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Abstract

A proper evaluation of stories generated for a
sequence of images—the task commonly re-
ferred to as visual storytelling—must consider
multiple aspects, such as coherence, grammat-
ical correctness, and visual grounding. In this
work, we focus on evaluating the degree of
grounding, that is, the extent to which a story
is about the entities shown in the images. We
analyze current metrics, both designed for this
purpose and for general vision-text alignment.
Given their observed shortcomings, we propose
a novel evaluation tool, GROOViST, that ac-
counts for cross-modal dependencies, temporal
misalignments (the fact that the order in which
entities appear in the story and the image se-
quence may not match), and human intuitions
on visual grounding. An additional advantage
of GROOViST is its modular design, where the
contribution of each component can be assessed
and interpreted individually.

1 Introduction

Generating a textual story that is plausible given a
sequence of images is a challenging task involving
aspects such as cross-modal interactions, temporal
dependencies between linguistic and visual content,
and causal reasoning. In the language-and-vision
community, Huang et al. (2016) operationalized the
task and released the Visual Storytelling Dataset
(VIST), a collection of English stories created by
speakers on top of 5-image visual sequences. Sev-
eral models have been proposed for the task of
generating plausible stories for a given sequence,
ranging from RNNs (Kim et al., 2018) to Trans-
formers, trained either end-to-end or leveraging
additional knowledge-graphs (Chen et al., 2021).

Evaluating the quality of the automatically
generated stories is extremely difficult: Given the
creative nature of the task (many stories could be
sensible for a given image sequence), reference-
based metrics like METEOR (Banerjee and Lavie,
2005) or CIDEr (Vedantam et al., 2015) are not

Figure 1: One story and corresponding image sequence
from the VIST dataset. Noun phrases in green contribute
positively to the grounding score by GROOViST; those
in red contribute negatively. The GROOViST score for
this sample is 0.855, i.e., our metric considers it as well-
grounded (within range: [−1, 1]). Best viewed in color.

appropriate—they indeed poorly correlate with
human judgments (Wang et al., 2018). Moreover,
a proper evaluation must consider multiple aspects,
such as coherence, grammaticality and, impor-
tantly, visual grounding. Yet, most evaluation
metrics proposed specifically for visual storytelling
do not consider the images at all (Hu et al., 2020).

In this paper, we focus on evaluating a story’s
degree of grounding, that is, the extent to which
a story is about the entities shown in the images.
To the best of our knowledge, there is only one
metric proposed to date for evaluating grounding
in visual storytelling, the Visual Grounding scorer
(RoViST-VG) by Wang et al. (2022). We carry
out an extensive analysis of this metric and reveal
that it has critical shortcomings. To overcome
this, we propose a novel, modular evaluation
tool, which we name GROOViST (grounding
objects in visual storytelling). We show that
GROOViST is robust to temporal misalignments,
correlated with human intuitions about grounding,
and easy to interpret. Our code is available at:
https://github.com/akskuchi/groovist

2 Analyses of Existing Metrics

To assess the level of visual grounding of a story
in visual storytelling, Wang et al. (2022) proposed
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RoViST-VG. This metric is the output of a model
pre-trained on the Flickr30K Entities dataset (Plum-
mer et al., 2015) to learn the relationships between
the nouns in a story and the regions of an image in
a contrastive learning regime. For a given <image-
sequence, story> pair, RoViST-VG extracts: from
each image, the bounding boxes and correspond-
ing visual features of its 10 most salient regions,
using FasterRCNN (Ren et al., 2015); from the
story, the GloVe (Pennington et al., 2014) represen-
tations of each noun in it. The pre-trained model
receives these extracted embeddings (from GLoVe
and FasterRCNN) and returns the final representa-
tions T and I , respectively. The grounding score
is then calculated using Eq. (1) as the maximum
cosine similarity between T and I , weighted by
inverse document frequencies (idf ) of the nouns.1

