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Abstract

Named Entity Recognition (NER) frequently
suffers from the problem of insufficient labeled
data, particularly in fine-grained NER scenar-
ios. Although K-shot learning techniques can
be applied, their performance tends to saturate
when the number of annotations exceeds sev-
eral tens of labels. To overcome this problem,
we utilize existing coarse-grained datasets that
offer a large number of annotations. A straight-
forward approach to address this problem is pre-
finetuning, which employs coarse-grained data
for representation learning. However, it cannot
directly utilize the relationships between fine-
grained and coarse-grained entities, although
a fine-grained entity type is likely to be a sub-
category of a coarse-grained entity type. We
propose a fine-grained NER model with a Fine-
to-Coarse(F2C) mapping matrix to leverage the
hierarchical structure explicitly. In addition,
we present an inconsistency filtering method to
eliminate coarse-grained entities that are incon-
sistent with fine-grained entity types to avoid
performance degradation. Our experimental re-
sults show that our method outperforms both
K-shot learning and supervised learning meth-
ods when dealing with a small number of
fine-grained annotations. Code is available at
https://github.com/sue991/CoFiNER.

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal task in locating and categorizing named enti-
ties in unstructured texts. Most research on NER
has been conducted on coarse-grained datasets,
including CoNLL’03 (Tjong Kim Sang, 2002),
ACE04 (Mitchell et al., 2005), ACE05 (Walker
et al., 2006), and OntoNotes (Weischedel et al.,
2013), each of which has less than 18 categories.
As the applications of NLP broaden across di-
verse fields, there is increasing demand for fine-
grained NER that can provide more precise and
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detailed information extraction. Nonetheless, de-
tailed labeling required for large datasets in the
context of fine-grained NER presents several sig-
nificant challenges. It is more cost-intensive and
time-consuming than coarse-grained NER. In addi-
tion, it requires a high degree of expertise because
domain-specific NER tasks such as financial NER
(Loukas et al., 2022) and biomedical NER (Sung
et al., 2022) require fine-grained labels. Thus, fine-
grained NER tasks typically suffer from the data
scarcity problem. Few-shot NER approaches (Ding
et al., 2021) can be applied to conduct fine-grained
NER with scarce fine-grained data. However, these
methods do not exploit existing coarse-grained
datasets that can be leveraged to improve fine-
grained NER because fine-grained entities are usu-
ally subtypes of coarse-grained entities. For in-
stance, if a model knows what Organization is, it
could be easier for it to understand the concept of
Government or Company. Furthermore, these meth-
ods often experience early performance saturation,
necessitating the training of a new supervised learn-
ing model if the annotation extends beyond several
tens of labels.

A pre-finetuning strategy (Aghajanyan et al.,
2021; Ma et al., 2022a) was proposed to overcome
the aforementioned problem. This strategy first
learns the feature representations using a coarse-
grained dataset before training the fine-grained
model on a fine-grained dataset. In this method,
coarse-grained data are solely utilized for repre-
sentation learning; thus, it still does not explicitly
utilize the relationships between the coarse- and
fine-grained entities.

Our intuition for fully leveraging coarse-grained
datasets comes mainly from the hierarchy between
coarse- and fine-grained entity types. Because a
coarse-grained entity type typically comprises mul-
tiple fine-grained entity types, we can enhance low-
resource fine-grained NER with abundant coarse-
grained data. To jointly utilize both datasets, we
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devise a method to build a mapping matrix called
F2C (short for ‘Fine-to-Coarse’), which connects
fine-grained entity types to their corresponding
coarse-grained entity types and propose a novel
approach to train a fine-grained NER model with
both datasets.

Some coarse-grained entities improperly match
a fine-grained entity type because datasets may be
created by different annotators for different pur-
poses. These mismatched entities can reduce the
performance of the model during training. To miti-
gate this problem, coarse-grained entities that can
degrade the performance of fine-grained NER must
be eliminated. Therefore, we introduce a filter-
ing method called ‘Inconsistency Filtering’. This
approach is designed to identify and exclude any in-
consistent coarse-to-fine entity mappings, ensuring
a higher-quality training process, and ultimately,
better model performance. The main contributions
of our study are as follows:

• We propose an F2C mapping matrix to directly
leverage the intimate relation between coarse-
and fine-grained types.

