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Abstract

Cross-lingual transfer learning heavily relies on
well-aligned cross-lingual representations. The
syntactic structure is recognized as beneficial
for cross-lingual transfer, but limited researches
utilize it for aligning representation in multi-
lingual pre-trained language models (PLMs).
Additionally, existing methods require syntac-
tic labels that are difficult to obtain and of poor
quality for low-resource languages. To address
this gap, we propose Struct-XLM, a novel mul-
tilingual language model that leverages rein-
forcement learning (RL) to autonomously dis-
cover universal syntactic structures for improv-
ing the cross-lingual representation alignment
of PLM. Struct-XLM integrates a policy net-
work (PNet) and a translation ranking task. The
PNet is designed to discover structural infor-
mation and integrate it into the last layer of the
PLM through the structural multi-head atten-
tion module to obtain structural representation.
The translation ranking task obtains a delayed
reward based on the structural representation to
optimize the PNet while improving the align-
ment of cross-lingual representation. Experi-
ments show the effectiveness of the proposed
approach for enhancing cross-lingual transfer
of multilingual PLM on the XTREME bench-
mark1.

1 Introduction

Cross-lingual representation is a crucial compo-
nent in the development of multilingual natural lan-
guage processing (NLP) systems (Hu et al., 2020).
Various multilingual Pre-trained Language Models
(PLMs) like XLM-R (Conneau et al., 2020), XY-
LENT (Patra et al., 2022), and VECO2.0 (Zhang
et al., 2023) have demonstrated their effectiveness
in cross-lingual transfer learning.

The alignment of cross-lingual representation
is vital for effective cross-lingual transfer learn-

†Corresponding authors.
1The code is available at https://github.com/

wulinjuan/Struct-XLM

ing. Previous researches extend the pre-training
tasks by introducing novel pre-training objectives
at different levels of granularity, such as token-level
(Luo et al., 2021; Zhang et al., 2023), word-level
(Huang et al., 2019; Wei et al., 2021), and sentence-
level (Huang et al., 2019; Wei et al., 2021; Chi
et al., 2021; Ouyang et al., 2021). These objec-
tives provide explicit guidance for the model to
learn aligned information across languages. Some
models (Luo et al., 2021; Ouyang et al., 2021)
proposed cross-lingual attention mechanisms to
aligned cross-lingual representation. However,
there is still limited research on aligning cross-
lingual representations with syntactic structure-
level information.

The performance of cross-lingual transfer is also
influenced by structural differences among lan-
guages (Ahmad et al., 2021; Wu et al., 2022a).
And the incorporation of structural information,
particularly syntax, has proven beneficial. Syntax-
augmented mBERT (Ahmad et al., 2021) proposed
a Graph Attention Network (GAN) to learn uni-
versal dependency tree labels and integrate them
into the self-attention mechanism of mBERT for
enhancing cross-lingual transfer. The utilization
of syntactic structures also demonstrates improve-
ments in various cross-lingual tasks, such as cross-
lingual structured sentiment analysis (Zhang et al.,
2022), cross-lingual semantic role labeling (Fei
et al., 2020), and cross-lingual word sense disam-
biguation (Zhu, 2020). However, existing methods
heavily rely on dependency treebanks or syntactic
tagging tools to obtain syntactic labels, which are
often limited in quantity or quality, particularly for
low-resource languages.

In this paper, we propose Struct-XLM, a mul-
tilingual language model with structure discovery
based on multilingual PLM, that aims to improve
the alignment of cross-lingual representations of
PLM by automatically learning universal structural
information, such as constituent syntactic structure.
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As shown in Figure 1, we employ reinforcement
learning (RL) to discover these syntactic structures
without explicit structure annotations. Following
Zhang et al. (2018), we formulate the structure
discovery as a sequential decision problem opti-
mized through policy gradient and implemented
by a masked self-attention mechanism. Addition-
ally, we introduce a structural multi-head attention
mechanism, as shown in Figure 2, to effectively
integrate the acquired structural information into
the last layer of the multilingual pre-trained LM.
Our model follows a Siamese framework and is
trained using a policy network (PNet) and trans-
lation ranking task, in which the latter provides
delayed rewards for RL while enhancing cross-
lingual alignment. During the fine-tuning phase
for downstream tasks, the parameters of the PNet
are kept frozen.

To summarize, our main contributions are as
follows.

• We propose Struct-XLM, a novel multilingual
language model that autonomously discovers
universal structural information with RL to en-
hance cross-lingual alignment without explicit
structure annotations.

• We introduce a structural multi-head atten-
tion mechanism that integrates the learned
structural information into the last layer of the
multilingual PLM for improving cross-lingual
transfer ability.

• Experiments on the 7 tasks of XTREME, our
model shows superior average performance
compared to the baseline PLM by 4.1 points
and is competitive with the InfoXLM model
using only 1/5000 of the amount of training
data.

2 Related Work

2.1 Cross-lingual Representation Alignment

Multilingual pre-trained models such as mBERT
(Pires et al., 2019), XLM (Conneau and Lample,
2019), and XLM-R (Conneau et al., 2020) have ex-
hibited promising abilities of cross-lingual transfer,
even in the absence of explicit encouragement of
learning aligned representations across languages.
These models are typically pre-trained with mul-
tilingual masked language modeling (MMLM)
(Pires et al., 2019) and translation masked language
modeling (TLM) (Conneau and Lample, 2019).

Subsequent works designed more pre-training ob-
jectives to guide representation alignment with par-
allel corpora at different granularities. For instance,
Unicoder (Huang et al., 2019) integrates cross-
lingual word discovery (CWD) and cross-lingual
paraphrase classification (CPC) to learn the under-
lying word alignments between two languages and
provide an explicit focus on the alignment of sen-
tences. InfoXLM (Chi et al., 2021) adds a sentence-
level contrastive learning loss for bilingual pairs to
maximize the mutual information between trans-
lation sentence pairs. HICTL (Wei et al., 2021)
proposed sentence-level and word-level contrastive
learning to distinguish parallel sentences and re-
lated words. VECO2.0 (Zhang et al., 2023) adds
token-level contrastive loss for synonym alignment
with the thesaurus dictionary. In addition to using
parallel corpora, ERNIE-M (Ouyang et al., 2021)
integrates back-translation into the pre-training pro-
cess to generate pseudo-parallel pairs for monolin-
gual corpora. Moreover, ERNIE-M (Ouyang et al.,
2021) and VECO (Luo et al., 2021) proposed a
cross-attention module that builds interdependence
between languages in model inner.

Existing work has enhanced the alignment of
cross-lingual representations at multiple granular-
ities (token-level, word-level, and sentence-level).
Considering that differences in syntactic structure
between languages can also affect alignment, we
focused on introducing syntactic structural level
information into cross-lingual representations to
enhance alignment. Since syntactic tags are chal-
lenging to obtain, especially for low-resource lan-
guages, we introduce reinforcement learning meth-
ods to learn multilingual structural information
without explicit structure annotations and guide
the model to learn cross-lingual aligned representa-
tions on machine translation ranking tasks.