RoViST-VG = log
|Te|∑
i=1

exp(idf(Ti) max
Ie,j∈Ie

(cos(Te,i, Ie,j))) (1)

To analyze the suitability of RoViST-VG, we
compare it to CLIPScore (Hessel et al., 2021).
CLIPScore has not been designed to evaluate visual
storytelling. Here, we use it to score each image-
sentence pair independently in a story sequence.
This approach is not ideal as it cannot capture tem-
poral misalignments between a text and a visual
content (e.g., an early sentence may be ‘they were
getting ready to go to the circus’ but the circus may
only appear later). However, since CLIPScore has
been designed for general vision-text alignment,
we expect it to be reasonably effective at capturing
visual grounding at the image-sentence level. It cor-
responds to the cosine similarity between CLIP’s
(Radford et al., 2021) representations of a sentence
c and an image v (with 2.5 as re-scaling factor).

Next we explore how good the above metrics are
at capturing grounding in visual storytelling data.

2.1 Grounding in visual storytelling datasets

We analyze the scores assigned by these metrics
to the stories in three visual storytelling datasets:
(1) VIST (Huang et al., 2016), that comprises se-
quences of five natural images (from Flickr) and
corresponding five-sentence stories; (2) AESOP
(Ravi et al., 2021), that includes sequences of three
synthetic images (created using entities from Ab-
stract Scenes; Zitnick and Parikh, 2013) and cor-
responding three-paragraph long stories; (3) VWP
(Hong et al., 2023), which comprises sequences

1More details on RoViST-VG are provided in Appendix C.

Figure 2: RoViST-VG does not exhibit the expected
pattern: it does not assign lower scores to the random
<images, story> pairs. In contrast, this is the case for
CLIPScore and our proposed GROOViST metric.

of movie shots, each including 5-10 images with
corresponding sentences that make up their stories.

We compute RoViST-VG and CLIPScore on the
original <image sequence, story> pairs in the test
splits of these datasets,2 and compare these scores
to the ones obtained on a random setting where
each image sequence is paired with five random
stories (from the corresponding dataset); among
these, we consider the pair that receives the highest
score. We expect a metric that properly captures
visual grounding to assign higher scores to the orig-
inal stories than to the randomly paired stories.

Figure 2 shows the average scores of the metrics
in both settings. Surprisingly, RoViST-VG scores
are not higher in the original setting than in the ran-
dom setting. In fact, on VIST, the random <image
sequence, story> pairs receive higher RoViST-VG
scores than the original ones. In contrast, CLIP-
Score follows the expected pattern.

2.2 Correlation with Flickr8k-Expert ratings

We assess the ability of the two metrics to capture
general image-caption grounding using Flickr8k-
Expert (Hodosh et al., 2013), a publicly available
dataset with human ratings for image-caption pairs.
In particular, we consider the subset of 3391 sam-
ples where all three annotators agree.3 CLIPScore
is designed for this purpose and is therefore well-
suited for the task. RoViST-VG is not meant for
measuring image-caption grounding, although it
should align with human ratings to some extent,
given its purpose and pre-training. However, as we
can see in Table 1, RoViST-VG shows no correla-
tion with human ratings—while CLIPScore does.

25055 samples for VIST and 991 for AESOP. Due to the
lack of a separate test split for VWP, we considered all 13843
samples in the dataset.

3Human annotators rated captions on a scale of 1 to 4.
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RoViST-VG CLIPScore GROOViST

τc (p-value) 0.019 (0.125) 0.556 (0.0) 0.414 (0.0)

Table 1: Correlation (Kendall τc) between Flickr8k-
Expert human ratings and the automatic metrics.

3 GROOViST

Our analyses showed that RoViST-VG has some
important limitations as a metric for assessing the
degree of visual grounding—both in stories and
image captions. To overcome these issues, we pro-
pose GROOViST, a modular metric consisting of
various components informed by insights from both
CLIPScore and RoViST-VG. These are:

Noun phrase (NP) extraction We process the
story and extract all the NPs;4 this is similar to
RoViST-VG but better because RoViST-VG only
considers nouns and fails to handle compounds
such as ‘parking lot’. Additionally, focusing on
NPs allows for the contribution of accompanying
adjectives (e.g., ‘silly faces’).