• We present an inconsistency filtering method
to screen out coarse-grained data that are in-
consistent with the fine-grained types.

• The empirical results show that our method
achieves state-of-the-art performance by uti-
lizing the proposed F2C mapping matrix and
the inconsistency filtering method.

2 Related Work

Fine-grained NER. NER is a key task in informa-
tion extraction and has been extensively studied.
Traditional NER datasets (Tjong Kim Sang, 2002;
Ritter et al., 2011; Weischedel et al., 2013; Derczyn-
ski et al., 2017) address coarse-grained entity types
in the general domain. Recently, domain-specific
NER has been investigated in various fields (Hofer
et al., 2018; Loukas et al., 2022; Sung et al., 2022).
The domain-specific NER tasks typically employ
fine-grained entity types. In addition, Ding et al.
(2021) proposed a general domain fine-grained
NER.

N -way K-shot learning for NER. Since label-
ing domain-specific data is an expensive process,
few-shot NER has gained attention. Most few-
shot NER studies are conducted using an N -way
K-shot episode learning (Das et al., 2021; Huang

et al., 2022; Ma et al., 2022b; Wang et al., 2022).
The objective of this approach is to train a model
that can correctly classify new examples into one
of N classes, using only K examples per class. To
achieve this generalization performance, a large
number of episodes need to be generated. Fur-
thermore, to sample these episodes, the training
data must contain a significantly larger number of
classes than N . In contrast, in our problem con-
text, the number of fine-grained classes we aim
to identify is substantially larger than the number
of coarse-grained classes in the existing dataset.
Consequently, the episode-based few-shot learn-
ing approaches are unsuitable for addressing this
problem.
Leveraging auxiliary data for information ex-
traction. Several studies have employed auxil-
iary data to overcome the data scarcity problem.
Jiang et al. (2021); Oh et al. (2023) propose NER
models trained with small, strongly labeled, and
large weakly labeled data. Jung and Shim (2020)
used strong and weak labels for relation extraction.
However, in the previous studies, the main data
and auxiliary data shared the same set of classes,
which is not the case for fine-grained NER with
coarse-grained labels. While the approaches of
Aghajanyan et al. (2021) and Ma et al. (2022a) can
be applied to our problem setting, they utilize aux-
iliary data for representation learning rather than
explicitly utilizing the relationship between the two
types of data.

3 Proposed Method

In this section, we introduce the notations and de-
fine the problem of fine-grained NER using coarse-
grained data. Then, we introduce the proposed
CoFiNER model, including the creation of the F2C
mapping matrix.

3.1 Problem definition
Given a sequence of n tokens X =
{x1, x2, ..., xn}, the NER task involves as-
signing type yi ∈ E to each token xi where
E is a predefined set of entity types. In
our problem setting, we used a fine-grained
dataset DF = {(XF

1 ,Y
F
1 ), ..., (X

F
|DF |,X

F
|DF |)}

with a predefined entity type set EF . Addi-
tionally, we possess a coarse-grained dataset
DC = {(XC

1 ,Y
C
1 ), ..., (X

C
|DC |,X

C
|DC |)} charac-

terized by a coarse-grained entity set EC (i.e.
|EF | > |EC |). A coarse-grained dataset typically
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has a smaller number of types than a fine-grained
dataset. Throughout this study, we use F and C to
distinguish between these datasets. It should be
noted that our method can be readily extended to
accommodate multiple coarse-grained datasets,
incorporating an intrinsic multi-level hierarchy.
However, our primary discussion revolves around
a single coarse-grained dataset for simplicity and
readability.

3.2 Training CoFiNER
We aim to utilize both coarse- and fine-grained
datasets directly in a single model training. Figure 1
illustrates an overview of the fine-grained NER
model training process using both coarse- and fine-
grained datasets. The CoFiNER training process
consists of the following four steps:
Step 1- Training a fine-grained model. In the
first step, we train a fine-grained model fF (θ) with
the low-resource fine-grained datasetDF . This pro-
cess follows a typical supervised learning approach
for NER. For a training example (XF ,YF ), XF

is fed into a PLM (Pre-trained Language Model),
such as BERT, RoBERTa, to generate a contextual
representations hi ∈ Rd of each token xi.

