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Abstract

Data augmentation techniques are widely used
in low-resource automatic morphological in-
flection to overcome data sparsity. However,
the full implications of these techniques re-
main poorly understood. In this study, we aim
to shed light on the theoretical aspects of the
prominent data augmentation strategy STEM-
CORRUPT (Silfverberg et al., 2017; Anasta-
sopoulos and Neubig, 2019), a method that
generates synthetic examples by randomly
substituting stem characters in gold standard
training examples. To begin, we conduct an
information-theoretic analysis, arguing that
STEMCORRUPT improves compositional gen-
eralization by eliminating spurious correlations
between morphemes, specifically between the
stem and the affixes. Our theoretical anal-
ysis further leads us to study the sample-
efficiency with which STEMCORRUPT reduces
these spurious correlations. Through evaluation
across seven typologically distinct languages,
we demonstrate that selecting a subset of dat-
apoints with both high diversity and high pre-
dictive uncertainty significantly enhances the
data-efficiency of STEMCORRUPT. However,
we also explore the impact of typological fea-
tures on the choice of the data selection strat-
egy and find that languages incorporating a
high degree of allomorphy and phonological
alternations derive less benefit from synthetic
examples with high uncertainty. We attribute
this effect to phonotactic violations induced by
STEMCORRUPT, emphasizing the need for fur-
ther research to ensure optimal performance
across the entire spectrum of natural language
morphology.1

1 Introduction

Compositional mechanisms are widely believed to
be the basis for human language production and
comprehension (Baroni, 2020). These mechanisms

1Our code is available at
https://github.com/smfsamir/
understanding-augmentation-morphology.

involve the combination of simpler parts to form
complex concepts, where valid combinations are li-
censed by a recursive grammar (Kratzer and Heim,
1998; Partee et al., 1984). However, domain gen-
eral neural architectures often fail to generalize to
new, unseen data in a compositional manner, re-
vealing a failure in inferring the data-generating
grammar (Kim and Linzen, 2020; Lake and Baroni,
2018; Wu et al., 2023). This failure hinders these
models from closely approximating the productiv-
ity and systematicity of human language.

Consider the task of automatic morphological
inflection, where models must learn the underly-
ing rules of a language’s morphoysyntax to pro-
duce the inflectional variants for any lexeme from a
large lexicon. The task is challenging: the models
must efficiently induce the rules with only a small
human-annotated dataset. Indeed, a recent analysis
by Goldman et al. (2022) demonstrates that even
state-of-the-art, task-specific automatic inflection
models fall short of a compositional solution: they
perform well in random train-test splits, but strug-
gle in compositional ones where they must inflect
lexemes that were unseen at training time.

Nevertheless, there is reason for optimism. Sev-
eral works have shown that automatic inflection
models come much closer to a compositional so-
lution when the human-annotated dataset is com-
plimented by a synthetic data-augmentation pro-
cedure (Liu and Hulden, 2022; Silfverberg et al.,
2017; Anastasopoulos and Neubig, 2019; Lane and
Bird, 2020; Samir and Silfverberg, 2022), where
morphological affixes are identified and attached to
synthetic lexemes distinct from those in the train-
ing dataset (Fig. 2). However, little is understood
about this prominent data augmentation method
and the extent to which it can improve composi-
tional generalization in neural word inflection. In
this work, we seek to reveal the implicit assump-
tions about morpheme distributions made by this
rule-based augmentation scheme, and analyze the
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Figure 1: Given a small human-annotated dataset and a large
pool of synthetic examples, we find that sampling a subset of
data representing both diversity (a multitude of shapes) and
high predictive uncertainty (shapes with a question mark) are
on average more sample-efficient in improving compositional
generalization in morphological inflection.

effect of these assumptions on learning of cross-
linguistically prevalent morphological patterns.

To this end, our work presents the first theoret-
ical explanation for the effectiveness of composi-
tional data augmentation in morphological inflec-
tion. Through an information-theoretic analysis
(Section 3), we show that this method eliminates
“spurious correlations” (Gardner et al., 2021) be-
tween the word’s constituent morphemes, specifi-
cally between the stem (e.g., walk) and the inflec-
tional affix (e.g., -ed). By removing these correla-
tions, the training data distribution becomes aligned
with concatenative morphology, where a word can
be broken down into two independent substruc-
tures: the stem (identifying the lexeme) and the
inflectional affixes (specifying grammatical func-
tion). This finding sheds light on why the method
is widely attested to improve compositional gener-
alization (Liu and Hulden, 2022), as concatenative
morphological distributions are cross-linguistically
prevalent (Haspelmath and Sims, 2013).

