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Abstract

Answering complex questions often requires
multi-step reasoning in order to obtain the fi-
nal answer. Most research into decompositions
of complex questions involves open-domain
systems, which have shown success in using
these decompositions for improved retrieval. In
the machine reading setting, however, work to
understand when decompositions are helpful
is understudied. We conduct experiments on
decompositions in machine reading to unify
recent work in this space, using a range of mod-
els and datasets. We find that decompositions
can be helpful in zero or limited-data settings,
giving several points of improvement in exact
match. However, we also show that when mod-
els are given access to around a few hundred or
more examples, decompositions are not helpful
(and can actually be detrimental). Thus, our
analysis implies that models can learn decom-
positions implicitly even with limited data. 1

1 Introduction

Much past work has examined and improved mod-
els’ ability to answer complex questions that re-
quire multiple steps of reasoning (Welbl et al.,
2018; Talmor and Berant, 2018a; Dua et al., 2019a;
Wolfson et al., 2020; Weller et al., 2020; Weir and
Van Durme, 2022). A consistent theme in these
works is to break the main complex question down
into a series of sub-questions to be solved, which is
referred to as question decomposition. These meth-
ods generally represent decompositions as a human
would, with explicit natural language sub-questions
that build together to the final answer.

Despite the large amount of research in decom-
positions for multi-step question answering, the
majority of it has focused on using question decom-
position for both information retrieval and question

1We publicly release all code at https://github.com/
WeiKangda/Question-Decomposition

* Joint advising

No Decomposition
Who co-founded View Askew Productions and produced 
numerous movies starring Jason Lee?

Explicit Decomposition
1. Who co-founded View Askew Productions?
2. Who produced numerous movies with Jason Lee?
3. Who is in both #1 and #2
↪︎ Final Answer

                                    Who co-founded View Askew 
Productions and produced numerous movies starring 
Jason Lee?

Implicit Decomposition
SELECT  INTERSECTION

Figure 1: An instance of HotpotQA in BREAK (Wolf-
son et al., 2020), showing three different decomposition
settings: (1) No Decomposition, i.e. regular question
answering, (2) Explicit Decompositions that use itera-
tive sub-questions, and (3) Implicit Decompositions that
prepend the reasoning steps as special tokens.

answering (e.g. in the open domain). In that setting,
results have consistently shown that question an-
swering (QA) models perform better on multi-step
questions when they use decomposed questions
to help with retrieval (Wolfson et al., 2020; Perez
et al., 2020; Geva et al., 2021a). The few works
that have used decompositions for machine reading
do so in limited settings, leaving its effectiveness
unclear (Guo et al., 2022; Patel et al., 2022).

Therefore, we seek to shed light on if and
when decompositions are helpful for machine read-
ing. To do so, we analyze decomposition methods
for several QA models across two multi-step QA
datasets. Our results show that decompositions are
only helpful in the low data setting, where there are
less than a few hundred examples. Using decompo-
sitions in anything other than that setting performs
the same (or much worse, depending on the strat-
egy) as simply training the model end-to-end.

Thus, overall, decompositions are helpful for
question answering when they are used in two main
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Figure 2: Main results showing the effect of various decomposition strategies. Left shows results on DROP, right
shows HotpotQA. Runs were done over three random seeds and report the mean; error bars indicate 1 SD.

settings: (1) information retrieval, where the de-
compositions help isolate distinct aspects of the
question, or (2) in zero to low resource settings,
where there isn’t enough data to implicitly learn
the multi-step process through end-to-end training.

2 Experiment Setup

2.1 Data

We use the BREAK (Wolfson et al., 2020) resource
which contains annotated decompositions for 10
different benchmarks, including three reading com-
prehension benchmarks. BREAK provides human-
written decompositions for all dataset splits (e.g.
train, test) which we use, thus assuming the oracle
decomposition case. We use two of these three
datasets (HotpotQA and DROP) as the third, Com-
plexWebQuestions (Talmor and Berant, 2018b),
does not currently provide a training set.2 Follow-
ing BREAK and other follow-up work (Geva et al.,
2021b), we train and test our models using the high-
level decompositions (also known as QDMRs).