H = [h1, ...,hn] = PLM([xF1 , ..., x
F
n ]). (1)

Then, we apply a softmax layer to obtain the label
probability distribution:

pF
i = softmax(Whi + b)

where W∈R|EF |×d and b∈R|EF | represent the
weights and bias of the classification head, respec-
tively. To train the model using a fine-grained
dataset, we optimize the cross-entropy loss func-
tion:

LF = − 1

n

n∑

i=1

logpF
i [y

F
i ] (2)

where yi ∈ EF is the fine-grained label for the
token xi.
Step 2 - Generating an F2C matrix. To fully
leverage the hierarchy between coarse- and fine-
grained entity types, we avoid training separate
NER models for each dataset. Instead, we utilize
a single model that incorporates an F2C mapping
matrix that transforms a fine-grained output into
a corresponding coarse-grained output. The F2C
mapping matrix assesses the conditional probabil-
ity of a coarse-grained entity type s ∈ EC given

a fine-grained label ℓ∈EF (i.e., Mℓ,s = p(yC =
s|yF =ℓ)).

Given a fine-grained probability distribution pF
i

computed using the proposed model, the marginal
probability of a coarse-grained type s can be com-
puted as

pC
i [s] =

∑

ℓ∈EF

p(yC=s|yF =ℓ) · pF
i [ℓ].

Thus, the coarse-grained output probabilities are
simply computed as follows:

pC
i = pF

i ·M (3)

where M ∈ R|EF |×|EC | is the F2C mapping matrix
whose row-wise sum is 1. By introducing this F2C
mapping matrix, we can train a single model using
multiple datasets with different granularity levels.

Manual annotation is a straightforward approach
that can be used when hierarchical information is
unavailable. However, it is not only cost-intensive
but also noisy and subjective, especially when there
are multiple coarse-grained datasets or a large num-
ber of fine-grained entity types. We introduce an
efficient method for automatically generating an
F2C matrix in §3.3.
Step 3 - Filtering inconsistent coarse labels.
Although a fine-grained entity type is usually a
subtype of a coarse-grained type, there can be
some misalignments between the coarse- and fine-
grained entity types. For example, an entity "Mi-
crosoft" in a financial document can either be
tagged as Company or Stock which are not hierar-
chical. This inconsistency can significantly degrade
the model’s performance.

To mitigate the effect of inconsistent labeling,
we devise an inconsistency filtering method aimed
at masking less relevant coarse labels. By automat-
ically filtering out the inconsistent labels from the
coarse-grained dataset, we investigate the coarse-
grained labels using the fine-grained NER model
trained in Step 1. For each token in the coarse-
grained dataset, we predict the coarse-grained label
using the fine-grained model and the mapping ma-
trix as follows:

ỹCi = argmaxpC
i . (4)

If the predicted label is the same as the coarse-
grained label (i.e., yCi = ỹCi ), we assume that the
coarse-grained label is consistent with the fine-
grained one and can benefit the model. Otherwise,
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Figure 1: Overall process of our proposed method.

we regard the label as inconsistent with fine-grained
types and do not utilize the coarse-grained label in
Step 4. Note that the fine-grained NER model is
frozen during this phase.

Step 4 - Jointly training CoFiNER with both
datasets . The model is trained by alternating be-
tween epochs using coarse- and fine-grained data.
This is an effective learning strategy for training
models using heterogeneous datasets (Jung and
Shim, 2020).

For the fine-grained batches, CoFiNER is trained
by minimizing the loss function defined in Equa-
tion (2), as described in Step 1. Meanwhile, we
use the F2C mapping matrix to generate coarse-
grained outputs and utilize inconsistency filtering
for coarse-grained batches. Thus, we compute the
cross-entropy loss between the coarse-grained la-
bel yCi and the predicted probabilities pC

i when the
coarse-grained label is consistent with our model
(i.e.,yCi = ỹCi ) as follows:

LC = − 1

m

m∑

i=1

logpC
i [y

C
i ] · I[yCi = ỹCi ] (5)

where m is a length of XC . For example, suppose
that the coarse label of token xi is yCi =ORG. If the
estimated coarse label ỹCi is ORG, the loss for the
token is − logpC

i [y
C
i ]. Otherwise, it is zero.