We go on to show, however, that the augmen-
tation method tends towards removing all correla-
tions between stems and affixes, whether spurious
or not. Unfortunately, this crude representation
of concatenative morphology, while reasonable in
broad strokes, is violated in virtually all languages
to varying degrees by long-distance phonological
phenomena like vowel harmony and reduplication.
Thus, our analysis demonstrates that while the
method induces a useful approximation to concate-
native morphology, there is still ample room for
improvement in better handling of allomorphy and
phonological alternations.

Building on our theoretical analysis, we in-

[Illustration from Anastasopoulos and Neubig (2019)]

Figure 2: STEMCORRUPT: a data augmentation method,
where the stem – aligned subsequences of length 3 or greater in
the input and output – is mutated by substitution with random
characters from the alphabet.

vestigate whether it is possible to improve the
sample-efficiency with which the data augmenta-
tion method induces probabilistic independence
between stems and affixes. Specifically, we inves-
tigate whether we can use a small subset of the
synthetic data to add to our training dataset. We
find that selecting a subset that incorporates both
high predictive uncertainty and high diversity (see
Fig. 1) is significantly more efficient in removing
correlations between stems and affixes, providing
an improvement in sample-efficiency for languages
where the morphological system is largely concate-
native. At the same time, in accordance with our
theoretical analysis, this selection strategy impairs
performance for languages where phonological al-
ternations are common.

Our work contributes to a comprehensive under-
standing of a prominent data augmentation method
from both a theoretical (Section 3) and practical
standpoint (Section 4). Through our systematic
analysis, we aim to inspire further research in the
analysis and evaluation of existing compositional
data augmentation methods (reviewed in Section 6),
as well as the development of novel augmentation
methods that can better capture cross-linguistic di-
versity in morphological patterns.

2 Preliminaries

In automatic morphological inflection, we assume
access to a gold-standard dataset Dtrain with triples
of ⟨X,Y,T⟩, where X is the character sequence
of the lemma, T is a morphosyntactic description
(MSD), and Y is the character sequence of the in-
flected form.2 The goal is then to learn the distribu-
tion P (Y|X,T) over inflected forms conditioned

2For example, <dog, dogs, N+PL>.
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on a lemma and MSD .
Generating a synthetic training dataset with
STEMCORRUPT. For many languages, Dtrain is
too small for models to learn and make systematic
morphological generalizations. Previous work has
found that generating a complementary synthetic
dataset DSyn

train using a data augmentation technique
can substantially improve generalization (Anasta-
sopoulos and Neubig, 2019; Silfverberg et al., 2017,
among others).

The technique, henceforth called STEMCOR-
RUPT, works as follows: We identify the aligned
subsequences (of length 3 or greater) between a
lemma X and an inflected form Y, which we de-
note the stem.3 We then substitute some of the
characters in the stem with random ones from the
language’s alphabet; Fig. 2. The STEMCORRUPT

procedure has a hyperparameter θ. It sets the proba-
bility that a character in the stem will be substituted
by a random one; a higher value of θ (approaching
1) indicates a greater number of substitutions in the
stem.4

How does STEMCORRUPT improve composi-
tional generalization? Despite the widespread adop-
tion of this technique for automatic morphological
inflection and analysis, this fundamental question
has heretofore remained unanswered. In the next
section, we argue that STEMCORRUPT improves
compositional generalization by removing corre-
lations between inflectional affixes and the stems
to which they are attached. By enforcing indepen-
dence between these two substructures, STEMCOR-
RUPT facilitates productive reuse of the inflectional
affixes with other lexemes. That is, our theoreti-
cal argument shows that the effectiveness of the
method arises from factoring the probability distri-
bution to approximate concatenative morphology, a
cross-linguistically prevalent strategy for word for-
mation where words can be “neatly segmented into
roots and affixes” (Haspelmath and Sims, 2013).
We formalize and prove this in the following sec-
tion.

3 STEMCORRUPT induces compositional
structure

In this section, we analyze the ramifications of
training on the synthetic training dataset gener-
ated by STEMCORRUPT (DSyn

train) and the human-
annotated training dataset (Dtrain). Our analysis

3The stem can thus be discontinuous; see Fig. 2.
4We use the implementation here, which sets θ = 0.5.

Figure 3: Models are trained and evaluated on entirely differ-
ent lexemes.

focuses on asymptotic behaviour, specifically, how
the conditional distribution P (Y|X,T) evolves as
we add more augmented data (|DSyn

train| → ∞).

Theorem 1. For all ⟨X,Y,T⟩ datapoints in
Dtrain, assume that X and Y share a stem
Ystem that is non-empty, and let Yaffix be the
remaining characters of Y. Let Xstem and
Xaffix be analogously defined. Further, let
DSyn

train be generated with STEMCORRUPT using
θ = 1.5 Next, consider the data-generating
probability distribution P (Y|X,T) over DSyn

train ∪
Dtrain. Then, as |DSyn

train| → ∞, we have
that P (Y|X,T) ≡ P (Ystem,Yaffix|X,T) =
P (Yaffix|Xaffix,T)P (Ystem|Xstem).