Vision-language alignment We compute align-
ment scores between all the extracted bounding
boxes and NPs and select the highest score for each
NP. This step is similar to RoViST-VG but, instead
of training a dedicated model, we use the off-the-
shelf CLIP (Radford et al., 2021) model.

Penalizing poorly grounded NPs The previous
steps result in a positive score for all the NPs in a
story. Yet, some may in fact be poorly grounded
(i.e., have low visual alignment score). Such NPs,
therefore, should contribute negatively to the over-
all degree of grounding of a story. To operationalize
this, we select the mean score over all NPs in the
entire dataset as a threshold θ and calculate the dis-
tance of each NP’s score from θ, assigning negative
values to NPs with scores below θ (NPneg) while
retaining the scores of NPs with values above θ
(NPpos).

Concreteness weighting RoViST-VG uses in-
verse document frequencies (idf ) for weighting
the similarity scores of nouns to handle abstract
frequent words such as ‘time’. However, we ob-
serve that idf weights tend to increase the simi-
larity scores of some less-frequent non-grounded

4Using spaCy’s English transformer pipeline for chunking:
https://spacy.io/models/en#en_core_web_trf

nouns and decrease the scores of some frequent-
and-grounded nouns, adversely affecting the over-
all score.5 Hence, after the penalization step, we
use word concreteness ratings (Brysbaert et al.,
2014) for weighting the resulting scores (instead
of idf ) and capture the fact that concrete NPs are
more likely to be visible.6

Normalization Finally, to obtain the GROOViST
score of a story, we aggregate the weighted scores
of all its NPs and normalize the sum by the total
number of NPs in the story, which results in a value
unaffected by story length (or more precisely, by
the number of NPs in it):

(
∑n

i=1NPposi +
∑m

i=1NPnegi) / (n+m) (2)

where n and m are the number of NPs with positive
and negative scores, respectively. See Figure 1 for
how this facilitates interpretability. The pseudo-
code and a working example for GROOViST are
provided in Algorithm 2 and Figure 4, respectively.
GROOViST scores are unbounded by default, but
tanh can be used to map them to the [−1, 1] range.

4 Role of GROOViST Components

We test GROOViST on the same evaluation criteria
used in Section 2. From Figure 2 and Table 1, we
observe that GROOViST fares well on both eval-
uation criteria. First, it assigns higher grounding
scores to original compared to random stories. Sec-
ond, it moderately correlates with human image-
caption ratings. This indicates that GROOViST is
a more robust metric than RoViST-VG.

To understand the impact of GROOViST’s com-
ponents on the final grounding score, we conduct
several experiments by both ablating the compo-
nents and replacing them with plausible alterna-
tives.

Ablations Penalizing poorly grounded NPs and
Concreteness weighting are the two components of
GROOViST that can be ablated from the metric.

Replacements The Concreteness weighting and
Noun phrase (NP) extraction components of
GROOViST can be replaced with idf weights and
nouns, respectively.

In total, we consider six alternative versions of
our metric, which we obtain by applying all pos-
sible combinations of ablations and replacements.

5Examples are provided in Appendix A.
698.7% of NPs in the VIST test set contain words for which

concreteness ratings are available.
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We test these versions on the same evaluation crite-
ria used in Section 2. Table 2 reports how they fare
with respect to the two criteria we consider.

