclusion

This paper presents API-Bank, the pioneering
benchmark for tool-augmented LLMs comprising
2,202 dialogues involving 2,211 APIs from 1,008
domains, and provides three key findings: (1) Cur-
rent LLMs demonstrate some ability to use APIs,
but there is still room for improvement in pro-
viding reliable services to users consistently. (2)
Building diverse and high-quality training data is
a promising approach to enhance LLMs’ ability
to use tools. (3) Proper API calls and strict adher-
ence to API documentation pose significant chal-
lenges for LLMs in utilizing API tools. Overall, the
API-Bank benchmark provides a groundbreaking
resource for evaluating and advancing the state-of-
the-art in tool-augmented LLMs. We believe that
this research will inspire future studies and pave
the way for developing more advanced AI systems
that can intelligently integrate external resources to
fulfill human requirements.
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9 Limitations

API-Bank is a pioneering benchmark for tool-
augmented LLM. While we have followed com-
prehensive design principles, it does have a few
limitations. Firstly, API-Bank focuses solely on
English, and we plan to address data construction
and model evaluation for other languages as future
work. Secondly, we have only fine-tuned Lynx-7B
on API-Bank and have not explored larger-scale
models, although Lynx-7B performs comparably to
GPT-3.5. Lastly, we have trained a commercially
viable tool-augmented LLM based on a larger LLM
within our company. However, due to anonymity
reasons, we are unable to report and analyze the
results of the online model. We aim to include this
information in future versions of our work.

10 Ethical Statement

This paper constructs a new benchmark for tool-
augmented LLM, and we discuss some related eth-
ical considerations here. Firstly, during interviews
regarding their needs for tool-augmented LLMs,
participants are informed in advance that their feed-
back will be used for product development and po-
tentially published in the form of a research paper,
without disclosing any personal private informa-
tion. Secondly, all API tools in our dataset are
original implementations and do not infringe upon
any existing commercial software. Lastly, for data
annotation in the benchmark, we hire four annota-
tors. The hourly pay is set to 15 US$ per person,
higher than the local statutory minimum wage.
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A Appendix

Generate an API request in the format of 
[ApiName(key1='value1', key2='value2', ...)] 
based on the previous dialogue context. 
The current year is 2023.

Input: 
User: User's utterence
AI: AI's response

Expected output:
API-Request: [ApiName(key1='value1', 
key2='value2', ...)]

API descriptions:

Figure 4: The prompts used for API call evaluation.

Generate a response as an AI assistant 
based on the previous dialogue context and 
API request. 
The current year is 2023.

Input: 
User: User's utterence
AI: AI's response
API-Request: [ApiName(key1='value1', 
key2='value2', ...)]

Expected output:
AI: AI's response

API descriptions:

Figure 5: The prompts used for response evaluation.

A.1 Error Definitions
We briefly outline the definition of each type of
errors:

• API Hallucination: The API name in the ground truth
does not match the name in the prediction.

• Has Exception: The prediction triggers a custom or
built-in Python exception, which should not be present
in the ground truth.

• Invalid Input Parameters: The prediction contains
invalid input parameters.

• False API Call Format: The prediction’s API call for-
mat is not parseable.

• No API Call: There is no API call detected in the
prediction.

• Missing Input Parameters: Necessary input parame-
ters are missing from the prediction.

A.2 Implement Details
The evaluation prompts consisted of two parts: one
for API testing (Figure 4) and the other for response
testing (Figure 5). We kept the prompts as concise
as possible to showcase the models’ fundamental
capabilities.

A.3 Examples
Because the huge amount of the domains in the
training set, it is impossible to give a table statistics,
so we only count the distribution of the API in the
test set on the domain and give the following table:

Domains Numbers

Account Management 7
Information Query and Processing 22
Health Management 8
Schedule Management 19
Smart Home 6
Finance Management 6
Others 5

Table 8: The domain statistics for the test set.

Here are some examples of the training and
testing set domains along with their associated
APIs:

Training Set Domains:
• Mental Health Hotline and Support

• Dental Procedure Cost Estimate

• Nutrition Planning

Training Set APIs:
• SearchDoctors

• GetPrice

• RecordMaintenance

Testing Set Domains:
• Account Management

• Health Management

• Entertainment

• Travel

Testing Set APIs:
• BookHotel

• DeleteAlarm

• SearchEngine
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Generate an API request in the format of [ApiName(key1='value1', key2='value2', ...)] based on the previous dialogue context.
The current year is 2023.
Input: 
User: User's utterence
AI: AI's response

Expected output:
API-Request: [ApiName(key1='value1', key2='value2', ...)]

