
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 3355–3371
December 6-10, 2023 ©2023 Association for Computational Linguistics

TOD-Flow: Modeling the Structure of Task-Oriented Dialogues

Sungryull Sohn1∗ Yiwei Lyu2∗ Anthony Zhe Liu2 Lajanugen Logeswaran1

Dong-Ki Kim1 Dongsub Shim1 Honglak Lee1,2
1LG AI Research 2University of Michigan, Ann Arbor

Abstract

Task-Oriented Dialogue (TOD) systems have
become crucial components in interactive ar-
tificial intelligence applications. While re-
cent advances have capitalized on pre-trained
language models (PLMs), they exhibit limi-
tations regarding transparency and controlla-
bility. To address these challenges, we pro-
pose a novel approach focusing on inferring
the TOD-Flow graph from dialogue data an-
notated with dialog acts, uncovering the un-
derlying task structure in the form of a graph.
The inferred TOD-Flow graph can be easily in-
tegrated with any dialogue model to improve
its prediction performance, transparency, and
controllability. Our TOD-Flow graph learns
what a model can, should, and should not
predict, effectively reducing the search space
and providing a rationale for the model’s pre-
diction. We show that the proposed TOD-
Flow graph better resembles human-annotated
graphs compared to prior approaches. Further-
more, when combined with several dialogue
policies and end-to-end dialogue models, we
demonstrate that our approach significantly im-
proves dialog act classification and end-to-end
response generation performance in the Multi-
WOZ and SGD benchmarks. Code available at:
https://github.com/srsohn/TOD-Flow

1 Introduction

Task-Oriented Dialogue (TOD) systems have at-
tracted significant attention due to their potential
applications in personal assistants, customer sup-
port, and other interactive systems that necessitate
human-like conversation (Balaraman et al., 2021;
Zhang et al., 2020). Many of the recent advances
in TOD have heavily leaned on pre-trained lan-
guage models (PLMs) (He et al., 2022b; Wu et al.,
2020) that are first pre-trained on a large corpus
of data in an unsupervised manner, and then ei-
ther fine-tuned (He et al., 2022b; Chen et al., 2019;

*Equal Contribution

Wang et al., 2020) or subjected to few-shot prompt-
ing (Hudeček and Dušek, 2023; Labruna et al.,
2023) to adapt them to specific dialogue domains.
While these approaches have yielded commend-
able performance, they have limitations. Few-shot
prompted models have been challenged by issues
of transparency, controllability, and adaptability to
specific domains, especially when working with
only a few examples. The lack of understand-
ing of their decision-making processes and fine-
grained control over their output is often inade-
quate, which can result in sub-optimal conversa-
tional experiences. On the other hand, fine-tuned
models are confronted with their own unique chal-
lenges. While they offer improved performance
by aligning the model with task-specific semantics,
this approach typically requires large annotated
datasets and resources which can be a limiting fac-
tor in practice. Furthermore, these models often
lack transparency, making it challenging to under-
stand the reasons behind their decisions or predic-
tions.

Some prior works (Raghu et al., 2021; Laradji
et al., 2023) introduced workflow-based dialog
models to handle the challenges in existing TOD
models. These methods aim to explicitly model the
structure of dialog in a graph format. Grounding
the dialog in the graph offers benefits in terms of
1) elucidating the reasoning of system’s decisions
in terms of the relationships (i.e., transparency); 2)
allow human manipulation of the dialogue model
via graph modification (i.e., controllability) with-
out retraining the dialog model. However, real-
world dialogues were often unstructured, making
it non-trivial to be modeled as a workflow, and
the necessity of manually designing the domain-
specific workflow or its elements limits its practical
applicability.

To tackle these challenges, we propose to learn
the subtask graph (Sohn et al., 2018) from task-
oriented dialog data. Intuitively, the subtask graph

3355

https://github.com/srsohn/TOD-Flow

Sampled Responses:
1. Booking is complete
2. The price is …; Can you

confirm?
3. Can you confirm … ?

Violation
Check &

Rank
With Graph

Ranked Response:
2. The price is …; Can you

confirm?
3. Can you confirm … ?
1. Booking is completeR

e
sp

o
n

se

G
e

n
er

at
io

n
 T

as
k

TOD-Flow Graph

B

A

C
D

SHOULD: After A, C always follows

CAN: A is required for B

SHOULD NOT: After A, D never follows

Next Dialog Acts:
Confirm Information
Book Hotel

Filter &
Modify

With Graph

Next Dialog Acts:
 Confirm Information
- Book Hotel
+ Inform Price

N
ex

t
D

ia
lo

g
A

ct

P
re

d
ic

ti
o

n
 T

as
k

A B Dialog Acts

Figure 1: (Left) Our TOD-Flow graph captures the causal dependency between dialog acts in terms of can, should,
and should not relationships. (Right) Intuitively, given the TOD-Flow graph, we can predict the relevant and
irrelevant dialog act or responses based on the current dialog state. Based on the predicted relevance, we can
filter and rank the base model outputs to enhance the prediction performance in both dialog act classification and
end-to-end response generation tasks.

can predict the affordance (i.e., availability) of the
action from the status of environment and agent
(i.e., the progress of completing a task or the sub-
tasks). The subtask graph framework has two major
benefits: i) subtask graphs can be inferred from the
demonstrations without any direct supervision (e.g.,
video (Jang et al., 2023) or transcript (Logeswaran
et al., 2023)), ii) subtask graphs can be combined
with the base prediction model to improve its pre-
diction since the subtask graph does not decide
what to predict but instead suggests the affordable
candidates of prediction.

Contributions. The main contribution of this
work is generalizing the subtask graph framework
into task-oriented dialog settings. To this end, we
propose the TOD-Flow graph, which extends the
subtask graph framework in three major aspects.
First, we show that subtask graph can infer the rela-
tionship between dialog state and dialog acts with-
out requiring any manual definition of nodes and
edges in graphs. Second, in addition to the precon-
dition (or can relationship), we present learning al-
gorithms to model two novel relationships, should
and should not, which provide more fine-grained
control and improved prediction. For instance, a
can relationship may represent that the system can
make a payment only if the user confirms the pay-
ment. The should relationship may learn that if a
user ask about the address of the hotel, the system
should reply back. Conversely, a should not rela-
tionship may dictate that the system usually does
not predict a farewell if the user’s last utterance

implies a question. Third, we demonstrate that the
inferred TOD-Flow graphs can enhance any dia-
log policy or end-to-end dialog system, whether
fine-tuned or prompted, without the necessity of
retraining.