2.2 Structure-augmented Cross-lingual
transfer

The use of universal dependency parse structures
has been found to be beneficial for cross-lingual
transfer in cross-lingual NLP tasks (Ahmad et al.,
2021; Fei et al., 2020; Zhang et al., 2022; Zhu,
2020; Xu et al., 2022). Many approaches have uti-
lized these structures by fusing them with input
sequences or incorporating them into self-attention
mechanisms to enhance the learning of language
syntax. Most of the work is task-oriented(Zhang
et al., 2022; Wu et al., 2020; Zhu, 2020; Wu et al.,

3406



Translation Ranking Task

Structural Encoder

Pretrained LM

Source 
Text

Target 
Text

Structural Encoder

Structural Multi-
Head Attention

Add & Norm

Feed Forward

Add & Norm

1~N-1 Layer

Policy Network

Maksed Self-
Attention

Linear

Sigmoid

State

Action
srca

srcs

Policy Network
tgts

tgta

Mean

Mean

srcL

tgtL

Delayed Reward

srca

LR

Add Additive Margin

Add Additive Margin

Structural representation

Structural representation

Figure 1: The framework of Struct-XLM. The policy network (PNet) samples an action at each state. The structural
encoder offers state representation to PNet and outputs the final representation to calculate translation ranking loss,
which provides a delayed reward to PNet.

2022b; Xu et al., 2022; Wu et al., 2023), but Syntax-
augmented mBERT (Ahmad et al., 2021) enables
structural learning without the inference phase
by learning structural encoders and incorporating
structural coding into self-attention mechanisms.
So it can be generalized to arbitrary cross-lingual
understanding tasks. However, these approaches
require syntactically labeled data, which can be
difficult to obtain in high quality across multiple
languages.

To address this challenge, we follow Zhang
et al. (2018) to utilize reinforcement learning to
learn the universal structure for enhancing cross-
lingual transfer without explicit structure annota-
tions. Zhang et al. (2018) proposed an RL method
to learn monolingual sentence representation by
discovering structure for text classification. We
extended their method to improve the alignment of
cross-lingual representation.

3 Method
3.1 Overview

In this paper, we propose a framework that inte-
grates structural information to enhance the cross-
lingual transfer ability of multilingual PLM by im-
proving the alignment of cross-lingual representa-
tions. The framework of the Struct-XLM model,
shown in Figure 1, consists of three key compo-
nents: the Policy Network (PNet), Structural En-
coder, and Translation Ranking Task module. We

adopt a Siamese framework to learn representations
from parallel sentence pairs (X,Y ), with shared
parameters across components. The structural en-
coder is initialized with a multilingual PLM and
provides state representation S to PNet. PNet uti-
lizes a stochastic policy to sample actions at each
state, generating an action vector a = a1a2 · · · aT
for the sentence x = x1x2 · · ·xT ∈ X comprising
T tokens. The action vector can represent the struc-
ture of the sentence. As depicted in Figure 2, we
convert the action vector into an action matrix and
feed it into the scaled dot-product self-attention
module to construct a structural multi-head atten-
tion module in the last layer of PLM. The Struc-
tural Encoder then outputs a multilingual structural
representation for the Translation Ranking Task
module to calculate the ranking loss and provides a
delayed reward to PNet. The reinforcement learn-
ing process is naturally handled using the policy
gradient method (Sutton et al., 1999).

These three components are interleaved together:
the state representation of PNet is derived from
the Structural Encoder, the calculation of ranking
loss relies on the final structured representation,
and PNet receives rewards from the Translation
Ranking Task module to guide policy learning.

3.2 Structural Encoder

Our structural encoder is initialized by multilingual
PLM. For learning structural representation, we
propose a structural multi-head attention module
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in the last layer of PLM, and one of the structural
self-attention flowing is shown in Figure 2. The
original attention probability matrix is denoted as:

E = softmax(
QKT

√
dk

) (1)

where the dot-product is scaled by 1√
dk

, dk denotes
the dimension of query matrix Q and key matrix
K. In our structural multi-head attention module,
the E is not only determined by Q and K but also
Action Matrix A generated from the actor vector,
which guides each word only pay attention to the
words within the same constituent.

A sentence consists of constituents, such as noun
phrase or verb phrase. The action vector from PNet
provides information about the boundaries of con-
stituent structure in sentences (’0’ and ’1’ denote
the word is inside or is a end boundary of a con-
stituent), where split the sentence into several con-
stituents. In Figure 2, for example, the phrase ’a
competitive edge’ is identified as a constituent c by
the sub action vector {0, 0, 1}. This action vector
is then converted into a sub-action matrix:

Ac =




0 1 1
1 0 1
1 1 0


 (2)

where Ac
ij = 1 represents ith word pay attention to

the jth word in this constituent. There is a special
case when only one word is divided into a single
constituent, its sub-action matrix is an identity ma-
trix. The final Action Matrix A is obtained by
splicing all the sub-action matrices by the diagonal
and filling with 0 on the remaining positions. The
detail of algorithm can be see in Appendix B

By combining the Action Matrix A with the soft-
max attention mechanism, we calculate the struc-
tural attention probability E as follows:

E = A⊙ softmax(
QKT

√
dk

) (3)

where ⊙ represents element-wise multiplication.
In the case of multi-head attention, n different
heads share the same action matrix A and obtain
the structural representation h with the dimension
of dmodel = n×dk. The structural representation is
then transformed into a sentence embedding using
mean-pooling. Finally, the translation ranking loss
is calculated based on this sentence embedding.
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Figure 2: The framework of structural self-attention.

3.3 Translation Ranking Task

For enhancing cross-lingual representation, we in-
troduce the translation ranking task with in-batch
negative sampling(Yang et al., 2019a; Feng et al.,
2022):

L = − 1

N

N∑

i=1

log
eϕ(xi,yj)−m

eϕ(xi,yj)−m +
N∑

n=1,
n ̸=j

eϕ(xi,yn)

(4)
The embedding space similarity of sentence pairs x
and y is given by ϕ(x, y) = mean(hx)mean(hy)

T .
m is an additive margin around positive pairs,
which improves the separation between translations
and non-translations.

Considering that there are n-way parallel pairs
in data, we introduce in-batch labels l ∈ RN×N

to improve the translation ranking loss. lij = 1
represents yj and xi are translation pair and lij = 0
represents yj and xi are non-translation pair. The
N is batch size. The new loss can be defined as:

L = − 1

N

N∑

i=1

log

N∑
j=1,lij=1

eϕ(xi,yj)−m

N∑
j=1,
lij=1

eϕ(xi,yj)−m +
N∑

n=1,
lin=0

eϕ(xi,yn)

(5)
The loss aims to rank the true translations of xi

over all other alternatives in the same batch. L is
asymmetric and depends on whether the softmax
is applied to the source or target sentences. To
achieve bidirectional symmetry, the final loss can
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be obtained by summing the source-to-target loss,
L, and the target-to-source loss, L′:

Ltrans = L+ L′ (6)

3.4 Policy Network

The policy network includes a masked self-
attention module, linear layer, and sigmoid layer.
The masked self-attention limited each state st only
to notice the previous state and predict the action in
the sequence. We briefly introduce state, action and
policy, reward, and objective function as follows:
State Each state vector st with a dimension
of dmodel is each token representation from the
Structural Encoder without the input of the ac-
tion vector. The complete state representation
S = (s1, s2, . . . , sT ) ∈ RT×dmodel is encoded into
an action embedding space using a masked self-
attention layer and a linear layer.
Action and Policy We adopt binary actions {In-
side, End} to discover constituent structure, in-
dicating that a word is inside or at the end of
a constituent. PNet adopts a stochastic policy
π(at|st; Θ), which represents the probability of
selecting action at at state t. The policy is defined
as follows:

π(a|S; Θ) = σ(W ∗ SA(S) + b) (7)