Remark 1 (Concatenative compositionality). The
augmentation method thus makes the model more
effective at capturing concatenative morphologi-
cal patterns, as the conditional probability distri-
bution becomes factorized into a root generation
component (P (Ystem|·)) and an affix generation
component (P (Yaffix|·)). Crucially, this removes
the potential for any spurious correlation between
these two substructures.6

Remark 2 (Stem-affix dependencies). While con-
catenation is a cross-linguistically prevalent strat-
egy for inflection (Haspelmath and Sims, 2013),
stems and affixes are rarely entirely independent.
Therefore, enforcing complete independence be-
tween these structures is an overly strong constraint
that STEMCORRUPT places on the training data.
The constraint is consistently violated in Turkish,
for example, where front-back vowel harmony con-
straints dictate that the vowels in the suffix share
the same front/back feature as the initial vowel in
the stem. This leads to forms like “daların” and pre-

5That is, we substitute all characters in the stem.
6Additionally, this factorization is likely to reducing over-

fitting: The model effectively learns to minimize the negative
log-likelihood of this simplified and factorized data distribu-
tion P (Ystem|·)P (Yaffix|·), rather than the complex joint
distribution P (Ystem,Yaffix|·).
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vents forms like “dalerin”, “dalerın”, or “dalarin”
(Kabak, 2011). In Section 5, we show that STEM-
CORRUPT regularly generates examples violating
vowel harmony, and that this can undermine its ef-
fectiveness. Nevertheless, the empirical success of
STEMCORRUPT demonstrates that the benefits of
its concatenative bias outweigh its limitations.
Remark 3 (Comparison to previous accounts). Our
analysis provides a simple yet the most accu-
rate characterization of STEMCORRUPT. Previ-
ous works have called STEMCORRUPT a beneficial
“copying bias ” (Liu and Hulden, 2022; Jaidi et al.,
2022) or a strategy for mitigating overgeneration
of common character n-grams (Anastasopoulos
and Neubig, 2019). However, our analysis demon-
strates that neither of these characterizations are en-
tirely accurate. First, the denotation of a “copying
bias” is only suggestive of the second factor in our
statement P (Ystem|Xstem), and does not address
the impact on affix generation. In contrast, our
analysis shows that both stem and affix generation
are affected. Furthermore, alleviating overfitting
to common character sequences is also misleading,
as it would suggest that STEMCORRUPT serves the
same purpose as standard regularization techniques
like label smoothing (Müller et al., 2019).7

3.1 Proving the theorem

The proof of the theorem is straightforward with
the following proposition (proved in Appendix B).

Proposition 1. As |DSyn
train| → ∞, the mutual infor-

mation between certain pairs of random variables
declines:

(i) I(Ystem;T) → 0

(ii) I(Ystem;Xaffix) → 0

(iii) I(Yaffix;Ystem) → 0

(iv) I(Yaffix;Xstem) → 0

Proof of Theorem 1. By the definition
of Y = YstemYaffix, we have that
P (Y|X,T) ≡ P (Ystem,Yaffix|X,T). Then,
by the chain rule of probability, we have
P (Yaffix|Ystem,X,T)P (Ystem|X,T). We
first deconstruct the second factor. By Propo-
sition 1 (i), we have that the second factor
P (Ystem|X,T) = P (Ystem|X), since the

7Our preliminary experiments did not support this position;
compositional generalization performance was not sensitive
to label smoothing, yet was significantly improved by STEM-
CORRUPT.

stem is invariant with respect to the inflectional
features. Then, by Proposition 1 (ii), we have
that P (Ystem|X) = P (Ystem|Xstem,Xaffix) =
P (Ystem|Xstem), since the stem is invariant with
respect to the inflectional affix of the lemma.

Next, we tackle the factor
P (Yaffix|Ystem,X,T). By parts (iii) and
(iv) of Proposition 1, we have that this can be sim-
plified to P (Yaffix|Xaffix,T). Taken together,
we have that P (Y|X,T) can be decomposed into
P (Yaffix|Xaffix,T)P (Ystem|Xstem).

Investigating STEMCORRUPT’s sample effi-
ciency. So far, we have studied the behaviour of
STEMCORRUPT through an asymptotic argument,
demonstrating that in the infinite limit of |DSyn

train|,
STEMCORRUPT enforces complete independence
between stems and affixes. In doing so, it likely
removes a number of spurious correlations between
stems and affixes, thus providing a theoretical ex-
planation for its attested benefit in improving com-
positional generalization. However, our theoretical
analysis, while informative of the overall effect
of STEMCORRUPT, says little about the sample
efficiency of the method in practice.

Indeed, recent studies in semantic parsing have
demonstrated that sample efficiency can be greatly
increased by strategically sampling data to over-
come spurious correlations that hinder composi-
tional generalization in non-IID data splits (Oren
et al., 2021; Bogin et al., 2022; Gupta et al., 2022).
In the following section, we examine whether
strategic data selection can yield similar benefits in
the context of typologically diverse morphological
inflection.

