@inproceedings{casola-etal-2023-confidence,
title = "Confidence-based Ensembling of Perspective-aware Models",
author = "Casola, Silvia and
Lo, Soda Marem and
Basile, Valerio and
Frenda, Simona and
Cignarella, Alessandra and
Patti, Viviana and
Bosco, Cristina",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.212",
doi = "10.18653/v1/2023.emnlp-main.212",
pages = "3496--3507",
abstract = "Research in the field of NLP has recently focused on the variability that people show in selecting labels when performing an annotation task. Exploiting disagreements in annotations has been shown to offer advantages for accurate modelling and fair evaluation. In this paper, we propose a strongly perspectivist model for supervised classification of natural language utterances. Our approach combines the predictions of several perspective-aware models using key information of their individual confidence to capture the subjectivity encoded in the annotation of linguistic phenomena. We validate our method through experiments on two case studies, irony and hate speech detection, in in-domain and cross-domain settings. The results show that confidence-based ensembling of perspective-aware models seems beneficial for classification performance in all scenarios. In addition, we demonstrate the effectiveness of our method with automatically extracted perspectives from annotations when the annotators{'} metadata are not available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="casola-etal-2023-confidence">
<titleInfo>
<title>Confidence-based Ensembling of Perspective-aware Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvia</namePart>
<namePart type="family">Casola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soda</namePart>
<namePart type="given">Marem</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valerio</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simona</namePart>
<namePart type="family">Frenda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandra</namePart>
<namePart type="family">Cignarella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viviana</namePart>
<namePart type="family">Patti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="family">Bosco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research in the field of NLP has recently focused on the variability that people show in selecting labels when performing an annotation task. Exploiting disagreements in annotations has been shown to offer advantages for accurate modelling and fair evaluation. In this paper, we propose a strongly perspectivist model for supervised classification of natural language utterances. Our approach combines the predictions of several perspective-aware models using key information of their individual confidence to capture the subjectivity encoded in the annotation of linguistic phenomena. We validate our method through experiments on two case studies, irony and hate speech detection, in in-domain and cross-domain settings. The results show that confidence-based ensembling of perspective-aware models seems beneficial for classification performance in all scenarios. In addition, we demonstrate the effectiveness of our method with automatically extracted perspectives from annotations when the annotators’ metadata are not available.</abstract>
<identifier type="citekey">casola-etal-2023-confidence</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.212</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.212</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>3496</start>
<end>3507</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Confidence-based Ensembling of Perspective-aware Models
%A Casola, Silvia
%A Lo, Soda Marem
%A Basile, Valerio
%A Frenda, Simona
%A Cignarella, Alessandra
%A Patti, Viviana
%A Bosco, Cristina
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F casola-etal-2023-confidence
%X Research in the field of NLP has recently focused on the variability that people show in selecting labels when performing an annotation task. Exploiting disagreements in annotations has been shown to offer advantages for accurate modelling and fair evaluation. In this paper, we propose a strongly perspectivist model for supervised classification of natural language utterances. Our approach combines the predictions of several perspective-aware models using key information of their individual confidence to capture the subjectivity encoded in the annotation of linguistic phenomena. We validate our method through experiments on two case studies, irony and hate speech detection, in in-domain and cross-domain settings. The results show that confidence-based ensembling of perspective-aware models seems beneficial for classification performance in all scenarios. In addition, we demonstrate the effectiveness of our method with automatically extracted perspectives from annotations when the annotators’ metadata are not available.
%R 10.18653/v1/2023.emnlp-main.212
%U https://aclanthology.org/2023.emnlp-main.212
%U https://doi.org/10.18653/v1/2023.emnlp-main.212
%P 3496-3507
Markdown (Informal)
[Confidence-based Ensembling of Perspective-aware Models](https://aclanthology.org/2023.emnlp-main.212) (Casola et al., EMNLP 2023)
ACL
- Silvia Casola, Soda Marem Lo, Valerio Basile, Simona Frenda, Alessandra Cignarella, Viviana Patti, and Cristina Bosco. 2023. Confidence-based Ensembling of Perspective-aware Models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 3496–3507, Singapore. Association for Computational Linguistics.