SA(S) = softmax(
QKT

√
dmodel

) · V,

Q = WQS,K = WKS, V = W V S

(8)

where σ represents the sigmoid function, Θ =
{(WQ,W k,W V ),W, b} denotes the parameters
of PNet. WQ, WK , and WV are the weights for
the query matrix Q, key matrix K, and value ma-
trix V of masked self-attention layer SA(·), with
dimension dmodel. The W and b are the weight
and bias of the linear layer. During training, the
action is sampled according to the probability in
Eq. 7. During the test, the action with the maxi-
mal probability (i.e., a∗t = argmaxaπ(at|st; Θ))
is chosen to obtain the action vector prediction.
Reward After sampling all the actions from PNet,
the structural representation of a sentence x is de-
termined by our Structural Encoder. This repre-
sentation is then used to calculate the translation

ranking loss and reward. The reward is defined as:

RL = log

N∑
j=1,lj=1

eϕ(x,yj)−m

N∑
j=1,lj=1

eϕ(x,yj)−m +
N∑

n=1,ln=0

eϕ(x,yn)

(9)
where the lj is the label indicates the yj whether
a translation of x. This reward is considered a de-
layed reward since it is obtained after constructing
the entire representation.
Objective Function Following Zhang et al. (2018),
we optimize the parameters of PNet using REIN-
FORCE algorithm (Sutton et al., 1999) and policy
gradient methods, aiming to maximize the expected
reward as shown below.

J (Θ) =
∑

s1a1···sTaT

∏

t

πΘ(at|st)RL (10)

and the gradient with likelihood ratio trick is de-
fined as follows:

▽ΘJ (Θ) =
T∑

t=1

RL ▽Θ logπΘ(at|st) (11)

3.5 Training Process
Refer to Zhang et al. (2018), our training process
consists of three steps. Firstly, we pre-train the
Structural Encoder using the Translation Ranking
Task. Then, we pre-train the PNet while keeping
the parameters of the other two models fixed. Fi-
nally, we jointly train all three components. To
alleviate the challenges of training RL from scratch
and reduce variance, we also adopt a warm-start
approach in the first step. Specifically, we collect
a corpus of 13.7k sentence pairs from the UD 2.9
Treebank (Zeman et al., 2021), which provides syn-
tax tree labels. These labels are only used as a
heuristic signal to split sentences into constituents
solely for the warm start in the first step.

4 Experiments

4.1 Implementation Details
We used the XLM-Rlarge model as a base pre-
trained LM to initialize the Structural Encoder, and
the whole Struct-XLM model has 564M parame-
ters (559M for fine-tuning). To train our model, we
collected an 8MB parallel corpus, including 13.7k
sentence pairs (English is the source language), and
more detail in Appendix A. In order to facilitate
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Datasets
Pair sentence Structured prediction Question answering

AVG
XNLI PAWS-X POS NER XQuAD MLQA TyDiQA

#Langs 15 7 33 40 11 7 9
Metrics Acc. Acc. F1 F1 F1 EM F1 EM F1 EM

Model

XLM-Rlarge (Hu et al., 2020) 79.2 86.4 73.8 65.4 76.6 60.8 71.6 53.2 65.1 45.0 67.7
InfoXLM(Chi et al., 2021) 81.4 – – – – – 73.6 55.2 – – –
ERNIE-M(Ouyang et al., 2021) 81.9 89.5 – – – – 73.7 55.3 – – –
XY-LENT(Patra et al., 2022) 80.5 89.7 – – 76.8 62.1 71.3 53.2 67.1 51.5 –
VECO2.0(Zhang et al., 2023) 80.3 88.5 75.4 67.2 78.9 63.7 72.7 54.2 71.1 54.7 70.7
ERNIE-M† 80.1 87.9 76.7 65.9 78.2 62.7 72.8 54.6 70.3 52.7 70.2
InfoXLM† 82.1 89.3 75.6 67.8 79.3 63.8 73.5 55.1 72.2 54.6 71.3

Struct-XLM 81.2 90.1 77.6 68.6 79.5 64.1 73.2 54.8 73.1 56.0 71.8

Table 1: Results of 7 tasks on XTREME benchmark. The detailed results for each language are in Appendix D. †
denotes the results from our re-implement.

the smooth update of the policy gradient during
training, we introduced a suppression factor that is
multiplied to Eq. 11. This factor is set to 0.5. Dur-
ing the training process, we employed the Adam
optimization algorithm to update the model param-
eters. The initial learning rate was set to 6e-6 for
the first step, which ran for 5 epochs. The second
step ran for 2 epochs with a learning rate of 3e-6,
and the last step utilized 5 epochs with a learning
rate of 3e-6. The batch size is 5 for all steps.

4.2 Baselines
Except for the base model XLM-Rlarge, we com-
pare the cross-lingual performance of our proposed
model against 4 strong cross-lingual models:

• Info-XLM focuses on maximizing mutual in-
formation between translation pairs. We com-
pare Struct-XLM with its large size version
(558M parameter), which continues training
XLM-Rlarge on 42GB parallel corpora.

• ERNIE-M incorporates cross-attention
masked language modeling on both parallel
and monolingual corpora. The parameter size
of the large version model and the training
data is the same as Info-XLM.

• XY-LENT leverages novel sampling strate-
gies with X-Y bitexts to learn the cross-lingual
alignment representation. It has a twice big-
ger vocabulary size than XLM-Rlarge but with
a smaller parameter size (477M for the base
version) by training on ELECTRA-style tasks.

• VECO2.0 bridges the representations of syn-
onym pairs embedded in the bilingual corpus
based on VECO. It has 559M parameters and
is trained with 2.5TB monolingual data and
4TB parallel pairs.

We do not compare our model with Syntax-
augmented mBERT due to its small parameter size.

4.3 Evaluation

In our evaluation, we perform experiments on seven
multilingual tasks from the XTREME (Hu et al.,
2020) benchmark. These tasks cover a wide range
of languages. For sentence-pair classification, we
evaluate on the Cross-lingual Natrual Language
Inference dataset (XNLI) (Conneau et al., 2018),
and Cross-lingual Paraphrase Adversaries from
Word Scrambling dataset (PAWS-X) (Yang et al.,
2019b). For structured prediction, POS tagging
from the Universal Dependencies v2.5 treebanks
(Nvire et al., 2020) and NER from Wikiann (Pan
et al., 2017). For cross-lingual question answer-
ing: XQuAD (Artetxe et al., 2020), MLQA (Lewis
et al., 2020), and the gold passage version of the
TyDiQA dataset (TyDiQA-GoldP) (Clark et al.,
2020). Here, for a cross-lingual setting, all tasks
provide English training data and dev/test set in
all involved languages. We consider the zero-shot
cross-lingual setting, i.e. only using the English
data for fine-tuning. The hyper-parameters setting
for fine-tuning are shown in Appendix C.