2 Background

Our main contribution, the TOD-Flow graph, is an
extension of the subtask graph framework (Sohn
et al., 2018, 2020), which describes the causal
dependency structure of a compositional task τ
consisting of a set of subtasks. In the context of
task-oriented dialogue, dialog acts can be seen as
subtasks. Each subtask has a precondition that
must be satisfied before the subtask can be per-
formed. Note that the precondition is not the only
relationship between subtask, and in Section 3.2 we
extend it by incorporating other types of relation-
ships. Since precondition describes the causal rela-
tionship between subtasks, it imposes a constraint
on the order in which subtasks can be performed
(e.g., the system can make a payment only after the
user confirms the payment). Formally, we define
the precondition as a Boolean expression consisting
of Boolean constants (e.g., True or False), Boolean
variables and logical connectives (e.g., and (&), or
(|)). To illustrate, consider the precondition of sub-
task C: fC = &(A, B), where the subtasks A and B
must be completed before C is completed. It can be
equivalently viewed as a Boolean function where
inputs are Boolean variables indicating whether
subtasks A and B are completed, and the output

3356

represents whether the precondition fC is satisfied:
fC(A = True, B = False) = True & False = False.
Also, the boolean expression fC = &(A, B) can be
viewed as a graph with vertices consisting of sub-
tasks and logical operators V = {A, B, C,&} and
edges E = {A → &, B → &, & → C} that rep-
resent preconditions. We will use these different
views of the precondition (i.e., as a boolean ex-
pression, graph or function) interchangeably. The
subtask graph visualizes the preconditions f1, . . .
of the subtasks (see Figure 1 for examples). We
note that the subtask graph has been adopted in
various settings (Liu et al., 2022; Sohn et al., 2020,
2022) and subsumes other task graph formats (An-
dreas et al., 2017; Boutilier et al., 1995; Sakaguchi
et al., 2021), flowchart (Raghu et al., 2021), and
workflow (Laradji et al., 2023).

3 TOD-Flow Graph Learning

3.1 Problem Formulation

For dialogue turn t, let ut be the user input and rt
be the corresponding system response. The user
inputs and system responses are represented as a
set of dialog acts that labels the raw language ut-
terance at each turn according to its category of
meaning: ut, rt ⊂ A, where A is the set of dialog
acts. Let dt be the database query result that can
be obtained through querying the database. Then,
the dialog data D is a set of dialog trajectories
Dτ = {(u0, r0, d0, u1, . . .), . . .}. Given the dia-
log data Dτ , the goal is to generate the TOD-Flow
graph G that models the dependency between sys-
tem acts, user acts, and database results in graph
format.

Challenges. There are two main challenges in
tackling this task. First, the information in the di-
alogue is noisy due to annotation errors such as
missing or ambiguous dialog acts, slots, and values.
Second, these dialog annotations only provide par-
tial information about the underlying relationships
between subtasks. Thus, we need to infer whether
each relationship is satisfied or not from the dia-
logue annotations. We describe how we overcome
these challenges in Section 3.3.

3.2 TOD-Flow Graph

For each dialog act a, the TOD-Flow graph is de-
fined in terms of three conditions: Cana, Shda, and
Shdnta. Intuitively, Cana, Shda and Shdnta condi-
tion respectively defines whether the dialog act a

Cond
a[n] Executed

(a[n] = 1)
Not executed
(a[n] = 0)

fShd
n = 1 True positive False positive
fShd
n = 0 - -

fShdnt
n = 1 False positive True positive
fShdnt
n = 0 - -
fCan
n = 1 True positive -
fCan
n = 0 False negative -
fBC
n = 1 True positive False positive
fBC
n = 0 False negative True negative

Table 1: Confusion matrix of the TOD-Flow graphs
(Shd, Shdnt, Can) and the BC baseline with respect to
the dialog act label a[n]. The empty cell (−) indicates
that the label for each relationship is unavailable.

can, should, and should not be performed by the
agent (user or system) at a given status. Similar to
the precondition in subtask graph framework (see
Section 2), each condition is defined as a Boolean
expression. Also, it can be equivalently viewed as
a Boolean function fCan, fShd, fShdnt : c 7→ {0, 1}
or a graph (see Section 2), where c ∈ {0, 1}Nτ

is the subtask completion (or dialog state) vector
indicating whether nth subtask has been achieved
(i.e., c[n] = 1) or not (i.e., c[n] = 0).

3.3 Learning TOD-Flow Graphs

Dataset. Given the dialogue data D =
{(ut, dt, rt)}, we aim to build the graph inference
dataset DG = {(ct,at)}, from which we can infer
the TOD-Flow graph fCan, fShd, and fShdnt. The
action set at is the set of dialog acts that were
performed at turn t: at = ut ∪ rt. The comple-
tion set ct is the set of dialog acts and database
query that has ever been performed before turn t:
ct = ct−1 ∪ at−1 ∪ {dt−1}.

Shd inference. When should condition is satis-
fied (i.e., fShd

n (c)=1), the agent is required to per-
form the nth dialog act (i.e., a[n] = 1). When the
should condition is not satisfied (i.e., fShd

n (c)=0),
the should relationship has no effect on the policy.
This relationship can be represented as the confu-
sion matrix shown in the first two rows in Table 1.
Accordingly, we maximize the true positive, while
minimizing the false positive by maximizing the
objective JShd in Equation (1).

JShd = E(c,a[n])

[
I(a[n] = 1|fShd

n (c) = 1)
]

(1)

3357

Figure 2: An illustration of our graph-conditioned dia-
log policy. We sample multiple predictions from base
dialog policy π, then use our graph to filter, add and re-
move acts from each prediction following Algorithm 1.
Then we obtain final prediction by selecting the graph-
conditioned prediction with the largest size.

Shdnt inference. Similar to Shd, when the shoud-
not condition is satisfied, (i.e., fShdnt

n (c) = 1), the
agent is required not to perform the nth dialog act
(i.e., a[n] = 0), and agent has a freedom to exe-
cute the nth dialog act when the condition is not
satisfied (i.e., fShdnt

n (c) = 0). Table 1 summarizes
the relationship between Shdnt and a[n]. We learn
fShdnt
n by maximizing the following objective:

JShdnt = E(c,a[n])

[
I(a[n] = 0|fShdnt

n (c) = 1)
]
.

(2)

Can inference. By definition of Can (or precondi-
tion), a dialog act can only be performed (an = 1)
if its Can condition is satisfied (i.e., fCan

n (c) = 1):
a true positive case in Table 1. On the contrary, it
is a contradiction if a dialog act an is performed
while its Can is not satisfied (i.e., fCan

n (c) = 0): a
false negative case in Table 1. Thus, the fCan can
be learned by maximizing the following objective:

JCan = E(c,a[n])

[
I[fCan

n (c) = 1|a[n] = 1]
]
. (3)

However, different from Shd and Shdnt, inferring
Can is nontrivial, because if we maximize JCan,
we get the trivial precondition: always true (i.e.,
fCan
n (c) = 1 for all c). Previous works handled

this issue by either making additional assump-
tions (Hayes and Scassellati, 2016; Huang et al.,
2019) or applying regularization (Jang et al., 2023).

Algorithm 1 TOD-flow Graph-conditioned Dia-
logue Model

Require: Dialogue model π, TOD-flow graph
fCan, fShd, fShdnt, Completion c

Ensure: Sampled dialog acts a
1: a ∼ π ▷ Sample dialog acts from π
2: a← a ∪ {a′|fShd

a′ (c) = 1} ▷ Apply Shd
3: a← a ∩ {a′|fCan∧¬Shdnt

a′ (c) = 1}
4: ▷ Apply Can ∧ ¬Shdnt
5: return a

However, these approaches unavoidably introduces
noise in learning, and require careful hyperparam-
eter tuning to balance between objective and reg-
ularization. Instead, inspired by the fact that Can
and ¬Shdnt (i.e., negation of Shdnt) applies to the
policy in the same manner (i.e., the dialog act a can
be performed if both fCan

n = 1 and f¬Shdnt
n = 1),

we propose to infer Can and Shdnt simultaneously
as follows:

JCan∧¬Shdnt

= E(c,a[n])

[
I[fCan∧¬Shdnt

n (c) = 1|a[n] = 1]

+ α I[fCan∧¬Shdnt
n (c) = 0|a[n] = 0]

]
, (4)

where α determines the relative weight between
Can and Shdnt in optimization. Intuitively, the
agent can perform nth dialog act only if Can is
satisfied and Shdnt is not satisfied.