4 Extracting sample-efficient training sets
from STEMCORRUPT

Problem setup. We use the following prob-
lem setup from Oren et al. (2021) to investi-
gate whether the sample-efficiency of STEMCOR-
RUPT can be improved. Recall that we have a
dataset Dtrain with gold triples of ⟨X,Y,T⟩. Fur-
ther, we have a synthesized dataset DSyn

train where
|DSyn

train| ≫ |Dtrain|. Our goal is now to select
D̂Syn

train ⊂ DSyn
train so that training the model on

Dtrain ∪ D̂Syn
train maximizes performance on a held-

out compositional testing split.

4.1 Model and training
We start by training an inflection model M on the
gold-standard training data, denoted as Dtrain. Fol-
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lowing Wu et al. (2021); Liu and Hulden (2022),
we employ Transformer (Vaswani et al., 2017) for
M. We use the fairseq package (Ott et al., 2019)
for training our models and list our hyperparame-
ter settings in Appendix A. We conduct all of our
experiments with |Dtrain| = 100 gold-standard
examples, adhering to the the low-resource set-
ting for SIGMORPHON 2018 shared task for each
language. We next describe the construction of
D̂Syn

train.

4.2 Subset sampling strategies
Here, we introduce a series of strategies for sam-
pling from DSyn

train oriented for improving compo-
sitional generalization. Broadly, we focus on se-
lecting subsets that reflect either high structural
diversity, high predictive uncertainty, or both, as
these properties have been tied to improvements
in compositional generalization in prior work on
semantic parsing (e.g., Bogin et al., 2022), an NLP
research area where compositionality is well stud-
ied.
RANDOM. Our baseline sampling method is
to construct D̂Syn

train by sampling from the large
synthetic training data DSyn

train uniformly.

UNIFORM MORPHOLOGICAL TEMPLATE
(UMT). With this method, we seek to improve the
structural diversity in our subsampled in synthetic
training dataset D̂Syn

train. Training on diverse subset
is crucial, as the SIGMORPHON 2018 shared task
dataset is imbalanced in frequency of different
morphosyntactic descriptions (MSDs).8 These
imbalances can pose challenges to the model in
generalizing to rarer MSDs. To incorporate greater
structural diversity, we employ the templatic
sampling process proposed by Oren et al. (2021).
Specifically, we modify the distribution over
MSDs to be closer to uniform in D̂Syn

train.
Formally, we sample without replace-

ment from the following distribution:
qα(X,Y,T) = p(T)α/

∑
T p(T)α where

p(T) is the proportion of times that T appears in
DSyn

train. We consider two cases: α = 0 corresponds
to sampling MSDs from a uniform distribution
(UMT), while α = 1 corresponds to sampling
tags according to the empirical distribution over
MSDs (EMT).

8For example, the low-resource Georgian training dataset
contains 9 instances of of nouns inflected for PL;ERG, but
only one instance of a noun inflected for SG;ERG.

HIGHLOSS. Next, we employ a selection strat-
egy that selects datapoints that have high predictive
uncertainty to the initial model M. Spurious cor-
relations between substructures (like Ystem and
T; Section 3) will exist in any dataset of bounded
size (Gupta et al., 2022; Gardner et al., 2021), and
we conjecture that selecting high uncertainty data-
points will efficiently mitigate these correlations.

We quantify the uncertainty of a synthetic dat-
apoint in DSyn

train by computing the negative log-
likelihood (averaged over all tokens in the the tar-
get Y) for each synthetic datapoint in DSyn

train. Next,
we select the synthetic datapoints with the highest
uncertainty and add them to D̂Syn

train.
To thoroughly demonstrate that incorporating

predictive uncertainty is important for yielding
training examples that counteract the spurious
dependencies in the ground-truth training dataset,
we benchmark it against another subset selection
strategy LOWLOSS. With this method, we
instead select synthetic datapoints that the model
finds easy, i.e., those with the lowest uncertainty
scores. We hypothesize this strategy will yield
less performant synthetic training datasets, as
it is biased towards selecting datapoints that
corroborate rather than counteract the spurious
correlations learned by M.

UMT/EMT+ LOSS. Finally, we test a hybrid ap-
proach containing both high structural diversity and
predictive uncertainty by combining UMT/EMT
and HIGHLOSS. First, we sample an MSD T
(according to the MSD distribution defined by
UMT/EMT) and then select the most uncertain
synthetic datapoint for that T.