Thus, we use HotpotQA (Yang et al., 2018) and
DROP (Dua et al., 2019b) in our experiments, using
the portions annotated from their train and valida-
tion sets. HotpotQA was created from workers
on Mechanical Turk who annotated compositional
questions from Wikipedia by using the page links
(an example can be found in Figure 1). DROP was
created to test discrete multi-hop reasoning and
was also annotated by Mechanical Turk workers
who used Wikipedia articles as the context.

2Note that although the ComplexWebQuestions (CWQ)
paper initially released the training set the authors have since
removed it from the official Dropbox. Furthermore, even if the
dataset was available CWQ does not verify that the questions
are answerable from the returned Google search passages.

The BREAK annotations include the list of de-
composed questions that eventually yield the same
answer as the original question, along with an oper-
ator assigned to each decomposition that represents
the type of reasoning for that step (e.g. Boolean,
Comparison, etc.). Note that there are no gold la-
bels for intermediate decomposition steps; the only
ground truth label is for the main question.

2.2 Models

To explore the effect of decompositions on various
types of common NLP models, we employ five dif-
ferent models: BART (Lewis et al., 2020), vanilla
T5 (Raffel et al., 2020), UnifiedQA-v2 (Khashabi
et al., 2020, 2022) which uses a T5 backbone and
has been fine-tuned on other QA datasets but not
on HotpotQA (Raffel et al., 2020), LLaMA-7B
(Touvron et al., 2023) and Alpaca-7B (Taori et al.,
2023). This allows us to demonstrate the effect of
additional fine-tuning (UnifiedQA vs vanilla T5),
different architectures (BART vs T5 vs LLaMA),
and instruction-tuning (LLaMA vs Alpaca). Note
that because UnifiedQA-v2 was multi-task trained
on DROP, its scores on it are noticeably higher than
the other models (Figure 2). However, our purpose
is not to compare scores between models, but rather
to compare scores between different decomposition
strategies. Thus, the inclusion of this model on
DROP shows us that our results hold even if the
model was pretrained on it. For more hyperparam-
eter and compute details, see Appendix A.

2.3 Decomposition Strategies

There are many possible ways to combine decom-
position with model fine-tuning. We try a wide
variety of techniques (including novel ones) that
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we group into three categories: (1) no decompo-
sition e.g. the baseline QA format, (2) explicit
decomposition, and (3) implicit decomposition.

Explicit Decomposition Explicit decomposi-
tions are the most common approach in the decom-
position literature, generating the answer iteratively
through sub-questions: the model answers the first
decomposition step, then replaces placeholders in
future decomposition steps with that predicted an-
swer, then predicts the second decomposition step,
and so forth. Note that using this method (Explicit)
naively presents issues with backpropagation, as
the model can only backpropagate through the last
decomposition step. Variations of strategies in this
category include giving the model all previous de-
composition steps as context (Explicit w/Decomp)
or including all decomposition steps and all pre-
dicted answers as context (Explicit Everything).

Implicit Decomposition Another way to use de-
compositions could be to add them implicitly. To
do so, we utilize the operators provided in the
BREAK annotations which describe the type of
reasoning needed, removing duplicate operators
and keeping them in their given order. For exam-
ple, in Figure 1 the model uses select twice and
then intersection in the explicit decomposition rea-
soning steps (but we remove the duplicate select).
We implement this in practice by adding a new spe-
cial token for each operator and prepending them
to the original question. Although this approach
is novel in the context of decompositions, it bears
similarity to work in the prompting literature, such
as soft prompts (Qin and Eisner, 2021; Liu et al.,
2022). Variations to this approach in the same cate-
gory include randomizing the order of the special
tokens (Implicit Unordered), leaving in duplicate
special tokens (Implicit w/Dupl.), or even prepend-
ing these operators to the explicit sub-questions in
the Explicit Decomposition approach to combine
the two strategies (Explicit + Implicit).