Criterion 1 Criterion 2

GROOViST ✓ ✓
GROOViST (-C) ↓ ✓
GROOViST (-P) × ↓
GROOViST (-C -P) × ✓
GROOViST (-NPs +Ns) ↓ ✓
GROOViST (-C +idf ) ✓ ↓
GROOViST (-C +idf -NPs +Ns) ↓ ↓

Table 2: Results of ablating and replacing different com-
ponents of GROOViST. C and P refer to Concreteness
weighting and Penalizing poorly grounded NPs compo-
nents respectively. ✓ indicates that the criteria are met;
× indicates that the criteria are not met; ↓ for Criterion
1 indicates a deterioration in the ability of the metric
to distinguish between original and random stories. ↓
for Criterion 2 indicates a decrease in the correlation of
metric scores with Flickr8k-Expert ratings.

We observe that ablating or replacing compo-
nents from GROOViST results in scores that either
do not meet at least one of the criteria or do so
to a much lower extent.7 This is particularly ap-
parent in the metric versions where the Penalizing
poorly grounded NPs component is ablated, which
further confirms its importance. The GROOViST
(-C +idf ) version satisfies Criterion 1, indicating
that frequency-based information can be helpful as
a heuristic. However, it may result in discrepancies
as shown in Appendix A, Figure 4. We consider
concreteness to be a more theoretically motivated
notion than frequency to capture visual grounding.
Its value is apparent with respect to Criterion 2: re-
placing Concreteness weighting with idf weighting
decreases the correlation of the metric scores with
Flickr8k-Expert ratings.

5 Evaluation of GROOViST

To further evaluate the extent to which GROO-
ViST captures intuitions on stories’ degree of visual
grounding, we compare our metric to human judg-
ments. Since no previous work collected human
data for this specific purpose, we run a small data
collection by asking 5 participants to rate a sample
of the VIST data. In particular, we ask partici-
pants to provide ratings for 100 randomly sampled
VIST <image sequence, story> pairs, using a 4-
point Likert-like scale (instructions: “a score of 4

7The resulting values are provided in Appendix E.

indicates that most aspects mentioned in the story
are depicted in the sequence of images”).8 We
formulate two hypotheses about the strengths and
weaknesses of GROOViST and CLIPScore and ex-
perimentally test their validity using the human
grounding judgments.

5.1 Temporal misalignment
Effective metrics for measuring grounding in vi-
sual storytelling should account for possible tem-
poral misalignments between the visual and tex-
tual modality. That is, they should account for
the fact that entities that are grounded in an image
could be mentioned earlier or later in the story—
not necessarily in the corresponding sentence. We
hypothesize that GROOViST—since it takes into
account the entire story holistically—correlates bet-
ter with human judgments than CLIPScore on sam-
ples with high temporal misalignment. To test this
hypothesis, we define temporal misalignment t of
a sentencei in a sequence as the number of its NPs
matching with visual entities in images (imgj ̸=i)
at other positions of the sequence, normalized by
the total number of its NPs. The overall temporal
misalignment T of a story is then the average of its
sentence-level t values:

t(sentencei) =
#(NPs matching imgj ̸=i)

#(NPs in sentencei)
(3a)

T (story) =
∑n

i=1 t(sentencei) / n (3b)

where n is the number of sentences in a story.
We consider a story to have high temporal mis-

alignment if T ≥ 1.0, i.e., at least as many as the
average number of NPs per sentence are misaligned.
In the annotated data, T ∈ [0.16, 1.53] and 18%
of the stories exhibit high temporal misalignment,
indicating the prevalence of the phenomenon.

As can be seen in Figure 3, our hypothesis is
confirmed: GROOViST exhibits a higher correla-
tion with human ratings than CLIPScore on sam-
ples with a high T , i.e., its scores are overall more
aligned with human intuitions when in the presence
of temporally misaligned entities. This confirms
the ability of GROOViST to handle non-trivial
grounding dynamics in a story, different from CLIP-
Score. At the same time, we notice that CLIPScore
achieves a higher correlation than our metric in
samples with low T , which confirms once again
that the former is an effective tool for capturing
grounding in well-aligned multimodal data.