Baseline. As an ablation model, we consider the
behavioral cloning (BC) (Michie et al., 1990) ob-
jective, which tries to mimic the demonstration
behavior:

JBC = E(c,a[n])

[
I
[
fBC
n (c) = a[n]

]]
(5)

The confusion matrix is shown at the bottom of
Table 1.

We can use any binary classification models
to optimize the objectives (1), (4), and (5). We
used the decision tree models in the experiment fol-
lowing the previous works (Boutilier et al., 1995;
Huang et al., 2019; Sohn et al., 2020).

4 Graph-conditioned Dialog Modeling

We describe how the inferred TOD-flow graph G
can enhance the prediction performance of any off-
the-shelf dialogue policies and end-to-end dialog
systems.

3358

In
te

nt
 In

fo
rm

ed

G
et

C
ar

sA
va

ila
bl

e

SY
S

Q
ue

ry

G
et

C
ar

sA
va

ila
bl

e

SYS Ask
dropoff date

SYS Asked
dropoff date

Dropoff date
informed&

SYS Ask
pickup city

SYS Asked
pickup city

Pickup city
informed&

SYS Ask
pickup date

SYS Asked
pickup date

Pickup date
informed&

SYS Ask
pickup time

SYS Asked
pickup time

Pickup time
informed&

&

In
te

nt
 In

fo
rm

ed

G
et

C
ar

sA
va

ila
bl

e

SY
S

Q
ue

ry

G
et

C
ar

sA
va

ila
bl

e

SYS Ask
dropoff date

SYS Asked
dropoff date

Dropoff date
informed&

SYS Ask
pickup city

SYS Asked
pickup city

Pickup city
informed&

SYS Ask
pickup date

SYS Asked
pickup date

Pickup date
informed&

SYS Ask
pickup time

SYS Asked
pickup time

Pickup time
informed&

&

In
te

nt
 In

fo
rm

ed

G
et

C
ar

sA
va

ila
bl

e

SY
S

Q
ue

ry

G
et

C
ar

sA
va

ila
bl

e

SYS Ask
dropoff date

SYS Asked
dropoff date

Dropoff date
informed&

SYS Ask
pickup city

SYS Asked
pickup city

Pickup city
informed&

SYS Ask
pickup date

SYS Asked
pickup date

Pickup date
informed&

SYS Ask
pickup time

SYS Asked
pickup time

Pickup time
informed&

&

In
te

nt
 In

fo
rm

ed

G
et

C
ar

sA
va

ila
bl

e

SY
S

Q
ue

ry

G
et

C
ar

sA
va

ila
bl

e

SYS Ask
dropoff date

SYS Asked
dropoff date

Dropoff date
informed&

SYS Ask
pickup city

SYS Asked
pickup city

Pickup city
informed&

SYS Ask
pickup date

SYS Asked
pickup date

Pickup date
informed&

SYS Ask
pickup time

SYS Asked
pickup time

Pickup time
informed&

&

(a) Human-drawn Ground Truth (b) BC

(c) MSG2 (d) TOD-Flow (Ours)

Legend
Dialog State (SYSTEM)

Dialog State (USER)

Dialog acts

& And block

Positive edge

Negative edge

Redundant edges

Missing edges

Figure 3: Comparing baselines and our method against human-drawn ground truth graph on a subpart of the
RentalCars_1 domain of SGD. Dotted lines are negative edges (logical negations). Red edges are missing edges
and blue edges are redundant edges compared to the ground truth. In this scenario, the system is allowed to ask for
a slot if user has informed the intent of finding an available car and has not yet informed this slot and the system
have not yet asked for the slot; and the system can only query for a car when all 4 slots are informed. Our method
perfectly matches the ground truth, while both baselines have incorrect edges (BC has 4 redundant edges and 2
missing edges, while MSG2 has 11 missing edges).

4.1 Graph-conditioned Dialog Policy

The inferred TOD-flow graph (Shd and Can ∧
¬Shdnt) can propose the dialog acts that can,
should, and should not be performed given the
current dialog history (or completion set). Fig-
ure 2 and Algorithm 1 describes the entire process.
Given a base dialogue policy πDP, we sample the
system acts from the policy a ∼ πDP, and filter,
add and remove acts from the sampled system acts
according to the Can, Shd, and Shdnt, respectively.

We can further improve the prediction perfor-
mance if our baseline dialog model can be sampled
multiple times with different results, as illustrated
in Figure 2. We use the graph to condition each
candidate result, then select the best one using a
selection method such as most number of actions in
set, candidate with least graph violations, etc. We
empirically found that simply choosing the result
with the most actions works best.

4.2 Graph-conditioned End-to-end Response
Generation

End-to-end dialogue system directly reads and out-
puts the utterances in natural language form. Given
the base end-to-end model πe2e, we sample multi-
ple system utterances from the base model (mostly
via beam-search alternates, see Appendix A.2.1
for details). Then, we use a few-shot prompted
GPT-3.5-turbo model to annotate each generated
candidate utterance with the dialog act (see Ap-
pendix A.2.3 for details). Finally, we use the in-
ferred graph to choose the best utterance that has
the least violation rate (i.e., portion of dialog acts
that violates the inferred Can, Shd, and Shdnt con-
ditions). Note that with this approach, all final
responses still comes from the base end-to-end
model, so the improvement is still upper-bounded
by the capabilities of the model. Our graph simply
presents a better candidate selection method.

3359

Models
SGD (24 domains) MultiWOZ (14 domains)

FLAN-T5 GPT-turbo FLAN-T5 GPT-turbo

No Graph 49.9% 78.8% 21.6% 40.8%
+BC 57.2% 71.8% 23.5% 38.2%
+MSG2 (Jang et al., 2023) 52.4% 79.4% 23.8% 40.2%
+TOD-Flow (ours) 83.1% 89.2% 35.0% 48.2%

Table 2: Average F-1 scores of next system action prediction experiment on two datasets (SGD and MultiWOZ)
and two large language models (FLAN-T5 and GPT-turbo) as few-shot predictors. We can see that while BC often
damages performance, TOD-Flow consistently improves performance by a significant amount.

5 Experiments

We perform experiments to show that (1) the TOD-
flow graph can be accurately predicted without any
supervision, (2) our graph can improve the accu-
racy of dialog policy models, and (3) our graph
can improve the quality of response generation in
end-to-end dialog models.