API descriptions:
{"name": "DeleteAccount", "description": "Delete an account.", "input_parameters": {"token": {"type": "str", "description": "The
token of the user."}}, "output_parameters": {"status": {"type": "str", "description": "success or failed"}}}
{"name": "ForgotPassword", "description": "Sends an email to the user with a link to reset the password. Need call twice, first
with 'Forgot Password' status to get the verification code, then call again with 'Verification Code' status to change the
password. Must pass the name of the parameters when calling the API, like ForgotPassword(status='Forgot Password',
username='username').", "input_parameters": {"status": {"type": "str", "description": "'Forgot Password' for first call, after
get the verification code, call again with 'Verification Code' to change the password."}, "username": {"type": "str",
"description": "The username of the user. Only needed for the first call."}, "email": {"type": "str", "description": "The email
of the user. Only needed for the first call."}, "verification_code": {"type": "int", "description": "The verification code sent
to the user. Only needed for the second call."}, "new_password": {"type": "str", "description": "The new password of the user.
Only needed for the second call."}}, "output_parameters": {"status": {"type": "str", "description": "success or failed"}}}
{"name": "GetUserToken", "description": "Get the user token by username and password.", "input_parameters": {"username":
{"type": "str", "description": "The username of the user."}, "password": {"type": "str", "description": "The password of the
user."}}, "output_parameters": {"token": {"type": "str", "description": "The token of the user."}}}
{"name": "RegisterUser", "description": "The API for registering a account, given the username, password and email.",
"input_parameters": {"username": {"type": "str", "description": "The username of the user."}, "password": {"type": "str",
"description": "The password of the user."}, "email": {"type": "str", "description": "The email of the user."}},
"output_parameters": {"token": {"type": "str", "description": "The token of the user."}}}"

User

I forgot my password, can you help me reset it?

LLM

Response: Sure, I can definitely help you. I need your username and email to get star

User

My username is foo and my email is foo@example.com.

LLM

Response: Alright.

API-Request: [ForgotPassword(status='Forgot Password', username='foo',
email='foo@example.com')]

Response: You have been sent a verification code. Please provide me with that code to
reset your password.

User

The verification code is 970420.

LLM

Response: What's your new password?

User

My new password is newpassword.

LLM

Response: Great.

API-Request: [ForgotPassword(status='Verification Code', verification_code='970420',
new_password='newpassword')]

Observation: Success

Response: Your password has been successfully reset.

Prompt

Figure 6: One example of Calling APIs.
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Generate an API request in the format of [ApiName(key1='value1', key2='value2', ...)] based on the previous dialogue
context.
The current year is 2023.
Input: 
User: User's utterence
AI: AI's response

Expected output:
API-Request: [ApiName(key1='value1', key2='value2', ...)]

API descriptions:
{"name": "ToolSearcher", "description": "Searches for relevant tools in library based on the keywords.", "input_parameters":
{"keywords": {"type": "str", "description": "The keyword to search for."}}, "output_parameters": {"best_matchs": {"type":

"Union[List[dict], dict]", "description": "The best match tool(s)."}}}"

User

Can you help me add a reminder for my meeting at 3pm on
January 5, 2023 with the topic "sales report"?

LLM

API-Request: 
[ToolSearcher(keywords='add reminder')]

Response: 
Found it! Now, I need your user authentication token. Can you please provide me with

your username, password?

User

My username is "newuser", my password is "newpass".

LLM

Response:Thank you. Now I'm going to get your user token.

API-Request: 
[GetUserToken(username='newuser', password='newpass')]

Observation: 
{'token': 'l9k8j7h6g5f4d3s2a1'}

Response: 
Got it! Now let me add the reminder for you.