8Appendix B provides further details.
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5.2 Proportion of noun phrases
GROOViST builds on noun phrases. As explained
above, this has some obvious advantages, e.g., it al-
lows to measure the individual contribution of each
NP toward the final score (see Figure 1), but also
some possible limitations. For example, we hypoth-
esize that GROOViST scores may be dependent on
the number of NPs; for stories where grounding
hinges mostly on NPs, we expect GROOViST to be
well aligned with human intuitions; less so when it
hinges on verbs, for example, in which case CLIP-
Score may be better. To test this hypothesis, we
define proportion-of-NPs (P ) of a story as the frac-
tion of NPs to all the words in the story:

P (story) =
#(NPs in story)

#(all words in story)
(4)

We focus on the subset of <image sequence,
story> pairs with high human ratings,9 to ensure
our analysis genuinely explores the role of NPs in
well-grounded stories without being influenced by
other factors. We then compute P values for these
sequences and bin them into two sets—low P and
high P—using the distribution’s mode (0.2325).10

The high P bin comprises 32.7% of the total num-
ber of subset samples.

In Figure 3, we see that our hypothesis is con-
firmed. GROOViST scores turn out to be very well
aligned with human intuitions—and indeed signif-
icantly more correlated than CLIPScore—in the
high P bin. In contrast, our metric lags behind
CLIPScore in the low P bin, though the distance
between the metrics is rather small, and the two
metrics generally achieve very low correlations.
Although the dependency of GROOViST on the
proportion of NPs in a story might be seen as a
limitation of the metric, we argue that nouns and
accompanying phrases tend to offer the most visual
information (Wang et al., 2022). As for RoViST-
VG, it achieves a very low correlation with human
ratings in both analyses, which confirms its flaws.

6 Conclusion

We proposed GROOViST, a novel reference-free
metric for evaluating grounding in visual story-
telling, an aspect that surprisingly is often over-
looked in this task. We showed that existing met-
rics have serious shortcomings, and analyzed the
strengths and limitations of our proposed metric.

9Human rating ≥ 3 on a scale of 1 to 4.
10The same results also hold when using mean and median.

Figure 3: Kendall’s τ (variant=‘c’) correlations of all
grounding metrics with human scores for temporal mis-
alignment (left) and noun phrase proportion (right).

GROOViST is modular, highly interpretable, and
aligned with human intuitions on visual grounding.
Preliminary results indicate that GROOViST is a
suitable tool for evaluating automatically generated
stories. We plan to test this aspect extensively in
future work.

Limitations

In this section, we discuss the limitations specific to
our metric and to the general reference-free evalua-
tion paradigm. As discussed in Section 5.2, GROO-
ViST is heavily dependent on noun phrases making
it oblivious to other visually informative words,
such as verbs. For identifying poorly grounded
NPs, GROOViST relies on a threshold value, which
is determined based on the dataset of interest. This
makes GROOViST vulnerable to the skew of the
dataset. Despite our preliminary analysis, GROO-
ViST’s evaluation of model-generated stories is yet
to be fully tested. Also, in general, reference-free
metrics rely on an underlying pre-trained model,
which often is stagnant in learning and might re-
quire regular fine-tuning for prolonged future rele-
vance. We would also like to underline that through-
out this work, we only used and evaluated mod-
els trained in the English language text. However,
given the modularity of GROOViST, it is possi-
ble to switch to models such as multilingual-CLIP
(Carlsson et al., 2022).

Ethics Statement

For collecting human judgments, we recruited par-
ticipants on a voluntary basis among colleagues of
our institution. All data collected for this work is
de-identified to ensure the privacy and security of
everyone involved. The authors of the VIST dataset
(Huang et al., 2016) mention that all images used
are CC-licensed.
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Appendix

A Text concreteness example

Figure 4 shows that through idf weighting RoViST-
VG penalizes the alignment score of the relatively
frequent noun ‘church’ (0.266). Inversely, idf
weighting increases the low alignment score of
the abstract and relatively less-frequent noun ‘pic’
(0.232). This could have unintended effects on
the overall score of the metric, resulting in several
discrepancies discussed in Sections 2 and 5.