4.4 Results

In Table 1, we present the results of Struct-XLM
and baselines on the seven tasks of XTREME. The
results demonstrate that Struct-XLM outperforms
XLM-Rlarge and latest model VECO2.0 (Zhang
et al., 2023) on all tasks, with an average improve-
ment of 4.1% and 1.1% respectively. Compared
to the best strong baseline InfoXLM (Chi et al.,
2021), we have a competitive average performance
and we only use 8MB of training data, which is
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Datasets
Pair sentence Structured prediction Question answering

AVG
XNLI PAWS-X POS NER XQuAD(F1) XQuAD(EM) MLQA(F1) MLQA(EM) TyDiQA(F1) TyDiQA(EM)

XLM-Rlarge(Hu et al., 2020) 10.1 9.7 23.0 19.8 10.9 16.4 13.9 20.3 7.2 13.3 14.5
InfoXLM(Chi et al., 2021) 8.9 – – – – – 12.7 19.1 – – –
ERNIE-M(Ouyang et al., 2021) 7.9 7.5 – – – – 12.5 18.9 – – –
XY-LENT(Patra et al., 2022) 7.8 6.8 – – 11.4 15.3 13.8 20.0 7.1 8.6 –
VECO2.0 9.2 8.6 21.4 18.1 10.2 16.2 13.3 20.0 2.2 6.8 12.6
ERNIE-M† 8.8 9.3 20.0 18.4 10.1 15.0 12.8 19.0 4.0 7.0 12.4
InfoXLM† 8.5 6.7 21.0 17.2 10.3 16.0 13.1 19.4 4.7 10.5 12.7

Struct-XLM 9.7 6.9 19.0 15.8 9.6 15.6 13.1 19.6 2.9 9.6 12.2

Table 2: The transfer gap of different models on XTREME tasks, where the lower the score the better transferability.

Datasets
Pair sentence Structured prediction Question answering

AVGXNLI PAWS-X POS NER XQuAD MLQA TyDiQA
Metrics Acc. Acc. F1 F1 F1 EM F1 EM F1 EM

XLM-Rlarge(Hu et al., 2020) 79.2 86.4 73.8 65.4 76.6 60.8 71.6 53.2 65.1 45.0 67.7
Struct-XLM 81.2 90.1 77.6 68.6 79.5 64.1 73.2 54.8 73.1 56.0 71.8

w/o action 80.4 89.4 76.1 66.7 78.9 63.5 72.6 54.2 71.6 54.1 70.7
w/o warm-start 79.7 89.0 76.3 65.6 78.6 62.8 72.0 54.0 71.8 53.7 70.4

only warm-start 79.7 88.5 75.0 64.5 78.1 62.4 71.7 53.8 70.8 52.8 69.7
w/o PNet 79.4 88.3 74.9 62.9 77.5 61.8 71.3 53.3 70.9 52.8 69.3

Table 3: Ablation results on each model. The detailed results for each language are in Appendix D.

1/5000 of parallel data used by InfoXLM. Struct-
XLM also surpasses XY-LENT on 8/10 metrics,
with an average advancement of 2.5%.

In sentence-pair classification tasks, Struct-XLM
performs slightly better than the best model XY-
LENT on the PAWS-X by 0.4%. However, on the
XNLI, it is inferior to Info-XLM by 0.9%. This
may be because the translation ranking task in
Struct-XLM focuses more on detecting meaning
equivalence rather than fine-grained distinctions of
meaning overlap. For structured prediction tasks,
Struct-XLM outperforms all baselines and has the
lowest transfer gap as shown in Table 2, which can
be attributed to the structure discovery. In question
answering, Struct-XLM is inferior to the best EM
score by 0.5% on MLQA. However, it achieves
the best performance on the XQuAD and TyDiQA
datasets. It surpasses InfoXLM by 0.9% and 1.4%
in EM and F1 metrics on TyDiQA, respectively.

Overall, Struct-XLM delivers impressive perfor-
mance with only an 8MB parallel corpus. The
improvement can be attributed to the multilin-
gual structured representation alignment achieved
through RL and the translation ranking task. Fur-
ther investigation and analysis will be conducted in
the ablation study and analysis experiments.

5 Analysis

5.1 Transfer Gap

Table 2 presents the transfer gap of Struct-XLM
and baselines on the XTREME benchmark. The
transfer gap refers to the difference in performance

Model de fr ru zh avg

XLM-Rlarge 67.5 66.5 73.5 56.7 66.0
VECO2.0 90.5 86.1 88.1 80.2 86.2
XLM-R†

large 82.9 72.5 79.8 66.1 75.3
InfoXLM† 92.7 89.1 92.2 81.6 88.9

Struct-XLM 93.5 90.4 92.2 84.4 90.1

Table 4: BUCC F1 scores for each language. † denotes
the results from our re-implementation.

between the English test set and the average perfor-
mance across other languages. It is observed that
the transfer gap of Struct-XLM is relatively high
for certain metrics, such as accuracy in XNLI and
PAWS-X, and EM in TyDiQA. This is because the
model’s performance in English has significantly
improved. However, Struct-XLM demonstrates a
lower average transfer gap than baselines, indicat-
ing improved cross-lingual transferability.

5.2 Ablation study

To explore the impact of PNet and RL, we fine-tune
the Structural Encoder Part (i.e. w/o action) or the
model only trained by the first step (i.e. only warm-
start). To discuss the significance of the warm-start
step, we also evaluate the ablation model without
it (w/o warm-start). Moreover, we train a language
model that only has Structural Encoder and Trans-
lation Ranking Task module (i.e. w/o PNet). The
results are shown in Table 3, and the results of
Struct-XLM in 7 tasks always be the best. Specif-
ically, the Struct-XLM only trained on the first
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Figure 3: Evaluation results (F1 score) of different lay-
ers on BUCC cross-lingual sentence retrieval.

step (i.e. only warm-start) surpasses the language
model without PNet (i.e. w/o PNet) with an av-
erage advancement of 0.4%, which indicates the
significance of the simple structural inspire infor-
mation to improve the cross-lingual transfer abil-
ity. The evaluation of the model without action
(i.e. w/o action) also obtains a greater improve-
ment than baseline XLM-Rlarge by 3.0% on the
average. This suggests that RL training greatly
enhances the cross-lingual transfer ability of the
multilingual PLM, even without the subsequent
use of the PNet module in fine-tuning. The model
w/o warm-start doesn’t surpass the Struct-XLM
model, confirming the effectiveness of our warm-
start procedure. From the results, we can observe
that all components and training settings contribute
to overall performance improvement.

5.3 Cross-Lingual Representations

To assess the alignment of cross-lingual sentence
representations obtained from our Struct-XLM, we
introduce the BUCC sentence retrieval task. Ta-
ble 4 presents the F1 scores of four languages on
BUCC, where the representations of our model and
XLM-Rlarge and InfoXLM are extracted from the
middle layer (13th layer) following the choice in
Hu et al. (2020). The evaluation results demon-
strate that Struct-XLM produces better-aligned
cross-lingual sentence representations compared
to XLM-Rlarge and InfoXLM, achieving an aver-
age performance improvement of 14.8% and 1.2%,
respectively.

Furthermore, we analyze the average results of
all layers of the models on BUCC, as depicted in
Figure 3. For XLM-Rlarge and InfoXLM, we ob-
serve a performance drop in the last few layers,
which is expected as these layers are encouraged
to focus on token-level embedding due to the pre-
trained objectives. On the other hand, Struct-XLM

consistently achieves high retrieval F1 scores even
in the last few layers. Although the last layer of
Struct-XLM without the action component (i.e.,
w/o action) exhibits a lower F1 score, it still ben-
efits from enhancing the aligned knowledge of
other layers to achieve excellent performance on
XTREME.

Structural probe (Hewitt and Manning, 2019;
Chi et al., 2020) demonstrates that the middle lay-
ers of PLMs capture richer syntactic information.
Struct-XLM obtain significant improvements in
the middle layers, indicating that it has learned
structural information and provides better-aligned
representations compared to XLM-Rlarge.