5 Experiments and Results

Data. We use data from the UniMorph project
(Batsuren et al., 2022), considering typological
diversity when selecting languages to include.
We aim for an evaluation similar in scope to
Muradoglu and Hulden (2022). That is, broadly,
we attempt to include types of languages that
exhibit variation in inflectional characteristics such
as inflectional synthesis of the verb, exponence,
and morphological paradigm size (Haspelmath
et al., 2005). Our selected languages can be seen
in Fig. 4. We provide further information on the
languages in Appendix C.

Obtaining a large synthetic dataset. In order to
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Figure 4: Performance after training on Dtrain ∪ D̂Syn
train, for

varying sizes of D̂Syn
train. In the subtitle for each language, we

also list the performance from training on no augmented data
in parentheses (D̂Syn

train = ∅).

generate the large augmentation dataset DSyn
train for

every language, we generate 10, 000 augmented
datapoints for every language by applying STEM-
CORRUPT to their respective low datasets from
SIGMORPHON 2018 (Cotterell et al., 2018).

Generating a compositional generalization
test set. For generating test sets, we adopt the
lemma-split approach of Goldman et al. (2022).
Specifically, we use all available data from
SIGMORPHON2018 for the target language,
excluding any lexemes from the low setting since
those were used to train the initial model M
(Section 4.1). The remaining lexemes and their
associated paradigms comprise our compositional
generalization test set; see Fig. 3.

Populating D̂Syn
train. We evaluate the performance

of all methods listed in Section 4 in selecting
D̂Syn

train. We evaluated the performance of using
D̂Syn

train of sizes ranging from 128 to 2048 exam-
ples, increasing the size by powers of 2.

5.1 Results
We demonstrate the results of each strategy for all
languages, considering each combination of lan-
guage, subset selection strategy, and |DSyn

train|, thus
obtaining 35 sets of results. For each setting, we
report the performance achieved over 6 different
random initializations, along with their respective
standard deviations. For brevity, we show the re-
sults for |D̂Syn

train| ∈ {128, 512, 2048}; we include
the expanded set of results (including {256, 1024})
in Appendix D.
STEMCORRUPT improves compositional gener-

Figure 5: Summary of subset selection strategies performances
from. Left: percentage of times each strategy gets the best
performance out of 35 settings (across each of the 7 languages
and 5 D̂Syn

train sizes). Right: bootstrapped confidence intervals
for the percentages on the left.

alization. At a high level, we find that data augmen-
tation brings substantial benefits for compositional
generalization compared to models trained solely
on the gold-standard training data Dtrain. Without
STEMCORRUPT, the initial model M for every lan-
guage achieves only single-digit accuracy, while
their augmented counterparts perform significantly
better. For instance, the best models for Georgian
and Spanish achieve over 50% accuracy. These
findings agree with those of Liu and Hulden (2022)
who found that unaugmented Transformer models
fail to generalize inflection patterns.

We also find that performance tends to increase
as we add more synthetic data; the best models
for every language are on the higher end of the
|D̂Syn

train| sizes. This finding agrees with our theoret-
ical results that the dependence between the stem
(Ystem) and that of the inflectional affix (Yaffix)
is weakened as we add more samples from STEM-
CORRUPT (Section 3; Proposition 1).

Effective subsets have high diversity and predic-
tive uncertainty. Our analysis reveals statistically
significant differences between the subset selection
strategies, highlighting the effectiveness of the hy-
brid approaches (UMT/EMT+LOSS) that consider
both diversity and predictive uncertainty. Among
the strategies tested, the UMT+LOSS method out-
performed all others in approximately one-third
of the 35 settings examined, as indicated in Fig-
ure 5 (left). The improvements achieved by the
UMT+LOSS method over a random baseline were
statistically significant (p < 0.05) according to
a bootstrap percentile test (Efron and Tibshirani,
1994), as shown in Figure 5 (right). Moreover,
our results also show that the EMT+LOSS strat-
egy closely followed the UMT+LOSS approach,
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Figure 6: The frequency of the most commonly sampled mor-
phosyntactic description by three of subset selection methods.

achieving the highest performance in a quarter of
the cases. In contrast, the same strategies without
the uncertainty component were much less effec-
tive. For instance, UMT never achieved the best
performance in any combination of the languages
and |D̂Syn

train| sizes, highlighting that selecting a di-
verse subset without factoring in predictive uncer-
tainty is suboptimal.