3.3 Construction of the F2C mapping matrix

The F2C mapping matrix assesses the conditional
probability of a coarse-grained entity type s∈EC

given a fine-grained label ℓ ∈ EF (i.e., Mℓ,s =
p(yC = s|yF = ℓ)). As there are only a few iden-
tical texts with both coarse- and fine-grained an-
notations simultaneously, we can not directly cal-
culate this conditional probability using the data
alone. Thus, we approximate the probability us-
ing a coarse-grained NER model and fine-grained
labeled data as follows:
Mℓ,s = p(yC=s|yF =ℓ) ≈ p(ỹC=s|yF =ℓ).
To generate the mapping matrix, we first train a

coarse-grained NER model fC(θ) with the coarse-
grained dataset DC . Then, we reannotate the fine-
grained dataset DF by using the coarse-grained
model fC(θ). As a result, we obtain parallel an-
notations for both coarse- and fine-grained types
in the fine-grained data DF . By using the paral-
lel annotations, we can compute the co-occurrence
matrix C ∈ N|EF |×|EC | where each cell Cℓ,s is the
number of tokens that are labeled as fine-grained
type ℓ and coarse-grained type s together.

Because some labels generated by the coarse-
grained model fC(θ) can be inaccurate, we refine
the co-occurrence matrix by retaining only the top-
k counts for each fine-grained type and setting the
rest to zero. Our experiments show that our model
performs best when k = 1. This process effec-
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tively retains only the most frequent coarse-grained
categories for each fine-grained type, thereby im-
proving the precision of the resulting mapping. Fi-
nally, we compute the conditional probabilities for
all ℓ ∈ EF , s ∈ EC by using the co-occurrence
counts as follows:

Mℓ,s = p(ỹC=s|yF =ℓ) =
Cℓ,s∑

s′∈EC Cℓ,s′
. (6)

The F2C mapping matrix M is used to predict
the coarse-grained labels using Equation (3).

4 Experiments

4.1 Datasets

Dataset # Sentences # TypesTrain Dev Test
Coarse-grained datasets

CoNLL’03 14k 3.3k 3.4k 4
OntoNotes 59.9k 8.5k 8.3k 18

Fine-grained dataset Few-NERD
10-Shot 0.3k

18.8k 37.6k 66
20-Shot 0.6k
40-Shot 1.1k
80-Shot 2.2k
100-Shot 2.7k

Table 1: Statistics of each dataset.

We conduct experiments using a fine-grained
NER dataset, Few-NERD (SUP) (Ding et al.,
2021), as well as two coarse-grained datasets,
namely, OntoNotes (Weischedel et al., 2013) and
CoNLL’03 (Tjong Kim Sang, 2002). The fine-
grained dataset Few-NERD comprises 66 en-
tity types, whereas the coarse-grained datasets
CoNLL’03 and OntoNotes consist of 4 and 18
entity types, respectively. The statistics for the
datasets are listed in Table 1.
K-shot sampling for the fine-grained dataset.
Because we assumed a small number of examples
for each label in the fine-grained dataset, we evalu-
ated the performance in the K-shot learning setting.
Although Few-NERD provides few-shot samples,
they are obtained based on an N -way K-shot sce-
nario, where N is considerably smaller than the
total number of entity types. However, our goal is
to identify named entities across all possible entity
types. For this setting, we resampled K-shot exam-
ples to accommodate all-way K-shot scenarios.

Since multiple entities exist in a single sentence,
we cannot strictly generate exact K-shot samples
for all the entity types. Therefore, we adopt the

K∼(K + 5)-shot setting. In the K∼(K+5)-shot
setting, there are at least K examples and at most
K+5 examples for each entity type. See Ap-
pendix A for more details. In our experiments,
we sampled fine-grained training data for K =
10, 20, 40, 80, and 100.