Model Pen Ren F1en Ptgt Rtgt F1tgt

Struct-XLM 34.49 66.84 45.50 35.67 57.58 43.14
w/o warm-start 30.57 62.13 40.98 31.63 56.48 39.67

Table 5: The precision(P), recall(R), and F1 scores of
the constituent boundary prediction.

5.4 Analyze of Discovered Structure

Quantitatively Analyze Struct-XLM aim to ac-
quire structural information that facilitates cross-
lingual alignment, we employ retrieval tasks in Sec-
tion 5.3 to quantitatively analyze whether the infor-
mation obtained through RL contributes to cross-
lingual alignment. Furthermore, we try to conduct
a quantitative analysis of the discovered structure
by evaluating the constituents’ boundary predicted
by the action vector. The labeled test set is from
the warm-start step, including English (en) and tar-
get languages (tgt) two-way. where the recall of
the boundaries predicted by Struct-XLM is 66.84%
and 57.58% in English and target language, respec-
tively, which suggests that Struct-XLM is able to
correctly predict the constituent boundaries in the
labeled test set to some extent. Perhaps Struct-
XLM tends to predict more constituents, so it gets
low precision (P). We also report the results of the
model w/o warm-start to prove the influence of the
warm-start step for structural discovery.
Qualitatively Analyze Table 6 presents some inter-
esting structures discovered by Struct-XLM. Some
constituents can form a sentence with complete
meaning, such as "乘客乘坐缆车" (Passengers
ride the gondola), while others may consist of just
a single word. In these examples, the structures
discovered by Struct-XLM exhibit more flexibility
in terms of length and amount of constituents com-
pared to predefined structures. In the case of En-
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Lang. Structure Sentence

en
Predefined The feasibility study

∣∣ estimates that it would take passengers
∣∣ about four

∣∣ minutes
∣∣ to cross the Potomac River

∣∣ on the gondola.
from Struct-XLM The feasibility study estimates that it would take passengers about four minutes

∣∣ to cross the Potomac River
∣∣ on the gondola.

fi
Predefined Toteutettavuustutkimuksessa arvioidaan,

∣∣ että matkustajilta kuluisi
∣∣ noin neljä

∣∣ minuuttia
∣∣ Potomac River -joen

∣∣ ylittämiseen korihissillä.
from Struct-XLM Toteutettavuustutkimuksessa arvioidaan, että matkustajilta kuluisi

∣∣ noin neljä minuuttia
∣∣ Potomac

∣∣ River -joen
∣∣ ylittämiseen

∣∣ korihissillä.

de
Predefined Der Machbarkeitsstudie zufolge

∣∣ könnten die Passagiere den Potomac River mit der Gondel in ungefähr 4 Minuten überqueren.
from Struct-XLM Der

∣∣ Machbarkeitsstudie
∣∣ zufolge

∣∣ könnten die Passagiere den Potomac River
∣∣ mit der Gondel in ungefähr 4 Minuten überqueren.

pt
Predefined O estudo de viabilidade

∣∣ estima que os passageiros iriam levar quatro minutos
∣∣ para atravessar o Rio Potomac

∣∣ em a gôndola.
from Struct-XLM O estudo de viabilidade

∣∣ estima que os
∣∣ passageiros

∣∣ iriam
∣∣ levar quatro minutos para atravessar o

∣∣ Rio Potomac em a gôndola.

pl
Predefined Na podstawie wyliczeń

∣∣ szacuje się,
∣∣ że przekroczenie rzeki Potomac gondolą zajęłoby pasażerom

∣∣ około
∣∣ czterech minut.

from Struct-XLM Na podstawie wyliczeń
∣∣ szacuje się, że przekroczenie rzeki

∣∣ Potomac gondolą zajęłoby
∣∣ pasażerom około

∣∣ czterech minut.

zh
Predefined 根据可行性研究估计，

∣∣乘客乘坐缆车穿越波托马克河
∣∣需时约四分钟。

from Struct-XLM 根据
∣∣可行性研究

∣∣估计，
∣∣乘客乘坐缆车

∣∣穿越波托马克河
∣∣需时约

∣∣四分钟。

Table 6: The comparison of the predefined structures and those discovered by Struct-XLM in multiple languages.

glish, being a source language aligned with multi-
ple languages, the number of constituents obtained
tends to be smaller. However, Struct-XLM some-
times struggles to identify the correct boundaries
between phrases, as seen in the example where the
term "Potomac River" in Finnish (fi) is split into
two parts. This task is extremely challenging for
any model without explicit structure annotations.

6 Conclusion

In conclusion, we introduced Struct-XLM, a novel
approach to enhance cross-lingual transfer learning
in multilingual language models. By leveraging
reinforcement learning without explicit structure
annotations, the Struct-XLM discovers structures
and improves the alignment of cross-lingual repre-
sentations. Specifically, we employ policy gradi-
ent RL and a translation ranking task to discover
constituent syntactic structures and enhance cross-
lingual transfer. Experimental results on seven
XTREME benchmark tasks demonstrated the ef-
fectiveness of Struct-XLM, outperforming baseline
PLM models with an average improvement of 4.1
points and being competitive with the best strong
baseline with small training data. Our analysis also
revealed that Struct-XLM improves performance
on the sentence retrieval task BUCC, particularly
in the middle layers of the pre-trained model, indi-
cating the acquisition of valuable structural infor-
mation for better-aligned representations.
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Limitations

While Struct-XLM presents advancements in im-
proving cross-lingual representation alignment, it
also has some limitations. We outline these limita-
tions in this section.

Training Data

The strong baseline models we compare against
may benefit from large amounts of parallel data
for training, which contributes to their superior
performance. Since policy gradient RL learning re-
quires multiple sampling learning for each sample,
our model takes about 30 hours to complete three
stages of training on an NVIDIA RTX A6000 using
8MB of training data. In our case, due to compu-
tational constraints, we were only able to utilize
a limited amount of parallel data (8M) for train-
ing. Increasing the amount of parallel data without
labels in the last two steps could potentially im-
prove the performance of our model and provide a
better-aligned cross-lingual representation.

Learning Structure from Middle Layer

As mentioned, the structural probe (Chi et al., 2020)
has shown that the middle layer of multilingual
PLMs captures rich syntactic information. How-
ever, it is worth considering that syntax and seman-
tics are intertwined, and the primary goal of cross-
lingual alignment is semantic alignment. There-
fore, we explore whether structures learned from
the final layer, which captures more semantic infor-
mation, can enhance alignment. If structures dis-
covered from the middle layer representations can
further improve alignment, it would provide addi-
tional evidence for the effectiveness of our method.

Siamese Framework vs. Single Tower Version

The Siamese framework used in Struct-XLM,
which employs separate encoders for parallel sen-
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tence pairs, is effective in capturing cross-lingual
alignment (Guo et al., 2018; Yang et al., 2019a;
Feng et al., 2022). However, its token-level align-
ment may not be sufficient. An alternative ap-
proach could involve concatenating the parallel sen-
tence pairs into a single input, allowing for more
comprehensive learning from the parallel corpus
and potentially encouraging the policy network to
capture more universal structures through attention
mechanisms.

Overall, these limitations provide opportunities
for future research to further enhance the perfor-
mance and capabilities of cross-lingual representa-
tion learning models like Struct-XLM.
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Appendices

Lang. Train Dev Test

English(en) 12038 882 800

Swedish(sv) 1634 406 348
Italian(it) 1528 76 109
French(fr) 951 45 83
Turkish(tr) 686 55 40
German(de) 502 20 20
Chinese(zh) 502 20 20
Japanese(ja) 502 20 20
Finnish(fi) 502 20 20
Arabic(ar) 502 20 20

Spanish(es) 502 20 20
Indonesian(id) 502 20 20

Korean(ko) 502 20 20
Thai(th) 502 20 20

Czech(cs) 502 20 20
Russian(ru) 502 20 20
Hindi(hi) 502 20 20
Polish(pl) 502 20 20

Portuguese(pt) 502 20 20
Icelandic(is) 211 20 20

Table 7: The statistics of training data in each language.