Furthermore, selecting datapoints based solely
on high predictive uncertainty without consider-
ing diversity (HIGHLOSS) is an ineffective strat-
egy, having the second lowest proportion of wins
(Fig. 5, right). Empirically, we find this may be
attributed to the HIGHLOSS strategy fixating on
a particular MSD, as shown in Fig. 6, rather than
exploring the full distribution of MSDs. The fig-
ure displays the frequency of the most commonly
sampled morphosyntactic description for each of
UMT+LOSS, RANDOM, and HIGHLOSS strate-
gies. Across all languages, the HIGHLOSS method
samples the most frequent tag much more often
than the RANDOM and UMT+LOSS methods.9

“Easy” synthetic datapoints have low sample ef-
ficiency. As hypothesized, the datapoints with low
uncertainty hurt performance. We attribute this to
the LowLoss strategy selecting datapoints with a
smaller number of substitutions to the stem. In
Fig. 7, we show that the number of edits made
to the stem – as measured by Levenshtein dis-
tance between the corrupted target sequence and
the uncorrupted version – is strongly correlated
with the uncertainty assigned to the synthetic data-
point across all languages. Moreover, the correla-
tion between the number of edits and uncertainty

9The reason that uncertainty estimates are higher for a
given MSD is not entirely clear. In our investigation, we found
a small correlation (ρ = 0.15) between the morphosyntactic
description frequency and uncertainty. However, there are
likely other factors beyond frequency that contribute to higher
uncertainty; for example, morphological fusion (Bickel and
Nichols, 2013; Rathi et al., 2021).

Figure 7: Pearson correlations between Negative Log Likeli-
hood and three other metrics: length of the stem, length of the
target inflected form, and Levenshtein distance between the
ground-truth target form and the augmented target.

is higher than the correlation with other plausi-
ble factors driving uncertainty, namely stem length
and target length.10 Overall, the lagging sample
efficiency of LOWLOSS corroborates our theory;
STEMCORRUPT is effective because it generates
datapoints where the stem has no correspondence
with the affix. LOWLOSS counteracts its effec-
tiveness, as it is biased towards datapoints where
spurious dependencies between the stem and affix
are maintained.11

Selecting by high predictive uncertainty worsens
performance when there are stem-affix depen-
dencies. We found that the UMT+LOSS strategy
improves performance for 5 out of 7 languages
compared to the RANDOM baseline. The improve-
ment ranges from 4.8 (Georgian) to small declines
of −1.9 (Turkish) and −0.9 (Finnish). The de-
clines for Finnish and Turkish are partly due to a
mismatch between the generated synthetic exam-
ples and the languages’ morphophonology. STEM-
CORRUPT will generate synthetic examples that vi-
olate vowel harmony constraints between the stem
and the affix. For instance, it may replace a front
vowel in the stem with a back one. As a result,
UMT+LOSS will select such harmony-violating
examples more often, since they have greater un-
certainty to the initial model M (Section 4.1), re-
sulting in the augmented model tending to violate
the harmony restrictions more often. Indeed, for
Turkish, the average uncertainty for synthetic exam-
ples violating vowel harmony (0.46) is significantly
higher than those that adhere to vowel harmony

10Target length is known to contribute to predictive uncer-
tainty (Eikema and Aziz, 2020; Kim and Linzen, 2020), and
stem length is a confounding factor of the levenshtein distance
calculation.

11The ineffectiveness of LOWLOSS also corroborates that
STEMCORRUPT does not simply induce a “copying bias” (Re-
mark 3), since then we would expect all of the subset selection
methods to perform similarly.
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Language Improvement
Georgian 4.8
Bengali 2.5
Spanish 1.3
Navajo 1.1
Arabic 0.4
Finnish −0.9
Turkish −1.9

Table 1: Improvement of UMT+Loss relative to the random
baseline, averaged over all possible sizes of D̂Syn

train.

(0.39), as assessed by a bootstrap percentile test
(p < 0.05). This finding also corroborates our the-
ory from Section 3: STEMCORRUPT eliminates de-
pendencies between stems and affixes, even when
the dependencies are real rather than spurious. This
shortcoming of STEMCORRUPT is exacerbated by
selecting examples with high uncertainty, as these
examples are less likely to adhere to stem-affix
constraints like vowel harmony.
Takeaways. Aligning with the semantic parsing
literature on efficient compositional data augmen-
tation (Oren et al., 2021; Bogin et al., 2022; Gupta
et al., 2022), we find that certain subsets of data are
on average more efficient at eliminating spurious
correlations between substructures – in the case
of morphological inflection, the relevant substruc-
tures being the individual morphemes: the stem
(Ystem) and affix (Yaffix; Section 3). However,
the sample-efficiency gains from strategic sampling
are less dramatic than in semantic parsing (see, for
example, Oren et al., 2021).

We provided empirical evidence that the gains
are tempered by STEMCORRUPT’s tendencies to
violate stem-affix constraints in its synthetic train-
ing examples, such as vowel harmony constraints
in Turkish. Thus, further work is needed to adapt
or supplant STEMCORRUPT for languages where
such long-range dependencies are commonplace.
In doing so, the data selection strategies are likely
to fetch greater gains in sample efficiency.