5.1 Dataset

We used two standard TOD benchmarks. Schema-
Guided Dialogue (SGD) (Rastogi et al., 2020) has
over 20k task-oriented simulated conversations
based on human-designed schema. SGD covers
a wide range of domains (i.e., different dialog
acts and goals). We use 24 domains in SGD, and
did not use the schema for experiment. Multi-
WOZ (Budzianowski et al., 2020) has 10k human-
human conversations on 14 domains. Since Mul-
tiWOZ is collected from human-human conversa-
tions, the utterances are much more linguistically
diverse than SGD. Also, different from SGD where
the annotations are generated from the schema,
annotations in MultiWOZ are labeled by human.
Therefore, the annotations in MultiWOZ are often
noisy (i.e., inconsistent, wrong, or missing), which
present additional challenge compared to SGD.

For both datasets, we obtain train/test splits
of the dialogs within each domain (see Ap-
pendix A.1.1 for details). The training set is used
for 1) inferring TOD-Flow graph, 2) building
demonstration for few-shot prompted models, and
3) finetuning the finetuning-based models. The test
set is only used for evaluation. For graph inference,
we map the dialog act of user, database, and sys-
tem to completion c and dialog act a vectors as
described in Section 3.3.

5.2 Baselines

We compare three graph inference algorithms:

• BC learns to imitate the demonstration via
behavioral cloning (see Section 3.3)

• MSG2 (Jang et al., 2023) learns the sub-
task graph by optimizing the JCan (see Equa-
tion (3)) with complexity regularization.

• TOD-Flow (ours) is our TOD-Flow graph
learning algorithm.

For fair comparison, we used the scikit-learn deci-
sion tree model (Pedregosa et al., 2011) for all the
graph inference algorithms.

5.3 TOD-Flow Graph Inference

We first qualitatively compare the inferred graphs
with the human-drawn graphs on RentalCars_1
domain in SGD dataset. We found that in gen-
eral TOD-Flow produces graphs that agree with
the human-drawn graphs much more often com-
pared to baselines (BC and MSG2). Figure 3 illus-
trates the subpart of the inferred and human-drawn
graph, where TOD-Flow inferred the graph per-
fectly matches the human-drawn graph, while the
baselines missed important information (such as
not requiring all 4 required slots to be informed
before performing the query).

5.4 Task 1: Dialog Policy Learning

Base Models. We use two instruction-tuned large
language models (LLM) as baseline dialog policy:
FLAN-T5-xxl (Chung et al., 2022) and GPT-turbo1.
At each turn, we prompt the LLM with five demon-
stration dialogues from train split of the same do-
main followed by the dialogue history, and ask the
model to predict next system dialog acts. See Ap-
pendix A.1.2 for more details on prompting the
LLM.

1https://platform.openai.com/docs/models/gpt-3-5

3360

Can-Shdnt
graph

Shd
graph

Ranking
method

SGD (24 domains) MultiWOZ (14 domains)

FLAN-T5 GPT-turbo FLAN-T5 GPT-turbo

No graph ✗ ✗ Greedy 49.9% 78.8% 21.6% 40.8%

Graph ✗ ✓ Compliance 70.4% 82.5% 26.1% 41.6%
ablations ✓ ✗ Compliance 65.6% 83.5% 30.4% 44.5%

Sampling
& ranking
ablations

✓ ✓ Greedy 80.9% 88.5% 26.2% 45.5%
✓ ✓ Majority 75.2% 88.1% 20.7% 45.0%
✓ ✓ Violation 76.2% 88.3% 23.7% 44.7%
✓ ✓ Uniform 75.8% 88.0% 23.2% 45.2%

Ours ✓ ✓ Compliance 83.1% 89.2% 35.0% 48.2%

Table 3: Ablation studies on graphs and ranking methods for next system action prediction. The numbers shown
are average F-1 scores. We see that both Can-Shdnt and Shd graphs have significant contributions towards the
performance and our Compliance ranking method outperforms greedy sampling or other ranking methods.

Evaluation Protocol. We sample 10 candidate
predictions from the base models, which is filtered
and ranked based on the graph (see Section 4.1) to
choose the best prediction.

Metric. We measure F-1 score between the
ground-truth and predicted system dialog acts at
each turn and average over entire domains.

Results. Table 2 summarizes the F-1 score of
each model on SGD and MultiWOZ. Overall, we
observe that TOD-Flow consistently improves the
prediction accuracy with a significant margin com-
pared to other baselines BC and MSG2 on all base
models and all dataset. We also found that the
improvements are bigger on FLAN-T5 compared
to GPT-turbo. This indicates that the GPT-turbo
already models the Can, Shd, and Shdnt to some
extent, so that augmenting it with the graph pro-
vide less benefits. Since BC learns to mimic the
exact behavior in demonstration, BC tends to dic-
tate the base policy more aggressively and hurts
the performance when combined with strong base
model GPT-turbo. MSG2 correctly models the pre-
condition of dialog acts, but provides less benefit
compared to TOD-Flow due to the conservative
graph learning (i.e., complexity regularization) and
lacking the ability to model Shd and Shdnt rela-
tions.

Ablations. To further justify our design choices,
we performed ablation studies on two key com-
ponents of TOD-Flow: the graphs and the rank-
ing method after graph-conditioning. For filtering
graphs, we examined the effect of Can-Shdnt and
Shd graphs. Regarding the ranking method, we

compare the proposed ranking approach (i.e., Com-
pliance) against various alternatives:

• Greedy ranks by likelihood of base LLM.
• Compliance ranks predictions by larger num-

ber of actions complying with the graph
(i.e. rank by size in Figure 2).

• Majority chooses the majority prediction
among the multi-sampled predictions.

• Violation ranks predictions by least number
of actions filtered, added, and removed in
graph conditioning.

• Uniform randomly chooses one of the multi-
sampled predictions.

The results are shown in Table 3, and TOD-Flow
outperformed all ablations, showing the necessity
of all graphs and ranking by largest set.

5.5 Task 2: End-to-end Response Generation
Base Models. We use the three SOTA end-to-
end dialogue models finetuned on MultiWOZ:
GALAXY (He et al., 2022b), HDNO (Wang et al.,
2020), and HDSA (Chen et al., 2019) as base mod-
els. ‘ Note that for GALAXY, since we were unable
to reproduce the official prediction using the official
repository, we report the result with both official
prediction (GALAXY) and the greedy (i.e., beam
search with beam width=1) prediction we obtained
by running the official repository (GALAXY∗).