4.2 Experimental Settings

In experiments, we use transformer-based
PLM, including BERTBASE, RoBERTaBASE, and
RoBERTaLARGE. In CoFiNER, we follow
RoBERTaLARGE to build a baseline model. The
maximum sequence length is set to 256 tokens.
The AdamW optimizer (Loshchilov and Hutter,
2019) is used to train the model with a learning
rate of 2e−5 and a batch size of 16. The number
of epochs is varied for each model. We train
the fine-grained model, CoFiNER, over 30
epochs. To construct the F2C mapping matrix,
the coarse-grained model is trained for 50 epochs
using both CoNLL’03 and OntoNotes. To train
the inconsistency filtering model, we set different
epochs based on the number of shots: For 10, 20,
40, 80, and 100 shot settings, the epochs are 150,
150, 120, 50, and 30, respectively. We report the
results using span-level F1. The dropout with a
probability of 0.1 is applied. All the models were
trained on NVIDIA RTX 3090 GPUs.

4.3 Compared Methods

In this study, we compare the performance of
CoFiNER with that of both the supervised and
few-shot methods. We modified the existing meth-
ods for our experimental setup and re-implemented
them accordingly.

Supervised method. We use BERTBASE,
RoBERTaBASE, and RoBERTaLARGE as the super-
vised baselines, each including a fine-grained clas-
sifier on the head. In addition, PIQN (Shen et al.,
2022) and PL-Marker (Ye et al., 2022) are meth-
ods that have achieved state-of-the-art performance
in a supervised setting using the full Few-NERD
dataset. All models are trained using only a Few-
NERD dataset.

Few-shot method. The LSFS (Ma et al., 2022a)
leverages a label encoder to utilize the semantics
of label names, thereby achieving state-of-the-art
results in low-resource NER settings. The LSFS ap-
plies a pre-finetuning strategy to learn prior knowl-
edge from the coarse-grained dataset, OntoNotes.
For a fair comparison, we also conducted pre-
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Method Model 10-shot 20-shot 40-shot 80-shot 100-shot

Supervised Method

BERTBASE (Devlin et al., 2019) 23.101 34.718 43.138 46.182 46.449
RoBERTaBASE (Liu et al., 2019) 21.073 34.157 39.226 45.735 46.942
RoBERTaLARGE (Liu et al., 2019) 29.137 41.425 51.137 55.057 54.172
PIQN (Shen et al., 2022) 21.750 22.007 28.533 29.339 38.658
PL-Marker (Ye et al., 2022) 40.902 48.064 52.395 53.249 53.061

Few-shot Method LSFS (Ma et al., 2022a) 47.998 43.269 50.595 51.420 50.366

Proposed Method CoFiNER 44.951 51.142 56.409 56.847 57.178

Table 2: Results on few-shot NER. The best scores across all models are marked bold.

finetuning on OntoNotes and performed fine-tuning
on each shot of the Few-NERD dataset.

Proposed method. We trained our CoFiNER
model as proposed in §3. In each epoch, CoFiNER
is first trained on two coarse-grained datasets:
OntoNotes and CoNLL’03. Subsequently, it is
trained on the fine-grained dataset Few-NERD. We
used RoBERTaLARGE as the pre-trained language
model for CoFiNER in Equation (1).

4.4 Main Results

Table 2 reports the performance of CoFiNER and
existing methods. The result shows that CoFiNER
outperforms both supervised learning and few-shot
learning methods. Because supervised learning
typically needs a large volume of training data,
these models underperform in low-resource set-
tings. This demonstrates that our method effec-
tively exploits coarse-grained datasets to enhance
the performance of the fine-grained NER model.
In other words, the proposed F2C mapping matrix
significantly reduces the amount of fine-grained
dataset required to train supervised NER models.
In particular, CoFiNER achieves significant per-
formance improvements compared to the state-of-
the-art model PL-Marker, which also utilizes the
same pre-trained language model RoBERTaLARGE
as CoFiNER.

The few-shot method LSFS yields the highest
F1 score for the 10-shot case. However, this few-
shot method suffers from early performance sat-
uration, resulting in less than a 2.4 F1 improve-
ment with an additional 90-shot. By contrast, the
F1 score of CoFiNER increases by 12.2. Conse-
quently, CoFiNER outperforms all the compared
methods except for the 10-shot case. In summary,
the proposed method yields promising results for
a wide range of data sample sizes by explicitly
leveraging the inherent hierarchical structure.

Model 10-shot 20-shot 40-shot 80-shot 100-shot

CoFiNER 44.95 51.14 56.41 56.85 57.18
w/o filtering 41.38 43.87 53.42 54.70 55.13

w/o OntoNotes 42.63 44.51 57.18 56.97 55.54
w/o CoNLL’03 43.99 50.07 57.54 56.71 56.27
w/o coarse 29.14 41.43 51.14 55.06 54.17

Table 3: Performances of ablation study over different
components.