6 Related work

Compositional data augmentation methods. In
general, such methods synthesize new data points
by splicing or swapping small parts from exist-
ing training data, leveraging the fact that certain
constituents can be interchanged while preserving
overall meaning or syntactic structure. A common
approach is to swap spans between pairs of data-
points when their surrounding contexts are identi-
cal (Andreas, 2020; Guo et al., 2020; Jia and Liang,
2016, inter alia). Recently, Akyürek et al. (2021)
extended this approach, eschewing rule-based splic-

ing in favour of neural network-based recombina-
tion. Chen et al. (2023) review more composi-
tional data augmentation techniques, situating them
within the broader landscape of limited-data learn-
ing techniques for NLP.

Extracting high-value subsets in NLP training
data. Oren et al. (2021); Bogin et al. (2022); Gupta
et al. (2022) propose methods for extracting diverse
sets of abstract templates to improve compositional
generalization in semantic parsing. Muradoglu and
Hulden (2022) train a baseline model on a small
amount of data and use entropy estimates to select
new data points for annotation, reducing annotation
costs for morphological inflection. Swayamdipta
et al. (2020) identify effective data subsets for train-
ing high-quality models for question answering,
finding that small subsets of ambiguous examples
perform better than randomly selected ones. Our
work is also highly related to active-learning in
NLP (Tamkin et al., 2022; Yuan et al., 2020; Mar-
gatina et al., 2021, inter alia); however we focus on
selecting synthetic rather than unlabeled datapoints,
and our experiments are geared towards composi-
tional generalization rather than IID performance.

Compositional data splits in morphological in-
flection. Assessing the generalization capacity of
morphological inflections has proven a challenging
and multifaceted problem. Relying on standard
“IID” (Oren et al., 2021; Liu and Hulden, 2022)
splits obfuscated (at least) two different manners
in which inflection models fail to generalize com-
positionally.

First, Goldman et al. (2022) uncovered that gen-
eralizing to novel lexemes was challenging for even
state of the art inflection models. Experiments
by Liu and Hulden (2022) however showed that
the STEMCORRUPT method could significantly im-
prove generalization to novel lexemes. Our work
builds on theirs by contributing to understanding
the relationship between STEMCORRUPT and lexi-
cal compositional generalization. Specifically, we
studied the structure of the probability distribution
that StemCorrupt promotes (Section 3), and the
conditions under which it succeeds (Remark 1) and
fails (Remark 2).

Second, Kodner et al. (2023) showed that inflec-
tion models also fail to generalize compositionally
to novel feature combinations, even with agglutina-
tive languages that have typically have a strong one-
to-one alignment between morphological features
and affixes. Discovering strategies to facilitate com-
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positional generalization in terms of novel feature
combinations remains an open-area of research.

7 Conclusion

This paper presents a novel theoretical explanation
for the effectiveness of STEMCORRUPT, a widely-
used data augmentation method, in enhancing com-
positional generalization in automatic morpholog-
ical inflection. By applying information-theoretic
constructs, we prove that the augmented exam-
ples work to improve compositionality by eliminat-
ing dependencies between substructures in words –
stems and affixes. Building off of our theoretical
analysis, we present the first exploration of whether
the sample efficiency of reducing these spurious
dependencies can be improved. Our results show
that improved sample efficiency is achievable by
selecting subsets of synthetic data reflecting high
structural diversity and predictive uncertainty, but
there is room for improvement – both in strategic
sampling strategies and more cross-linguistically
effective data augmentation strategies that can rep-
resent long distance phonological alternations.

Overall, NLP data augmentation strategies are
poorly understood (Dao et al., 2019; Feng et al.,
2021) and our work contributes to filling in this gap.
Through our theoretical and empirical analyses, we
provide insights that can inform future research on
the effectiveness of data augmentation methods in
improving compositional generalization.

8 Limitations

Theoretical analysis. We make some simplify-
ing assumptions to facilitate our analysis in Sec-
tion 3. First, we assume that the stem between a
gold-standard lemma and inflected form X and Y
is discoverable. This is not always the case; for
example, with suppletive inflected forms, the rela-
tionship between the source lemma and the target
form is not systematic. Second, we assume that
all characters in the stem are randomly substituted,
corresponding to setting the θ = 1 for STEMCOR-
RUPT. This does not correspond to how we deploy
STEMCORRUPT; the implementation provided by
Anastasopoulos and Neubig (2019) sets θ = 0.5
and we use this value for our empirical analysis
Section 5. We believe the analysis under θ = 1
provides a valuable and accurate characterization
of STEMCORRUPT nonetheless and can be readily
extended to accommodate the 0 < θ < 1 case in
future work.