Evaluation protocol. From each model, we first
sample five system response utterances: one from
official prediction2 (Nekvinda and Dušek, 2021)

2https://github.com/Tomiinek/MultiWOZ_Evaluation/tree/
master/predictions

3361

Graph BLEU Info Succ Score

HDSA

(no graph) 20.74 87.20 78.00 103.34
+BC 20.76 86.80 77.70 103.01
+MSG2 20.71 86.90 77.90 103.11
+TOD-Flow† 20.69 87.70 78.20 103.64
+TOD-Flow 20.51 88.10 79.00 104.06

HDNO

(no graph) 17.83 93.00 84.50 106.58
+BC 17.79 92.90 84.50 106.49
+MSG2 17.83 92.90 84.40 106.48
+TOD-Flow† 18.08 93.10 85.10 107.18
+TOD-Flow 17.97 93.20 85.00 107.07

GALAXY

(no graph) 19.92 92.00 82.80 107.32
+BC 19.85 91.80 82.50 107.00
+MSG2 19.69 91.30 81.00 105.84
+TOD-Flow† 19.86 92.40 83.30 107.71
+TOD-Flow 19.85 92.40 83.70 107.90

GALAXY∗

(no graph) 18.88 90.70 80.70 104.58
+BC 18.88 90.20 80.40 104.18
+MSG2 18.70 89.80 80.50 103.85
+TOD-Flow† 19.04 91.10 81.40 105.29
+TOD-Flow 19.12 91.10 82.30 105.82

Table 4: Results from the response generation exper-
iment with Galaxy (He et al., 2022b), HDNO (Wang
et al., 2020) and HDSA (Chen et al., 2019) as base mod-
els. The Score metric is computed by Score =BLEU
+(Info +Succ)/2. TOD-Flow† stands for the ablation
model that excludes Shd graph from our TOD-Flow.
As we can see, our graphs consistently improves all met-
rics except BLEU for all models, and we improve the
official scores by a significant amount for each model.

and four from the model downloaded from the
official implementation (see appendix A.2.1 for
details). The graph conditioning process follows
Section 4.2. As an ablation, we also evaluated our
method without conditioning on Shd graphs.

Metric. We follow the standard evaluation met-
ric using the official code (Nekvinda and Dušek,
2021), which computes three metrics on the Mul-
tiWOZ test set: BLEU (average BLEU (Papineni
et al., 2002) scores between generated and ground
truth response), Info (percentage of dialogs where
the system presents an appropriate entity) and

Succ (percentage of dialogs where the task goals
are achieved). The combined score is computed
as Score =BLEU + (Info + Succ)/2. See Ap-
pendix A.2.2 for details on computing these met-
rics. We report all four metrics of the compared
methods.

Result. We show the results in Table 4. We found
that TOD-Flow can consistently improve Info and
Succ metrics for all the base end-to-end dialog mod-
els. BLEU score fluctuates because it depends a lot
on the exact wording of each response, which our
graphs have no control over. The combined score
consistently improves by 0.72, 0.49, 0.58, and 1.24
for HDSA, HDNO, GALAXY, and GALAXY∗,
respectively by conditioning with our TOD-Flow.
Note that these score improvements are actually
quite significant, as the difference between top and
second top SOTA methods (GALAXY and HDNO)
is only 0.74.

Next, we compare different graph generation
methods: BC, MSG2, and TOD-Flow. Overall,
TOD-Flow consistently outperforms other base-
lines, MSG2 and BC. In fact, the MSG2 and BC
often underperforms the greedy prediction with-
out graph conditioning (i.e., (no graph). Since the
sampled predictions are in general much worse
than the greedy prediction, unless the graph-based
ranking is highly accurate, it often samples the
prediction that is worse than greedy prediction.
On the contrary, TOD-Flow is often able to ac-
curately pick out the non-greedy better alternative
to outperform the greedy predictions. We show
one such example in Table 5. We also found that
excluding Shd graphs (i.e., TOD-Flow†) signifi-
cantly reduced the improvement in all base models
except HDNO. This shows that, while using only
Can-Shdnt graphs also consistently improves per-
formance of all base models, including Shd graphs
can generally get even better results.

6 Related Work

Task-oriented Dialog Systems. There are two
main classes of task-oriented dialog systems:
pipeline systems and end-to-end systems. In
pipeline approaches, the dialog system is seg-
mented into various modules such as natural lan-
guage understanding (NLU), dialog state tracking
(DST), dialog policy and natural language genera-
tion (NLG) (Zhang et al., 2020). The NLU module
first converts user language input into standardized
dialog acts, slots and values. The DST module

3362

History ... (A chat between USER and SYSTEM)
USER: No, I’m not ready to book it yet. Thank you!

Utterance Actions

GALAXY
SYSTEM: The address is [value_address], postcode
[value_postcode], the phone number is
[value_phone]

SYSTEM inform addr
SYSTEM inform post
SYSTEM inform phone

GALAXY
+ TOD-Flow SYSTEM: Is there anything else I can help you with? SYSTEM reqmore

Ground truth SYSTEM: Just let us know when you are ready and we
will be happy to assist you. Have a great day

SYSTEM reqmore
SYSTEM offer booking

Table 5: Qualitative comparison of generated responses of GALAXY and GALAXY+TOD-Flow on the fourth
turn of dialogue SNG0772 in MultiWOZ. GALAXY’s greedy-sampled response informs information such as phone
number and postcode, which is out of context. Instead, our TOD-Flow chooses an alternate response that does not
violate Can (i.e., SYSTEM inform phone) and complies with Shd (i.e., SYSTEM reqmore), and it turns out to be
better and closer to the ground truth.

keeps track of the current dialog state in terms of
the dialog acts, slots and values. Based on the cur-
rent dialog state, the dialog policy module predicts
the next action. Previous works have viewed the
dialog policy task as a Markov Decision Process
(MDP) (Kwan et al., 2023). Common approaches
include reinforcement learning methods such as
Q-learning, policy gradient (Lipton et al., 2017;
Zhou et al., 2017; Gordon-Hall et al., 2020) with
experience-replay (Malviya et al., 2022), or model-
based planning (Peng et al., 2018). Lastly, given the
current dialog states and the predicted dialog acts,
the NLG module generates a response in natural
language. We integrate the TOD-Flow graph into
the dialogue policy module to improve its action
prediction performance by learning what a model
can, should and should not predict.

On the other hand, end-to-end systems integrate
all functionalities into one module. Many end-to-
end models employ a singular language model to
execute all four steps (He et al., 2022a). Alterna-
tively, other methods bypass certain steps, gener-
ating the final response directly (He et al., 2022b;
Wang et al., 2022). Pipeline systems are more in-
terpretable and modular, allowing independent up-
dates for enhanced control. Ours work uses the
TOD-Flow graph to enhance end-to-end model re-
sponses by selecting the best one based on align-
ment with learned Can, Shd and Shdnt conditions.

Graph-based Dialog Systems. There has also
been previous works attempting to integrate graphs
into task-oriented dialog systems. Most of them
focused on using graphs to represent or select infor-
mation from a knowledge base (Yang et al., 2020,

2021). TGDM (Choi et al., 2016) attempted to cre-
ate a dialog policy through manually constucted
graphs, while a followup work (Kwon et al., 2018)
proposed a rule-based system for automatically in-
ferring these graphs given a working dialog policy.
Raghu et al. (2021) tackles the task-oriented dia-
logue problem where the system must ground dia-
log utterances to the manually-defined flowcharts
describing the procedure and adapt to unseen ones
during testing. Laradji et al. (2023) aims to dis-
cover the workflow, a sequence of dialog acts with
their respective slot values, from unseen conversa-
tion. Our TOD-Flow graph is constructed from
labeled dialogue data without any human supervi-
sion. And our graph models the relationship be-
tween dialog acts and slots; e.g., what dialog act or
updates in slot values can happen or not.