4.5 Ablation Study

An ablation study is conducted to validate the ef-
fectiveness of each component of the proposed
method. The results are presented in Table 3.
First, we remove the inconsistency filtering (w/o
filtering) and observe a significant decrease in
the F1 score, ranging from 2.05 to 7.27. These
results demonstrate the effectiveness of our fil-
tering method, which excludes mislabeled enti-
ties. Second, we provide the results using a sin-
gle coarse-grained dataset (w/o OntoNotes and w/o
CoNLL’03). Even with a single coarse-grained
dataset, our proposed method significantly out-
performs w/o coarse, which is trained solely on
the fine-grained dataset (i.e. RoBERTaLARGE in Ta-
ble 2).

This indicates the effectiveness of using a well-
aligned hierarchy through the F2C mapping matrix
and inconsistency filtering. Although we achieve a
significant improvement even with a single coarse-
grained dataset, we achieve a more stable result
with two coarse-grained datasets. This implies that
our approach effectively utilizes multiple coarse-
grained datasets, although the datasets contain dif-
ferent sets of entity types.

4.6 Analysis

In this section, we experimentally investigate how
the F2C mapping matrix and inconsistency filtering
improve the accuracy of the proposed model.
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Figure 2: The F2C mapping matrix between OntoNotes and 100-shot of the Few-NERD dataset. During the
generation of the F2C mapping matrix, some coarse-grained types are not mapped to any fine-grained types. The 7
unmapped types are not represented: DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, and CARDINAL.

O artbuilding eventlocation organization person productother

Figure 3: The F2C mapping matrix between CoNLL’03 and 100-shot of the Few-NERD dataset.

4.6.1 F2C Mapping Matrix
Mapping the entity types between the coarse- and
fine-grained datasets directly affects the model per-
formance. Hence, we investigate the mapping
outcomes between the coarse- and fine-grained
datasets. Figures 2 and 3 show the F2C matrices for
FewNERD-OntoNotes and FewNERD-CoNLL’03,
respectively. In both figures, the x- and y-axis rep-
resent the fine-grained and coarse-grained entity
types, respectively. The colored text indicates the
corresponding coarse-grained entity types in Few-
NERD, which were not used to find the mapping
matrix. The mapping is reliable if we compare the
y-axis and the colored types (coarse-grained types
in Few-NERD). Even without manual annotation of
the relationship between coarse- and fine-grained
entities, our method successfully obtains reliable
mapping from fine-grained to coarse-grained types.
Our model can be effectively trained with both
types of datasets using accurate F2C mapping.

Figure 4 provides the F1 scores by varying the
hyperparameter k to refine the F2C mapping matrix
described in §3.3. ‘all’ refers to the usage of the
complete frequency distribution when creating an

Figure 4: Impact of top-k values in the F2C mapping
matrix. F1 is reported on the test data.

F2C mapping matrix. We observe that the highest
performance is achieved when k is set to 1, and as
k increases, the performance gradually decreases.
Although the optimal value of k can vary depending
on the quality of the coarse-grained data and the
performance of the coarse-grained NER model, the
results indicate that a good F2C mapping matrix
can be obtained by ignoring minor co-occurrences.

Additionally, We conducted an experiment by
setting the F2C mapping matrix to be learnable
and comparing it with our non-learnable F2C ma-
trix. The non-learnable approach showed better
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# Type Example

1 predict ... they may be offshoots of the intifadahEVENT, the Palestinian rebellionEVENT in ...
target ... they may be offshoots of the intifadah, the PalestinianNORP rebellion in ...

2 predict ... players heading to CanadaGPE, particularly TorontoGPE for the All-starEVENT ...
target ... players heading to CanadaGPE, particularly TorontoGPE for the All-star ...

3 predict Judges at Flight 103 Lockerbie trialEVENT are expected ...
target Judges at Flight 103 LockerbieGPE trial are expected ...