A Statistic of Training Data

The training data for Struct-XLM is sourced from
various treebanks in UD 2.9 (Zeman et al., 2021).
In particular, we select 20 languages (including
English) parallel universal dependencies treebanks
from PUD2, Atis3, LinES (Ahrenberg, 2007), and
ParTUT4 treebanks. English is the source language.
The statistics on the number of sentences available
for each language are shown in the table 7.

B Algorithm

The algorithm 1 is to convert the action vector to
the action matrix, as mentioned in Section 3.2.

C Hyper-parameters for Fine-Tuning

In Table 8, we report the hyper-parameters for fine-
tuning Struct-XLM on the XTREME seven tasks.

Algorithm 1 Convert the action vector to the action
matrix
Input: action vector a, length of sentence L
Output: action matrix A
1: number of constituents p = 1
2: the list of constituents C, in which ith constituents ci

include start index cstarti and end index cend
i

3: cstartp = 0
4: for j = 1 to L do
5: if a[j − 1] == 1 then
6: cend

p = j − 1
7: p+ = 1
8: if j < L then
9: cstartp = j

10: end if
11: end if
12: end for
13: cend

p = L− 1
14: for ci in C do
15: if cstarti == cend

i then
16: sub-action matrix Aci = [1]
17: else
18: Aci = 1 − I, where 1, I ∈ Rn×n,and n =

cend
i − cstarti + 1 is the length of constituent ci.

19: end ifsentence-wise sub-action matrix Âci =

[0lAci0
r],where 0l ∈ Rn×cstart

i and 0r ∈
Rn×(L−cend

i −1).
20: end for
21: return

A =




Âc1

Âc2

...
Âcp




2http://universaldependencies.org/conll17/
3https://github.com/howl-anderson/ATIS_dataset/
4https://github.com/msang/partut-repo
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D Results for each task and language

We show the detailed results for all tasks and lan-
guages in Tables 9 (XNLI), 10 (PAWS-X), 11
(POS), 12 (NER), 13 (XQuAD), 14 (MLQA), 15
(TyDiQA-GoldP). † denotes the results from our
re-implement.

Based on the experimental results in Table 9-15,
even languages without warm-start training data
can show improvements. For instance, in Table
11, Basque(eu), Tagalog(tl), and Yoruba(yo) do
not have training corpora, yet they exhibit signifi-
cant improvements compared to the best baseline
result, with increases of 1.2%, 1.9%, and 19.2%, re-
spectively. Moreover, in Table 12, Persian(fa) and
Malay(ms) without warm-start training corpora im-
prove by 3.5% and 2.7% than the best baseline
result.
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XNLI PAWS-X NER POS XQuAD/MLQA TyDiQA

Batch size 32 {16,32} {16,32} {8,16,32} {16,32} {16,32}
Learning rate {6,8}e-6 {8,9,10,20}e-6 {6, · · · ,9}e-6 {6, · · · ,9}e-6 {6,8,10,20}e-6 {9,10,20}e-6
Warmup {12500,5000} steps {5%,10%} {5%,10%,1%} {5%,10%} 10% 10%
Epochs 10 {5,10} {5,10} {5,10} {2,3,4} {5,10,20}

Table 8: Hyper-parameters used for fine-tuning on the downstream tasks.

Lang. en ar bg de el es fr hi ru sw th tr ur vi zh AVG

XLM-Rlarge(Hu et al., 2020) 88.7 77.2 83 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78 71.7 79.3 78.2 79.2
InfoXLM(Chi et al., 2021) 89.7 84.5 85.5 84.1 83.4 84.2 81.3 80.9 80.4 80.8 78.9 80.9 77.9 74.8 73.7 81.4
InfoXLM† 90.1 80.2 84.5 86.3 83.4 85.8 85.7 78.9 81.1 75.6 79.0 81.1 74.8 82.7 82.7 82.1
ERNIE-M(Ouyang et al., 2021) 89.3 81.2 84.5 84.4 83.7 85.7 85.1 78.6 82.0 76.2 79.2 81.2 75.4 81.9 80.5 81.9
ERNIE-M† 88.3 79.1 83.1 82.8 82.4 84.0 82.7 77.2 80.4 74.2 76.8 78.4 72.4 80.6 78.8 80.1
XY-LENT(Patra et al., 2022) 87.7 79.7 83.0 83.7 82.0 84.7 83.7 76.1 81.5 75.5 77.9 79.3 71.6 80.3 80.2 80.5
VECO2.0(Zhang et al., 2023) 88.9 79.1 83.4 83.0 82.7 84.9 83.2 76.7 80.7 71.9 77.8 79.5 72.8 80.6 79.9 80.3

Struct-XLM 90.2 78.9 83.8 84.7 82.8 85.2 84.3 77.6 80.1 73.9 79.0 80.2 74.8 81.5 80.6 81.2
w/o action 90.0 78.7 83.2 84.3 82.2 84.4 83.4 76.3 79.3 72.1 78.2 79.4 73 80.9 79.8 80.4

w/o warm-start 88.9 78.5 82.9 82.4 81.4 84.0 82.9 75.9 79.8 71.2 77.4 77.8 73.0 79.3 79.9 79.7
only warm-start 88.9 78.5 83.2 82.8 81.8 84.4 82.7 76.0 79.6 71.6 77.4 78.4 72.1 79.6 78.9 79.7

w/o PNet 88.8 78.1 82.9 82.8 81.6 83.9 82.7 75.7 79.0 71.4 77.0 77.7 71.4 78.8 78.7 79.4

Table 9: XNLI accuracy scores for each language.

Lang. en de es fr ja ko zh AVG

XLM-Rlarge(Hu et al., 2020) 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
InfoXLM† 95.1 89.0 91.0 92.2 86.1 85.4 86.6 89.3
ERNIE-M† 95.9 91.0 92.1 91.4 80.0 82.1 82.7 87.9
ERNIE-M(Ouyang et al., 2021) 96.0 91.9 91.4 92.2 83.9 84.5 86.9 89.5
XY-LENT(Patra et al., 2022) 95.5 92.3 92.5 93.2 84.0 83.7 86.7 89.7
VECO2.0(Zhang et al., 2023) 95.8 91.0 91.6 92.0 82.8 81.6 84.5 88.5

Struct-XLM 96.0 91.7 91.7 92.4 84.7 85.0 89.0 90.1
w/o action 96.0 91.3 91.3 92.1 84.6 85.0 85.6 89.4

w/o warm-start 95.9 92.2 91.7 92.5 82.4 82.8 85.5 89.0
only warm-start 95.6 91.2 91.8 91.9 82.4 81.6 84.7 88.5

w/o PNet 95.4 91.2 91.6 92.1 81.7 82.2 83.8 88.3

Table 10: PAWS-X accuracy scores for each language.