7 Conclusion

This work introduced a novel framework for im-
proving the efficiency and predictive accuracy of
task-oriented dialogues models. By leveraging the
concept of subtask graph and generalizing it to
a TOD-flow graph, we accurately inferred the la-
tent task structure within a dialogue. As show-
cased through extensive experimentation with two
public TOD datasets, the proposed technique has
been proven to effectively generate accurate and
human-interpretable graphs. Importantly, we have
integrated these inferred graphs with a range of
dialogue models, without necessitating retraining,
resulting in a substantial enhancement in perfor-
mance in both dialog act classification and end-to-
end response generation.

3363

Limitations

Although our method can be directly used when
there are multiple domains involved in a single dia-
log (by treating combination of domains as a single
separate domain and creating graphs using dialogs
that has the same combination of domains, similar
to what we did for MultiWOZ), this approach is
limited in that (1) we need to infer a graph for ev-
ery combination of domains that is present (such
as the multi-domain dialogs in SGD, where there
are 24 different single-domains alone), and (2) we
cannot easily generalize to unseen domain combi-
nations (even if we have graphs for each individual
domain). In the future, we would like to explore
ways to directly combine graphs for individual do-
mains into multi-domain graphs and thus address
the two limitations above.

We also relied on action annotations from the
datasets to infer graphs, which limits the applica-
bility of our approach. It would be interesting to
extend our approach to unannotated raw dialogues.

Acknowledgments

This work was supported in part by grants from LG
AI Research.

References
Jacob Andreas, Dan Klein, and Sergey Levine. 2017.

Modular Multitask Reinforcement Learning with Pol-
icy Sketches. In ICML.

Vevake Balaraman, Seyedmostafa Sheikhalishahi, and
Bernardo Magnini. 2021. Recent neural methods on
dialogue state tracking for task-oriented dialogue sys-
tems: A survey. In Proceedings of the 22nd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 239–251, Singapore and Online.
Association for Computational Linguistics.

Craig Boutilier, Richard Dearden, Moisés Goldszmidt,
et al. 1995. Exploiting Structure in Policy Construc-
tion. In IJCAI.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2020. Multiwoz – a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling.

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan,
and William Yang Wang. 2019. Semantically con-
ditioned dialog response generation via hierarchical
disentangled self-attention.

Sung-Kwon Choi, Oh-Woog Kwon, Young-Kil Kim,
and Yun-Kyung Lee. 2016. Using a dialogue system

based on dialogue maps for computer assisted second
language learning.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Gabriel Gordon-Hall, Philip John Gorinski, and Shay B.
Cohen. 2020. Learning Dialog Policies from Weak
Demonstrations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1394–1405, Online. Association for
Computational Linguistics.

Bradley Hayes and Brian Scassellati. 2016. Au-
tonomously Constructing Hierarchical Task Net-
works for Planning and Human-Robot Collaboration.
In ICRA.

Wanwei He, Yinpei Dai, Min Yang, Jian Sun, Fei Huang,
Luo Si, and Yongbin Li. 2022a. Unified dialog model
pre-training for task-oriented dialog understanding
and generation. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’22,
page 187–200, New York, NY, USA. Association for
Computing Machinery.

Wanwei He, Yinpei Dai, Yinhe Zheng, Yuchuan Wu,
Zheng Cao, Dermot Liu, Peng Jiang, Min Yang, Fei
Huang, Luo Si, et al. 2022b. Galaxy: A generative
pre-trained model for task-oriented dialog with semi-
supervised learning and explicit policy injection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 10749–10757.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Ani-
mesh Garg, Li Fei-Fei, Silvio Savarese, and Juan Car-
los Niebles. 2019. Neural task graphs: Generalizing
to unseen tasks from a single video demonstration.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 8565–
8574.

Vojtěch Hudeček and Ondřej Dušek. 2023. Are llms all
you need for task-oriented dialogue? arXiv preprint
arXiv:2304.06556.

Yunseok Jang, Sungryull Sohn, Lajanugen Logeswaran,
Tiange Luo, Moontae Lee, and Honglak Lee. 2023.
Multimodal subtask graph generation from instruc-
tional videos. arXiv preprint arXiv:2302.08672.

Wai-Chung Kwan, Hong-Ru Wang, Hui-Min Wang, and
Kam-Fai Wong. 2023. A survey on recent advances
and challenges in reinforcement learning methods

3364

https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25
http://arxiv.org/abs/1810.00278
http://arxiv.org/abs/1810.00278
http://arxiv.org/abs/1810.00278
http://arxiv.org/abs/1905.12866
http://arxiv.org/abs/1905.12866
http://arxiv.org/abs/1905.12866
https://api.semanticscholar.org/CorpusID:56383451
https://api.semanticscholar.org/CorpusID:56383451
https://api.semanticscholar.org/CorpusID:56383451
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/2020.acl-main.129
https://doi.org/10.18653/v1/2020.acl-main.129
https://doi.org/10.1145/3477495.3532069
https://doi.org/10.1145/3477495.3532069
https://doi.org/10.1145/3477495.3532069

for task-oriented dialogue policy learning. Machine
Intelligence Research, 20(3):318–334.

Oh-Woog Kwon, Young-Kil Kim, and Yun-Kyung Lee.
2018. Task graph based task-oriented dialogue sys-
tem using dialogue map for second language learn-
ing. Future-proof CALL: language learning as ex-
ploration and encounters – short papers from EURO-
CALL 2018.

Tiziano Labruna, Sofia Brenna, Andrea Zaninello, and
Bernardo Magnini. 2023. Unraveling chatgpt: A crit-
ical analysis of ai-generated goal-oriented dialogues
and annotations.

Issam H Laradji, Stefania Raimondo, David Vazquez,
Pau Rodriguez, Christopher Pal, et al. 2023. Work-
flow discovery from dialogues in the low data regime.
Transactions on Machine Learning Research.

Zachary C. Lipton, Xiujun Li, Jianfeng Gao, Lihong Li,
Faisal Ahmed, and Li Deng. 2017. Bbq-networks:
Efficient exploration in deep reinforcement learning
for task-oriented dialogue systems.

Anthony Z. Liu, Sungryull Sohn, Mahdi Qazwini, and
Honglak Lee. 2022. Learning Parameterized Task
Structure for Generalization to Unseen Entities. In
AAAI.

Lajanugen Logeswaran, Sungryull Sohn, Yunseok Jang,
Moontae Lee, and Honglak Lee. 2023. Unsupervised
task graph generation from instructional video tran-
scripts. arXiv preprint arXiv:2302.09173.

Shrikant Malviya, Piyush Kumar, Suyel Namasudra,
and Uma Shanker Tiwary. 2022. Experience replay-
based deep reinforcement learning for dialogue man-
agement optimisation. ACM Trans. Asian Low-
Resour. Lang. Inf. Process. Just Accepted.

Donald Michie, Michael Bain, and J Hayes-Miches.
1990. Cognitive models from subcognitive skills.
IEE control engineering series, 44:71–99.

Tomáš Nekvinda and Ondřej Dušek. 2021. Shades of
bleu, flavours of success: The case of multiwoz.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu,
Kam-Fai Wong, and Shang-Yu Su. 2018. Deep dyna-
q: Integrating planning for task-completion dialogue
policy learning.