Table 4: Inconsistent examples: The labeled sentence in the original coarse-grained dataset is the "target" type,
while the label predicted by the model is the "predict" type. Consistent entity types are indicated in blue, while
inconsistent entity types are indicated in red.

performance, hence we adopted this approach for
CoFiNER. Detailed analysis and experiment re-
sults are in Appendix B.2.

4.6.2 Inconsistency Filtering
We aim to examine whether inconsistency filtering
successfully screened out inconsistent entities be-
tween OntoNotes and Few-NERD datasets. To con-
duct this analysis, we describe three inconsistent ex-
amples. Table 4 shows the predicted values and tar-
get labels, which correspond to the coarse-grained
output of the fine-grained NER model trained as de-
scribed in §3.2 and the golden labels of the coarse-
grained dataset.

The first example illustrates the inconsistency
in entity types between mislabeled entities. In the
original coarse-grained dataset, "Palestinian" is la-
beled as NORP, but the model trained on the fine-
grained dataset predicts "Palestinian rebellion" as
its appropriate label, EVENT. However, annotators
of the OntoNotes labeled "Palestinian" as NORP,
whereas the fine-grained NER model correctly pre-
dicts the highly informative actual label span. The
inconsistency caused by a label mismatch between
the coarse-grained and fine-grained datasets can
result in performance degradation.

In the second example, both "Canada" and
"Toronto" are consistently labeled as GPE; thus,
the model is not confused when training on these
two entities. However, in the case of "All-star",
we can observe a mismatch. This example in the
coarse-grained dataset is labeled O instead of the
correct entity type EVENT, indicating a mismatch.
Through inconsistency filtering, unlabeled "All-
star" is masked out of the training process.

As shown in the examples, inconsistency filter-
ing is necessary to mitigate the potential noise aris-
ing from mismatched entities. We analyze the fil-
tering results for each coarse-grained label to as-
sess its impact on model performance. Figure 5

Figure 5: Performance with increasing filtering propor-
tion between Few-NERD and OntoNotes datasets. The
correlation coefficient between filtering proportion and
performance improvement is 0.29.

illustrates the correlation between the filtering pro-
portion and the performance improvement for each
coarse-grained label mapped to the fine-grained
labels. In this figure, a higher filtering proportion
indicates a greater inconsistency between the two
datasets. F1 improvements indicate the difference
in performance when filtering is applied and when
it is not. Each data point refers to a fine-grained
label mapped onto a coarse-grained label. As the
proportion of the filtered entities increases, the F1
scores also increase. These improvements indicate
that inconsistency filtering effectively eliminates
noisy entities, enabling the model to be well-trained
on consistent data only.

5 Conclusion

We proposed CoFiNER, which explicitly leverages
the hierarchical structure between coarse- and fine-
grained types to alleviate the low-resource problem
of fine-grained NER. We devised the F2C map-
ping matrix that allows for fine-grained NER model
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training using additional coarse-grained datasets.
However, because not all coarse-grained entities
are beneficial for the fine-grained NER model, the
proposed inconsistency filtering method is used
to mask out noisy entities from being used in the
model training process. We found through exper-
iments that using a smaller amount of consistent
data is better than using a larger amount of data
without filtering, thus demonstrating the crucial
role of inconsistency filtering. Empirical results
confirmed the superiority of CoFiNER over both
the supervised and few-shot methods.

Limitations

Despite the promising empirical results of this
study, there is still a limitation. The main drawback
of CoFiNER is that the token-level F2C mapping
matrix and inconsistency filtering may not be di-
rectly applicable to nested NER tasks. Nested NER
involves identifying and classifying certain over-
lapping entities that exceed the token-level scope.
Because CoFiNER addresses fine-grained NER at
the token level, it may not accurately capture en-
tities with nested structures. Therefore, applying
our token-level approach to nested NER could pose
challenges and may require further adaptations or
other modeling techniques to effectively handle the
hierarchical relations between nested entities.
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Appendix

A Sampling Algorithm

Algorithm 1 K∼(K+5) sampling algorithm
Input: Dataset X, labeled set Y, K
Output: Fine-grained dataset DF

1: Sort classes in Y based on their freq. in X
2: DF ← ∅; ▷ Init the train dataset

▷ Init the count of entity classes in DF

3: for i = 1 to |Y| do
4: Count [i] = 0;