B Human evaluation

We recruited participants on a voluntary basis
among colleagues of our institution. We asked the
participants for their consent through an informed
consent form (see Figure 5). Participants who ex-
pressed their consent, were provided access to a
scoring web interface with instructions. Each of
the participants provided ratings for 100 <image
sequence, story> pairs of the VIST data test set on
a 4-point Likert-like scale.

C RoViST-VG

Model The RoViST-VG model comprises an
image-encoder and a text-encoder. The image-
encoder encompasses a pre-trained ViT model, an
additional linear layer (Wi), and a tanh activation
function for obtaining the image representations
Ie. The text-encoder has a linear layer (Wt) and
a tanh activation function for encoding GLoVe
vectors into text embeddings Te.

Pre-training The procedure used for pre-training
the RoViST-VG model is provided in Algorithm 1.

Algorithm 1 RoViST-VG pre-training
Input: 1)A mini-batch of image regions In with
shape (m × 3 × 224 × 224) where m is the batch
size. 2)A mini-batch of matching noun pairs Tn

with shape (m, 300) where 300 represents the di-
mensions of the GLoVe vectors. Output: Symmet-
ric loss for the mini-batch.
Initialization: Pretrained ViT model with linear
head for the image encoder, and a single linear
layer for the text encoder.

1: hn = VisionTransformer(In)
2: Ie = tanh(Wihn + bi) ▷ image embeddings;

shape=[m,1024]
3: Te = tanh(WtTn + bt) ▷ text embeddings;

shape=[m,1024]
4: logits = Te × ITe ▷ shape=[m, m]
5: Isim = Ie × ITe ▷ shape=[m, m]
6: Tsim = Te × T T

e ▷ shape=[m, m]
7: labels = (Isim + Tsim)/2 ▷ shape=[m, m]
8: Limage = cross_entropy_loss(labelsT , logitsT )
9: Ltext = cross_entropy_loss(labels, logits)

10: Lsymmetric = (Limage + Ltext)/2

D GROOViST pseudocode

For a given <image sequence, story> pair, the pseu-
docode in Algorithm 2 outlines the steps involved
in computing the GROOViST score.

Algorithm 2 GROOViST
Input: Image sequence bounding boxes (Vi), cor-
responding story NPs (Ti), concreteness weights
(Wi), pre-trained CLIP model, score threshold (θ)
Output: unbounded GROOViST score G
Steps:

1: NPpos, NPneg ← { }, { }
2: for k ← 1 to #(Ti) do ▷ # = number of NPs
3: npe, w← CLIP(Ti[k]), Wi[k]
4: nps← 0.0 ▷ score of noun phrase np
5: for each v ∈ Vi do
6: ve← CLIP(v)
7: nps← max(nps, cos(npe, ve))
8: end for
9: if nps ≥ θ then

10: NPpos ← nps × w
11: else
12: NPneg ← -(θ - nps) ×w
13: end if
14: end for
15: G = (

∑
NPpos +

∑
NPneg) / #(Ti)
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Figure 4: Example showing discrepancies of RoViST-VG idf weighting along with GROOViST noun phrase
contributions for comparison. The overall normalized GROOViST score for this sample is 0.846.

Figure 5: Informed consent form used for recruiting participants.
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E Ablation and replacement results

∆ on VIST Flickr8k-Expert τc

GROOViST 0.413 0.414
GROOViST (-C) 0.127 0.421
GROOViST (-P) -0.071 0.289
GROOViST (-C -P) 0.025 0.461
GROOViST (-NPs +Ns) 0.260 0.410
GROOViST (-C +idf ) 0.890 0.379
GROOViST (-C +idf -NPs +Ns) 0.348 0.341

Table 3: Results of ablating/replacing components of
GROOViST. ∆ refers to the difference between the
scores obtained by the original and random <image
sequence, story> pairs—the higher the better.
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