Dinesh Raghu, Shantanu Agarwal, Sachindra Joshi, et al.
2021. End-to-end learning of flowchart grounded
task-oriented dialogs. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4348–4366.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689–8696.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially Ordered Scripts Genera-
tion. In Findings of EMNLP.

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. 2018.
Hierarchical Reinforcement Learning for Zero-shot
Generalization with Subtask Dependencies. In
NeurIPS.

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, and
Honglak Lee. 2020. Meta Reinforcement Learning
with Autonomous Inference of Subtask Dependen-
cies. In ICLR.

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, Lyub-
ing Qiang, Izzeddin Gur, Aleksandra Faust, and
Honglak Lee. 2022. Fast Inference and Transfer
of Compositional Task Structures for Few-shot Task
Generalization. In UAI.

Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yun-
jie Gu. 2020. Modelling hierarchical structure be-
tween dialogue policy and natural language genera-
tor with option framework for task-oriented dialogue
system. arXiv preprint arXiv:2006.06814.

Weizhi Wang, Zhirui Zhang, Junliang Guo, Yinpei Dai,
Boxing Chen, and Weihua Luo. 2022. Task-oriented
dialogue system as natural language generation. In
Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’22, page 2698–2703, New
York, NY, USA. Association for Computing Machin-
ery.

Chien-Sheng Wu, Steven Hoi, Richard Socher, and
Caiming Xiong. 2020. Tod-bert: Pre-trained natural
language understanding for task-oriented dialogue.
arXiv preprint arXiv:2004.06871.

Jen-Chieh Yang, Jia-Yan Wu, Sung-Ping Chang, and Ya-
Chieh Huang. 2021. Gks: Graph-based knowledge
selector for task-oriented dialog system.

Shiquan Yang, Rui Zhang, and Sarah Erfani. 2020.
GraphDialog: Integrating graph knowledge into end-
to-end task-oriented dialogue systems. In Proceed-
ings of the 2020 Conference on Empirical Methods

3365

https://api.semanticscholar.org/CorpusID:58372154
https://api.semanticscholar.org/CorpusID:58372154
https://api.semanticscholar.org/CorpusID:58372154
http://arxiv.org/abs/2305.14556
http://arxiv.org/abs/2305.14556
http://arxiv.org/abs/2305.14556
http://arxiv.org/abs/1608.05081
http://arxiv.org/abs/1608.05081
http://arxiv.org/abs/1608.05081
https://doi.org/10.1145/3539223
https://doi.org/10.1145/3539223
https://doi.org/10.1145/3539223
http://arxiv.org/abs/2106.05555
http://arxiv.org/abs/2106.05555
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1801.06176
http://arxiv.org/abs/1801.06176
http://arxiv.org/abs/1801.06176
https://doi.org/10.1145/3477495.3531920
https://doi.org/10.1145/3477495.3531920
http://arxiv.org/abs/2112.03719
http://arxiv.org/abs/2112.03719
https://doi.org/10.18653/v1/2020.emnlp-main.147
https://doi.org/10.18653/v1/2020.emnlp-main.147

in Natural Language Processing (EMNLP), pages
1878–1888, Online. Association for Computational
Linguistics.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie
Huang, and XiaoYan Zhu. 2020. Recent advances
and challenges in task-oriented dialog systems. Sci-
ence China Technological Sciences, 63(10):2011–
2027.

Li Zhou, Kevin Small, Oleg Rokhlenko, and Charles
Elkan. 2017. End-to-end offline goal-oriented dialog
policy learning via policy gradient.

A Experiment Details

A.1 Next Action Prediction
A.1.1 Dataset Preprocessing details
In the next action prediction experiment, we are
using 2 datasets: MultiWOZ (Budzianowski et al.,
2020) and SGD (Rastogi et al., 2020). We first
split each dataset into domains and train/test splits.
For MultiWOZ, the dataset has an official split-
ting of train/val/test splits, so we follow the same
splits; while MultiWOZ contains dialogs from 7
domains, 2 of them (police, hospital) have no test
dialogs, thus we split MultiWOZ dialogs into 14
domains, including 5 single-domains (i.e. dialogs
that only involves one of the 5 domains) and 9
multi-domains (i.e. dialogs that involves multiple
domains, such as Hotel+Train). For SGD, since
the official train/val/test splits often involves test
schemas that does not exist in the train set, we de-
cided to create our own train/test splits from the
official training set. There are 24 different schemas
that have single-schema dialogs in the official train-
ing set, so we treat each of these schemas as a
separate domain and randomly split dialogs within
each domain into train/test splits at a 9:1 ratio.

We then turn each dialog into a trajectory (as
defined in section 3.1). Below is how we define the
dialog actions within each domain of each dataset:

For SGD, since there are already very compre-
hensive dialog acts and slot annotations, we directly
use the acts defined in the dataset (with a few re-
naming) plus the slot annotations to build our set
of all possible actions. In addition, since SGD pro-
vides explicit annotations about system’s database
queries, whenever the system queries database, we
add an additional turn in our trajectory with one
action "SYSTEM query <Intent>" and the status
update would be either query success or query fail-
ure.

For MultiWOZ, we mostly also directly use the
acts and slots in the dataset annotation to build

our set of all possible actions, but we did some
re-naming and re-organization to remove some re-
dundant combinations of acts and slots (for ex-
ample, "SYSTEM Booking-Inform <slot>" was
changed into "SYSTEM OfferBook + SYSTEM
inform <slot>"). Since there are no explicit anno-
tation about database querying, we simply assume
that the system looks up information before each
"book/nobook" operation and add a corresponding
status update to the utterance before these actions.
We do not explicitly add "query" actions or addi-
tional turns to the trajectories.

Then, within each domain, we will use the tra-
jectories of the train split dialogs to obtain graphs
and also act as demonstrations for LLMs, and use
the graphs to improve next action predictions on
the test dialogs.

A.1.2 Large Language Model Prompting
Details

In this experiment, we used GPT-turbo-3.5 as well
as FLAN-T5 (Chung et al., 2022) as baseline next
action predictors. We prompt the two LLMs us-
ing the exact same prompting method. For each
domain, we first randomly select 10 dialogs from
the training split, and then use their trajectories
(i.e. actions and statuses of each turn) as demon-
strations. Then for every system utterance in the
test-split dialogs in the domain, we include as many
of the demonstration trajectories as possible with-
out exceeding the max token limit of the LLMs,
and then we include the partial trajectory of the
test dialog up to the turn where the next system
actions needs to be predicted. Lastly, we ask the
LLM to predict the next system actions, and we
programmatically parse the results into individual
action items. See Figure 4 for example prompt for
SGD and MultiWOZ dataset.

When obtaining the baseline result for each
model, we use the top prediction by probability
by setting temperature to zero (thus the language
model’s generation is deterministic). When we
need to multiple predictions for graph filtering, for
FLAM-T5-xxl we simply do a beam-search of size
10; for GPT-turbo-3.5 we set temperature to 1 and
sample 10 times.

A.2 Response Generation
A.2.1 Getting Alternates from each model
For Galaxy (He et al., 2022b), we used the top
choice of beam-size-1 as well as the top 3 choices
of beam-size-5 as alternates. The overall ranking

3366

http://arxiv.org/abs/1712.02838
http://arxiv.org/abs/1712.02838

of the 5 choices from highest to lowest are baseline,
beam-size-1, beam-size-5 top choice, beam-size-5
second choice, beam-size-5 third choice.