Lang. en af ar bg de el es et eu fa fi fr he hi hu id it

XLM-Rlarge(Hu et al., 2020) 96.1 89.8 67.5 88.1 88.5 86.3 88.3 86.5 72.5 70.6 85.8 87.2 68.3 76.4 82.6 72.4 89.4
VECO2.0(Zhang et al., 2023) 96.2 89.4 70.0 88.6 89.7 86.6 89.0 87.2 75.1 71.4 86.1 87.7 70.2 74.7 84.2 72.8 89.8
InfoXLM† 96.0 88.6 69.2 88.1 88.9 87.3 88.4 85.7 74.5 71.6 85.8 87.1 71.9 69.3 83.1 72.7 88.3
ERNIE-M† 96.1 88.5 67.6 88.8 87.8 85.5 88.7 86.0 75.4 72.2 85.7 85.1 66.1 77.0 83.0 72.3 89.8

Struct-XLM 96.1 89.7 68.7 89.4 89.6 88.6 89.4 87.4 76.6 71.6 86.4 89.0 69.9 77.3 84.0 72.9 90.7
w/o action 96.1 88.9 69.3 89.0 89.2 86.9 89.9 87.4 76.1 71.2 86.2 89.4 65.5 73.4 83.0 73.3 91.0

w/o warm-start 96.0 89.7 69.6 88.9 88.9 87.6 89.2 86.9 72.7 71.0 86.1 88.3 70.4 77.7 83.4 72.9 89.7
only warm-start 95.8 88.5 67.5 88.3 89.1 87.1 88.6 86.7 74.2 70.5 85.3 87.9 66.8 72.9 82.3 72.9 89.9

w/o PNet 95.7 88.5 67.3 87.3 88.7 85.7 88.4 85.3 74.5 69.6 84.9 87.3 66.9 73.3 81.2 72.9 89.5

ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh AVG

XLM-Rlarge(Hu et al., 2020) 15.9 78.1 53.9 80.8 89.5 87.6 89.5 65.2 86.6 47.2 92.2 76.3 70.3 56.8 24.6 25.7 73.8
VECO2.0(Zhang et al., 2023) 36.2 78.3 53.4 84.7 89.8 88.8 89.8 64.9 84.5 50.9 93.3 76.8 67 58.8 23.2 40.7 75.4
InfoXLM† 38.9 78.0 54.3 82.9 89.3 88.0 89.2 62.2 86.6 56.7 92.9 76.2 58.7 59.2 26.7 59.2 75.6
ERNIE-M† 54.7 79.0 53.8 84.0 89.4 88.6 89.7 61.9 86.4 58.1 92.1 77.5 72.6 59.2 24.2 63.7 76.7

Struct-XLM 39.2 80.7 52.7 85.5 90.1 90.2 90.6 67.8 86.7 57.1 95.2 77.2 73.2 60.2 45.9 52.3 77.6
w/o action 34.1 79.7 51.8 84.2 89.3 88.5 90.2 66.2 87.0 53.2 93.1 76.5 70.4 59.5 40.7 39.7 76.1

w/o warm-start 38.3 79.2 53.4 83.6 89.7 88.7 90.1 64.1 86.9 54.4 94.0 76.7 73.0 60.3 26.1 51.4 76.3
only warm-start 30.2 78.7 50.4 84.5 89.2 88.1 89.7 65.5 85.2 51.5 94.1 76.0 67.1 58.8 33.1 37.1 75.0

w/o PNet 36.6 77.8 50.5 83.1 88.9 87.9 88.8 62.8 82.1 50.4 95.1 75.9 68.5 58.4 34.9 43.2 74.9

Table 11: POS results (Accuracy) for each language
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Lang. en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

XLM-Rlarge(Hu et al., 2020) 84.7 78.9 53.0 81.4 78.8 78.8 79.5 79.6 79.1 60.9 61.9 79.2 80.5 56.8 73.0 79.8 53 81.3 23.2 62.5
VECO2.0(Zhang et al., 2023) 84.8 78.5 51.8 81.3 79.2 80.7 80.7 75.8 82.4 69.6 66.3 81.1 80.7 56.2 73.1 82.9 54.1 82.1 18.8 66.1
InfoXLM† 84.6 81.0 57.3 83.6 77.1 81.1 81.5 81.6 78.9 68.5 53.5 81.5 82.2 56.9 72.9 81.7 54.4 82.7 28.7 66.1
ERNIE-M† 83.9 80.0 55.4 80.6 76.6 79.4 77.0 77.2 77.9 61.6 58.1 79.5 81.9 54.4 72.6 79.7 56.3 80.8 20.7 60.1

Struct-XLM 84.0 80.7 59.1 83.9 79.6 80.8 81.2 81.4 79.2 67.4 69.8 81.8 81.1 58.6 72.6 81.3 55.5 82.1 29.6 67.2
w/o action 84.0 79.2 54.4 82.5 77.0 78.8 79.4 79.4 78.6 64.3 66.4 80.7 81.0 58.2 71.0 80.3 55.3 81.4 27.0 63.8

w/o warm-start 82.8 78.1 59.1 79.3 73.8 77.9 77.8 73.5 79.6 61.9 62.6 79.9 78.8 54.1 70.8 79.2 52.6 81.7 20.1 62.8
only warm-start 82.6 80.0 47.2 80.9 75.4 78.6 77.3 77.6 79.2 67.3 64.1 80.7 79.6 50.9 69.4 80.2 54.9 81.5 19.2 65.3

w/o PNet 81.6 78.6 50.1 79.6 75.3 77.7 77.0 75.9 76.4 59.6 54.3 78.7 79.4 50.3 66.9 78.7 54.1 80.8 15.3 61.4

ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh

XLM-Rlarge(Hu et al., 2020) 71.6 56.2 60 67.8 68.1 57.1 54.3 84 81.9 69.1 70.5 59.5 55.8 1.3 73.2 76.1 56.4 79.4 33.6 33.1
VECO2.0(Zhang et al., 2023) 72.8 53.7 59.3 67.9 66.0 68.8 56.0 85.0 82.2 72.5 69.3 61.4 54.3 1.8 75.8 82.5 76.0 78.0 49.3 28.0
InfoXLM† 70.5 57.3 60.1 64.6 67.5 71.6 58.6 85.2 83.1 74.6 71.7 59.7 55.4 2.1 75.2 81.9 71.9 77.4 50.0 38.3
ERNIE-M† 69.5 55.4 56.7 66.1 67.9 70.1 57.2 83.9 81.6 71.2 70.7 61.3 54.3 2.9 76.0 80.1 66.9 76.8 45.1 30.4

Struct-XLM 72.0 56.7 59.7 68.2 68.9 74.3 58.1 84.7 83.0 72.6 70.5 60.6 56.8 3.0 75.9 81.8 70.7 78.2 58.3 32.9
w/o action 70.1 54.4 60.6 65.1 65.4 69.4 57.6 83.8 82.6 71.1 69.9 60.8 56.0 2.7 73.2 80.9 69.1 78.7 39.0 34.4

w/o warm-start 69.4 51.2 57.8 68.2 70.2 66.0 58.3 82.0 79.5 65.7 70.0 58.3 56.4 1.4 75.0 79.0 66.4 75.8 52.5 34.4
only warm-start 61.1 52.7 53.6 62.9 64.4 69.4 50.2 83.7 82.0 68.4 69.4 55.6 51.6 2.1 72.1 80.7 62.2 75.8 42.4 26.7

w/o PNet 60.5 50.8 52.7 62.5 60.4 68.7 50.4 83.5 81.6 66.2 68.9 54.3 50.5 2.1 70.8 79.7 61.2 75.5 41.4 22.6