5: for i = 1 to |Y| do
6: if ∀ Count[i′] ≥K then
7: break;
8: Randomly sample (x, y) ∈ X s.t. Yi ∈ y;
9: for j = 1 to |y| do

10: CountY[j] += 1;

11: if ∃ Count[i] + CountY[i] > K + 5 then
12: Continue;
13: else
14: DF ← DF ∪ {(x, y)};
15: Count← Count + CountY;
16: return DF

Unlike other tasks, NER involves multiple en-
tity occurrences within a sentence, making it too
restrictive to sample an exact count. We adopt a
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K∼(K+5)-shot setting to minimize differences
in the number of entity types. Additionally, we
sample the entity types, starting from those with
fewer occurrences to ensure a balanced distribution
of multiple entity types within the sentences. Al-
gorithm 1 presents the K-shot sampling algorithm
used in this study.

B Additional Experiments

B.1 Generalization of Inconsistency filtering
in diverse dataset settings

Setting
Coarse-grained datasets

Few-NERD_coarse OntoNotes + CoNLL’03

w/ filtering 56.63 57.18
w/o filtering 56.46 55.13

Table 5: Results on different coarse-grained datasets. A
fine-grained dataset is 100-shot of the Few-NERD.

To assess the generalization of the proposed
method, we conducted experiments under various
coarse- and fine-grained dataset settings.

First, we verified the robustness of inconsis-
tency filtering through experiments using differ-
ent coarse-grained datasets. The fine-grained
dataset, Few-NERD, remains unchanged. Since
Few-NERD has both coarse- and fine-grained
labels, we constructed a coarse-grained dataset
Few-NERD_coarse using the coarse-grained
labels from Few-NERD. When compared to
Few-NERD_coarse, entities in OntoNotes and
CoNLL’03 are inconsistently labeled with Few-
NERD because they were independently created.
In Table 5, Few-NERD_coarse exhibits a higher
F1 score in the w/o filtering setting due to its con-
sistency with fine-grained labels of Few-NERD.
However, the performance improvement achieved
with filtering is more substantial in the inconsistent
datasets, when compared to the consistent dataset.
This result indicates that inconsistency filtering im-
proves performance by filtering out the mismatch-
ing labels. Therefore, we have demonstrated the
importance of using inconsistency filtering to filter
out noise when working with datasets that employ
different labeling schemes. Furthermore, by achiev-
ing effective performance improvements across var-
ious coarse-grained datasets, we have provided evi-
dence of the robustness of the filtering method.

Second, we validate the generalization perfor-
mance through experiments conducted in differ-
ent coarse- and fine-grained dataset settings. We

Model F1
RoBERTaLARGE 75.15
PL-Marker 74.03
CoFiNER 80.44

w/o filtering 78.20
w/o coarse 75.15

Table 6: Performances of different models and ablation
studies on our model. RoBERTaLARGE and w/o coarse
are identical.

set up the CoNLL’03, which has 4 entity types,
as the coarse-grained dataset, and the 100-shot
OntoNotes, which has a finer label with 19 entity
types, as the fine-grained dataset. In Table 6, when
compared to the two top-performing models in the
main results, RoBERTaLARGE and the state-of-the-
art PL-Marker, CoFiNER show consistently higher
performance. Furthermore, as shown in the abla-
tion study that was conducted following the same
methodology in §4.5, CoFiNER exhibited superior
performance.

In conclusion, through above the two experi-
ments, our method has been demonstrated to work
robustly across different coarse- and fine-grained
dataset settings.

B.2 Comparison with learnable F2C mapping
matrix

Matrix Type F1
non-learnable 56.27
learnable 53.25

Table 7: Results on learnable and non-learnable F2C
mapping matrix on 100-shot of Few-NERD.

To find the optimal F2C mapping matrix, we con-
ducted experiments to explore the impact of mak-
ing the F2C mapping matrix learnable. We use Few-
NERD as a fine-grained dataset and OntoNotes as
a coarse-grained dataset. Table 7 shows no perfor-
mance gains when the F2C mapping matrix was set
to be learnable. We found that the learnable matrix
tends to form a pattern similar to what is shown
in Figure 4 with k=all. This result suggests that
taking minor co-occurrences into account leads to
an overall decrease in performance. Based on this
analysis, the non-learnable mapping matrix is used
in our experiments.
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