Prompt

Observation: 
[{'name': 'GetUserToken', 'description': 'Get the user token.', 'input_parameters': {'username': {'type': 'str',

'description': 'The username of the user.'}, 'password': {'type': 'str', 'description': 'The password of the
user.'}}, 'output_parameters': {'token': {'type': 'str', 'description': 'The token of the user.'}},

'desc_for_search': 'get user tokenGet the user token.'}, {'name': 'AddReminder', 'description': "Add a reminder API
that takes three parameters - 'token'uff0c'content' and 'time'. The 'token' parameter refers to the user's token and

the 'content' parameter refers to the description of the reminder and the 'time' parameter specifies the time at
which the reminder should be triggered.", 'input_parameters': {'token': {'type': 'str', 'description': "User's
token."}, 'content': {'type': 'str', 'description': 'The content of the conference.'}, 'time': {'type': 'str',
'description': 'The time for conference. Format: %Y-%m-%d %H:%M:%S'}}, 'output_parameters': {'status': {'type':

'str', 'description': 'success or failed'}}}]

API-Request: 
[AddReminder(token='l9k8j7h6g5f4d3s2a1', content='sales report', time='2023-01-05

15:00:00')]

Observation: 
{'status': 'success'}

Response: 
You should receive a confirmation shortly.

Figure 7: One example of Retrieving+Calling APIs.
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You will be tested on your ability to make multiple API calls to fulfill a requirement based on a single sentence.
You will be given an API box that includes a set of APIs such as a calculator, translator, WikiSearch, etc. When you
want to use an API, you have to search for it in the API search engine using keywords. Try to describe it with these
keywords. The tool search engine will then return you the most relevant information about the tool (api name,
description, input/output parameters).

After you give each API call, stop generating and wait f3or input, I will return the results of the API call to you and make the
next call based on the results. Your output is only an API call and does not contain any explanatory text, which means starts

with [ and ends with ].
Here is an example of a test where ChatGPT represents you and API represents the return value.
Example:
Requirement: calculate the result of (5+3)*6 and sum the with 5.
ChatGPT: [ToolSearcher(keywords='calculator')]

API: {"name": "Calculator", "description": "This API provides basic arithmetic operations: addition, subtraction,
multiplication, and division.", "input_parameters": {"formula": {"type": "str", "description": "The formula that needs to be
calculated. Only integers are supported. Valid operators are +, -, *, /, and (, ). For example, '(1 + 2) * 3'."}},
"output_parameters": {"result": {"type": "float", "description": "The result of the formula."}}}
ChatGPT: [Calculator(formula='(5+3)*6')]
API: {'result': 48}

ChatGPT: [Calculator(formula='48+5')]
API: {'result': 53}

API description:
{"apiCode": "ToolSearcher", "description": "Searches for relevant tools in library based on the keywords.", "parameters":

{"keywords": {"type": "str", "description": "The keyword to search for."}}, "response": {"best_matchs": {"type":
"Union[List[dict], dict]", "description": "The best match tool(s)."}}}

User

Calculate the monthly salary after taxes for a
Financial Analyst

LLM

API-Request: 
[ToolSearcher(keywords='GetOccupationSalary')]

Prompt

Observation: 
{'api_name': 'ToolSearcher', 'input': {'keywords': 'GetOccupationSalary'}, 'output': {'name':
'GetOccupationSalary', 'description': 'API for querying the salary of a given occupation.',

'input_parameters': {'occupation': {'type': 'str', 'description': 'The occupation to query.'}},
'output_parameters': {'salary': {'type': 'float', 'description': 'The salary of the given

occupation.'}}}, 'exception': None}

Response: 
For a Financial Analyst with a salary of $100,000, the monthly salary after taxes is

$70,000

API-Request: 
[GetOccupationSalary(occupation='Financial Analyst')]

Observation: 
{'api_name': 'GetOccupationSalary', 'input': {'occupation': 'Financial Analyst'},

'output': {'salary': 100000}, 'exception': None}

API-Request: 
[ToolSearcher(keywords='TaxCalculator')]

Observation: 
{'api_name': 'ToolSearcher', 'input': {'keywords': 'TaxCalculator'}, 'output':

{'name': 'TaxCalculator', 'description': 'API for calculating tax deductions based on
the given salary.', 'input_parameters': {'salary': {'type': 'float', 'description':

'The salary to calculate tax deductions for.'}}, 'output_parameters':
{'salary_after_tax': {'type': 'float', 'description': 'The salary after tax

deductions.'}}}, 'exception': None}

API-Request: 
[TaxCalculator(salary='100000')]

Observation: 
{'salary_after_tax': 70000.0}

Figure 8: One example of Planning+Retrieving+Calling APIs.
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