Table 12: NER results (F1 Score) for each language

Lang. en ar de el es hi ru th tr vi zh AVG

XLM-Rlarge(Hu et al., 2020) 86.5/75.7 68.6/49.0 80.4/63.4 79.8/61.7 82.0/63.9 76.7/59.7 80.1/64.3 74.2/62.8 75.9/59.3 79.1/59.0 59.3/50.0 76.6/60.8
XY-LENT(Patra et al., 2022) 87.2/76.0 72.9/56.0 80.0/64.5 79.6/63.5 81.2/63.1 75.3/59.7 77.7/61.5 70.9/59.5 74.0/58.7 77.4/59.2 69.0/61.0 76.8/62.1
VECO2.0(Zhang et al., 2023) 88.2/78.4 74.2/56.9 81.0/63.7 81.5/63.6 83.1/64.6 76.8/60.3 80.1/64.4 76.0/66.4 76.6/60.8 80.5/60.8 70.1/60.9 78.9/63.7
InfoXLM† 88.7/78.3 77.1/59.5 81.1/64.0 81.5/63.4 83.8/65.5 77.7/60.7 81.2/65.0 76.9/66.1 77.7/60.8 80.4/61.1 66.2/57.1 79.3/63.8
ERNIE-M† 87.4/76.3 73.6/55.9 80.5/63.4 80.5/62.4 82.3/63.2 77.8/61.4 80.2/64.6 74.6/63.0 76.7/60.4 80.7/61.6 66.4/57.2 78.2/62.7

Struct-XLM 88.2/78.2 77.4/59.8 81.2/63.9 81.0/63.2 83.3/65.1 77.7/60.2 81.4/64.7 77.2/67.0 76.8/61.2 81.0/62.2 69.2/59.2 79.5/64.1
w/o action 87.6/76.7 76.3/59.0 80.8/63.8 80.5/62.9 83.1/64.2 76.7/60.5 80.6/65.0 76.3/65.5 76.2/60.2 81.0/61.9 69.0/59.2 78.9/63.5

w/o warm-start 87.9/76.6 75.9/58.4 80.4/63.2 80.1/61.6 81.9/62.4 76.8/60.3 80.2/63.3 76.5/64.2 76.3/60.3 80.5/61.3 68.6/59.7 78.6/62.8
only warm-start 87.1/75.8 75.2/58.2 80.9/63.4 80.3/61.0 82.0/62.8 76.3/59.8 80.6/64.1 74.7/62.9 76.0/59.7 79.9/61.1 66.4/57.2 78.1/62.4

w/o PNet 87.1/76.3 75.4/58.0 80.0/62.1 80.0/62.8 81.2/62.4 75.0/58.2 79.4/62.8 73.4/63.0 75.0/59.0 80.4/61.3 66.1/54.3 77.5/61.8

Table 13: XQuAD results (F1 / EM) for each language.

Lang. en ar de es hi vi zh AVG

XLM-Rlarge(Hu et al., 2020) 83.5/70.6 66.6/47.1 70.1/54.9 74.1/56.6 70.6/53.1 74.0/52.9 62.1/37.0 71.6/53.2
InfoXLM† 84.7/71.7 67.5/47.3 71.7/56.9 74.9/56.9 72.2/54.0 74.8/53.6 68.7/45.3 73.5/55.1
InfoXLM(Chi et al., 2021) 84.5/71.6 67.6/47.6 71.2/56.2 75.1/57.3 72.5/54.2 75.2/54.1 69.2/45.4 73.6/55.2
ERNIE-M† 83.7/70.8 65.5/46.3 70.5/55.7 74.0/56.1 71.3/53.6 74.2/52.7 70.2/46.7 72.8/54.6
ERNIE-M(Ouyang et al., 2021) 84.4/71.5 67.4/47.2 70.8/55.9 74.8/56.6 72.6/54.7 75.0 /53.7 71.1/47.5 73.7/55.3
XY-LENT(Patra et al., 2022) 83.1/70.3 63.9/43.9 68.9/54.0 73.3/55.1 69.0/51.7 72.7/52.0 68.0/45.2 71.3/53.2
VECO2.0(Zhang et al., 2023) 84.1/71.4 74.3/56.3 70.3/54.9 66.5/46.5 71.5/53.7 74.2/53.1 67.9/43.7 72.7/54.2

Struct-XLM 84.4/71.6 66.8/46.4 71.4/55.9 74.9/57.6 71.9/53.7 74.7/53.6 68.1/44.7 73.2/54.8
w/o action 84.1/70.8 66.7/46.3 70.7/55.3 74.3/56.5 71.5/53.4 74.3/52.8 66.4/44.3 72.6/54.2

w/o warm-start 83.9/70.7 66.1/45.5 71.0/55.3 74.3/56.2 71.9/53.7 73.9/52.8 62.9/43.6 72.0/54.0
only warm-start 83.7/70.4 66.0/45.1 70.4/55.2 74.2/56.0 71.2/52.6 74.1/52.6 62.5/44.4 71.7/53.8

w/o PNet 84.0/70.8 66.0/45.6 70.4/56.3 74.1/56.2 70.2/52.6 73.8/52.6 60.7/38.9 71.3/53.3

Table 14: MLQA results (F1 / EM) for each language.

Lang. en ar bn fi id ko ru sw te AVG

XLM-Rlarge(Hu et al., 2020) 71.5/56.8 67.6/40.4 64.0/47.8 70.5/53.2 77.4/61.9 31.9/10.9 67.0/42.1 66.1/48.1 70.1/43.6 65.1/45.0
XY-LENT(Patra et al., 2022) 73.4/59.1 71.6/54.1 63.7/51.3 66.5/52.3 77.0/63.4 57.2/43.5 68.0/49.0 67.3/51.1 59.4/39.3 67.1/51.5
VECO2.0(Zhang et al., 2023) 73.0/60.7 73.7/55.8 63.6/46.9 72.8/56.9 79.6/66.7 60.5/47.8 67.7/39.9 73.2/60.1 75.6/57.1 71.1/54.7
InfoXLM† 76.4/63.9 75.6/57.0 67.1/52.2 71.3/55.1 79.9/63.4 61.0/49.3 69.2/43.2 72.5/54.5 77.2/52.5 72.2/54.6
ERNIE-M† 73.8/58.9 73.4/53.4 65.7/50.4 72.2/55.0 77.4/60.7 60.2/47.1 66.7/41.7 69.4/53.3 73.5/53.7 70.3/52.7

Struct-XLM 75.7/64.5 75.3/56.0 69.2/53.1 75.0/58.2 81.7/67.1 62.8/50.0 69.1/43.5 72.6/55.3 76.7/56.1 73.1/56.0
w/o action 73.5/60.9 74.9/53.7 66.3/47.8 73.7/57.0 80.8/66.5 61.9/50.0 67.1/40.1 72.8/57.7 73.8/53.5 71.6/54.1

w/o warm-start 74.4/62.5 73.0/51.5 70.1/52.2 73.8/56.3 80.2/63.5 61.4/47.8 66.6/40.1 72.8/54.5 74.3/55.0 71.8/53.7
only warm-start 72.5/59.1 73.9/54.2 65.3/50.4 72.7/56.1 80.0/64.2 60.5/47.5 65.9/38.8 72.6/55.5 73.7/49.5 70.8/52.8

w/o PNet 72.9/58.9 73.6/55.4 68.9/51.3 73.5/57.0 79.9/64.6 61.0/48.6 65.6/37.3 72.4/55.3 70.5/46.5 70.9/52.8

Table 15: TyDiQA-GoldP results (F1 / EM) for each language.
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