For HDNO (Wang et al., 2020), since the official
prediction baseline is the top choice of beam-size-
5, we use the two choices from beam-size-2 and
the second and third choice from beam-size-5 as
alternates. The overall ranking of the 5 choices
from highest to lowest are baseline (i.e. beam-size-
5 top choice), beam-size-2 top choice, beam-size-5
second choice, beam-size-2 second choice, beam-
size-5 third choice.

For HDSA (Chen et al., 2019) the process is
slightly different. HDSA model consists of 2 parts:
the first part (predictor) predicts the actions the
system will perform (although in a very different
format than what we do in our next action predic-
tion experiment, so not directly comparable), and
the second part (generator) uses the output of the
predictor to generate the response. If we fix the
predictor output and do beam-search on the genera-
tor only, the actions within the generated response
will almost always be identical, which renders our
method useless. Therefore, we created our alter-
nates by tweaking a hyperparameter in the predictor
a little bit. The output of the predictor is a binary
vector, and the post-sigmoid logits of the predictor
is converted to the binary vector by a threshold.
The HDSA official code repository has 0.4 as the
default threshold, and we changed the threshold
around that value and used the different generated
vectors as inputs to the generator to obtain our
alternates. The overall ranking of the 5 choices
from highest to lowest are baseline, threshold-0.4,
threshold-0.375, threshold-0.35, threshold-0.325.

A.2.2 Evaluation Details
We use the official MultiWOZ_Evaluation repos-
itory to evaluate the BLEU/INFORM/SUCCESS
metrics. Since our policy-learning setting assumes
that we have access to the ground truth dialog state
before the utterance, we use the ground truth di-
alog state and active domains in the evaluation
scripts (by removing dialog state / active domain
predictions and only including the response in the
prediction file). This is necessary because we
found that active domain predictions affect the IN-
FORM/SUCCESS metrics, and incorrect active do-
main can increase/decrease INFORM/SUCCESS
randomly. Therefore, to ensure fairness and con-
sistency, we always use the ground truth active
domain during evaluation.

A.2.3 Using GPT as NLU unit
We prompt GPT-turbo-3.5 to convert the candidate
responses into action sets. For responses for di-
alogs in each domain, We first provide randomly
selected dialogs from the training split of the same
domain together with their ground truth system
actions as demonstrations. Then, we specify the
desired output format and provide an example of
the output format. Lastly, we provide the dialog
history of the current candidate responses, and ask
GPT to give us actions to all candidate responses
(i.e. the baseline + 4 sampled from the models).
We start with 6 demonstrations, and we reduce
the number of demonstrations by one iteratively if
the total number of tokens exceeds the maximum
token limit of the model (4097). We show one
example prompt for responses from Galaxy (He
et al., 2022b) together with the GPT completion in
Figure 5.

We evaluated the quality of this NLU process by
using this process to predict actions of the ground
truth responses and compare the predicted actions
to the ground truth actions on a subset of the test
dialogs. We found that on average our NLU’s pre-
dicted actions achieves an average F-1 score of
77.6%, which is okay but far from perfect, and
the imperfectness of our NLU brings additional
challenge to our task.

B Human-drawn GT graphs for SGD

In order to perform qualitative assessment of the
quality of our graphs, we manually drew graphs
for 10 domains in SGD. We show 2 such graphs in
Figure 6 for RideSharing_1 schema and Figure 7
for RentalCars_1 schema respectively.

3367

Figure 4: Example of using GPT-turbo-3.5 to do next system action prediction from the Hotels_1 domain of SGD
(top) and from the Hotel+Train domain of MultiWOZ (bottom). We first provide a few demonstration trajectories in
the prompts, then we ask the large language model to complete the prompt. The text highlighted in green is the GPT
completion, while everything before that is our input prompt. We give the exact same prompt to the other LLM
(FLAN-T5-xxl).

3368

Demonstration:
USER Utterance: i am planning a trip to [value_departure] and looking for a train to get me there . can you help me find 1
please ?
SYSTEM Utterance: we have many trains to cambridge , where are you departing from ?
SYSTEM Actions: SYSTEM train-request depart | SYSTEM train-inform num choices | SYSTEM train-inform dest
USER Utterance: i am departing from [value_departure] and i would like to go to [value_destination] . i would like my train
to arrive by [value_arrive] and leave on [value_day] .
SYSTEM Utterance: the [value_id] arrives in [value_destination] by [value_arrive] , can i book a ticket for you ?
SYSTEM Actions: SYSTEM train-inform arrive | SYSTEM train-inform dest | SYSTEM train-inform id | SYSTEM
train-offerbook
[... omitting 7 turns of interactions …]
USER Utterance: not at this time . thank you for all the information . i am all set . goodbye .
SYSTEM Utterance: have a nice day , goodbye
SYSTEM Actions: SYSTEM general-bye

Demonstration:

[... omitting 5 more full dialog demonstrations …]

Now, we are going to ask you to predict the actions from several candidate responses. Your answer format must fit the
following example:

(1) [value_name] is a [value_food] restaurant .
(2) there are [value_choice] restaurant-s that meet your criteria . 1 serves [value_food] food and the other serves
[value_food] food . do you have a preference ?
(3) there are [value_choice] restaurant-s that meet that criteria . 1 serves [value_food] food and the other serves
[value_food] food . which would you prefer ?

Your output should be:

(1) SYSTEM restaurant-inform name | SYSTEM restaurant-inform food
(2) SYSTEM restaurant-ask-for-selection food | SYSTEM restaurant-inform num-choices | SYSTEM restaurant-inform food
(3) SYSTEM restaurant-ask-for-selection food | SYSTEM restaurant-inform num-choices | SYSTEM restaurant-inform food

Now consider the following partial dialog:

USER Utterance: i am looking for a train that leaves on [value_day] and arrives by 10.30

Based on the demonstrations above, predict the SYSTEM Actions for each of the following candidate SYSTEM response:
(1) i can help you with that . where are you departing from and arriving ?
(2) where are you departing from and arriving to ?
(3) there are [value_choice] trains that meet that criteria . where are you departing from and arriving to ?
(4) there are [value_choice] trains available . where are you departing from and arriving ?
(5) there are [value_choice] trains available . where are you departing from and arriving to ?

Your Answer:
(1) SYSTEM train-request depart | SYSTEM train-request dest
(2) SYSTEM train-request depart | SYSTEM train-request dest
(3) SYSTEM train-inform num choices | SYSTEM train-request depart | SYSTEM train-request dest
(4) SYSTEM train-inform num choices | SYSTEM train-request depart | SYSTEM train-request dest
(5) SYSTEM train-inform num choices | SYSTEM train-request depart | SYSTEM train-request dest

Figure 5: Example of using GPT-turbo-3.5 to obtain actions from candidate responses from Galaxy (He et al.,
2022b). The parts highlighted in green are completion from GPT, and everything before that is our prompt.

3369

Figure 6: Human-drawn ground truth graph for RideSharing_1 domain in SGD.

3370

Figure 7: Human-drawn ground truth graph for RentalCars_1 domain in SGD.

3371