Empirical analysis. In our empirical analysis, we
acknowledge two limitations that can be addressed
in future research. First, we conduct our experi-
ments using data collected for the SIGMORPHON
2018 shared task, which may not contain a natural-
istic distribution of morphosyntactic descriptions
since it was from an online database (Wiktionary).
In future work, we aim to replicate our work in a
more natural setting such as applications for en-
dangered language documentation (Muradoglu and
Hulden, 2022; Moeller et al., 2020), where the mor-
phosyntactic description distribution is likely to be
more imbalanced. Second, we perform our analy-
ses in an extremely data-constrained setting where
only 100 gold-standard examples are available. In
higher resourced settings, data augmentation with
STEMCORRUPT may provide a much more lim-
ited improvement to compositional generalization;
indeed the compositional generalization study of
morphological inflection systems by Goldman et al.
(2022) demonstrates that the disparity between IID
generalization and compositional generalization
largely dissipates when the model is trained on
more gold-standard data.
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A Transformer training details

Batch size 16
Label smoothing 0.2
Warmup updates 4000
Total updates 6000
Dropout 0.3
Encoder layers 4
Decoder layers 4
Attention dropout 0.1
Adam (β1, β2) (0.9, 0.999)

B Proof of Proposition 1

We recall proposition 1:

Proposition 1. As |DSyn
train| → ∞, the mutual infor-

mation between certain pairs of random variables
declines:

(i) I(Ystem;T) → 0

(ii) I(Ystem;Xaffix) → 0

(iii) I(Yaffix;Ystem) → 0

(iv) I(Yaffix;Xstem) → 0

Our proof hinges on the fact that mutual informa-
tion I(X;Y ) is convex in the conditional distribu-
tion P (Y |X) when the marginal distribution P (X)
is held constant, due to Thomas and Cover (2006).

Theorem 2 (Thomas & Cover). Let (X,Y ) ∼
p(x, y) = p(x)p(y|x). The mutual information
I(X;Y ) is a concave function of p(x) for fixed
p(y|x) and a convex function of p(y|x) for fixed
p(x).

This theorem is useful for our argument since the
data augmentation algorithm results in the marginal
distribution over some random variables being af-
fected (namely Ystem,Xstem) and other marginals
staying fixed (T,Xaffix,Yaffix). This enables us
to invoke the latter half of the theorem (“convex
function of p(y|x) for fixed p(x)”) and thus obtain
an upper bound on the mutual information between
the pairs of variables stated in proposition 1. We
will argue that this upper bound will decline to 0
as we take |DSyn

train| → ∞, and thus the mutual
information must also decline to 0.

Proof. Let IG := I(T;Ystem) be the mutual infor-
mation between the random variables T and Ystem

in the human annotated dataset Dtrain, where T is
generated from some distribution P (T) and Ystem
be generated from PG(Ystem|T).

Bengali Indo-Aryan; 300M
Finnish Uralic; 5.8M
Arabic Semitic; 360M
Navajo Athabaskan; 170K
Turkish Turkic; 88M
Spanish Indo-European; 592M
Georgian Kartvelian; 3.7M

Table 2: Languages assessed in our experiments on assessing
the sample efficiency of data augmentation. We also list their
language families and number of speakers.

Let IA := I(T;Ystem) be the mutual informa-
tion between the random variables T and Ystem

in the synthetic dataset DSyn
train, where T is gener-

ated from P (T) (as before) and Ystem is generated
from PA(Ystem|T). The data augmentation algo-
rithm generates the stem characters by uniformly
sampling characters the a language’s alphabet. Cru-
cially, this means the mutual information IA = 0,
since the value of Ystem is independent of the value
of T.

Then, let I := I(T;Ystem) be the mutual
information between the random variables T and
Ystem over Dtrain ∪DSyn

train, where (T,Ystem) ∼
(p(T), λPG(Ystem|T) + (1− λ)PA(Ystem|T ))
and λ := |Dtrain|/|Dtrain ∪ DSyn

train|. By the
convexity of mutual information (Theorem 2), we
have that I ≤ λIG + (1− λ)IA.

As we take |DSyn
train| → ∞, we have that λIG +

(1− λ)IA → 0 · IG + 1 · IA = 0. Thus, I is lower
bounded by zero (since mutual information is non-
negative) and upper bounded by 0 as DSyn

train → 0
(by the above argument). Thus, we have that I → 0,
as desired. This proves (1).

The same argument can be applied to prove (ii),
(iii), and (iv). For (ii), we let Xaffix take the place
of T and repeat the argument above. For (iii), we
let Yaffix take the place of T. For (iv), we let
Yaffix take the place of T and let Xstem take the
place of Ystem.

C Language information

In Table 2, we list the languages assessed in our
experiments on assessing the sample efficiency of
STEMCORRUPT with their language families and
estimated number of speakers (Lewis, 2009).

D Expanded results for assessing
STEMCORRUPT’s sample efficiency

Here we present the expanded set of results for
Section 5; see Fig. 8. The results are the same as
those in Fig. 4, except they also include |D̂Syn

train| ∈
289



{256, 1024} in addition to {128, 512, 2048}.
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Figure 8: Performance after training on Dtrain ∪ D̂Syn
train, for varying sizes of D̂Syn

train. In the subtitle for each language, we also
list the performance from training on no augmented data in parentheses (D̂Syn

train = ∅).
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