3 Results

Full-Data Experiments We see the main results
in Figure 2 with results for DROP on the left and
HotpotQA on the right. Bars are colored-coded
according to their method. All bars are the mean of
three random seeds and error bars indicate the stan-
dard deviation. We see that most methods perform
nearly the same, except for two that underperform:
Explicit and Explicit + Implicit. Note that both of

Method Alpaca LLaMA

Explicit 54.8(0.4) 53.4(3.5)
Explicit w/Decomp 53.8(2.0) 57.7(0.3)
Explicit Everything 58.7(1.3) 55.9(0.5)
Implicit 57.0(1.6) 60.9(0.9)
Implicit Unordered 58.3(0.7) 50.9(0.6)
Implicit w/Dupl. 58.5(2.1) 53.7(0.6)
Explicit & Implicit 55.0(0.7) 59.3(0.7)
No Decomp 59.9(0.6) 59.8(1.2)

Table 1: Results of using larger LLMs, Alpaca and
LLaMA, on HotpotQA. No Decomp still performs the
same (within two standard deviations) or better when
comparing to methods that use decompositions.

these have issues with training end-to-end, as an Ex-
plicit decomposition is not differentiable through
all decomposition steps. Thus, we only end up
differentiating through the last step of the explicit
decomposition steps, leaving the model unable to
learn as effectively. All other approaches to decom-
position perform comparably, given random seed
variance (e.g. t5-base DROP Implicit Decomp. is
33.7% exact match ± 0.9% vs No Decomp 34.0%
± 0.4%). In fact, in this full data setting, the No
Decomp method performs better or statistically sim-
ilar to every other method according to two-sample
t-tests with the Bonferroni correction (Weisstein,
2004), across all datasets and models.

We show the two more recent and larger mod-
els (LLaMA and Alpaca) in Table 1 on Hotpot,
reporting the mean and standard deviation of the
EM score. We find that No Decomp method still
performs similarly or outperforms all other decom-
position methods (e.g. for Alpaca 59.9 EM with No
Decomp vs 54.8 EM for Explicit Decomp). Thus,
the conclusion that decompositions are helpful only
when there is not enough labeled examples still
holds for newer and larger models and even for
instruction-tuned models like Alpaca.

Size Experiment Is the No Decomp method al-
ways the same or better than the decomposition
methods, or can decompositions help in the low-
data regime? We answer this question in Figure 3,
by varying the amount of training data, comparing
it to the zero-shot Explicit method that is typically
used (Patel et al., 2022; Dua et al., 2022).3 As
we need the zero-shot model to be fine-tuned on

3Note that fine-tuned Explicit is worse than the zero-shot
version in low-data settings (See Figure 3b) We do not evaluate
on DROP as UnifiedQA-v2 was already trained on DROP.
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QA to handle the decomposed questions,4 we use
a modified version of T5-base (valhalla/t5-base-
squad from Huggingface) that was fine-tuned on
SQuAD (Rajpurkar et al., 2016). This places the
No Decomp method at a disadvantage, as it was
not trained on SQuAD and started from T5-base.
Despite that, however, we see that as the amount
of data increases, the fine-tuned models perform
better; eventually surpassing the zero-shot method
between 100-250 examples for UnifiedQA-v2 and
250-1000 examples for T5.5

Error Analysis Why does the zero-shot Explicit
method perform worse than the fine-tuned No De-
comp? In Table 2 we show representative errors
from the Explicit method with how often they oc-
curred. We randomly sample 50 errors and cate-
gorize them into three groups: wrong predictions
in the last step, error propagation from interme-
diate steps, and invalid/missing annotations from
BREAK (i.e. not the model’s fault). We found that
the biggest category was predicting an invalid an-
notation (42%), i.e. an alias that the dataset did not
contain, followed by error propagation (40%) and
then wrong last predictions (18%). Thus, compared
to the non-iterative methods, the iterative process
allows error propagation that occurs in roughly
40% of errors, contributing to its lower compar-
ative scores (see Appendices B and C for other
error analyses on No Decomp and cases where No
Decomp was better than Explicit).

4 Related Work

Decompositions in QA Decompositions for QA
have a long history in complex question answer-
ing (Perez et al., 2020; Min et al., 2019; Geva
et al., 2021a) with recent interest in using them
for large language models (Wei et al., 2022; Dua
et al., 2022; Zhou et al., 2023; Press et al., 2023).
Two of the most related works to ours include Pa-
tel et al. (2022), who focus on decompositions in
the zero-shot setting only and show improvements
(which aligns with our results), and other work
(Guo et al., 2022) that shows that decompositions
help on the full DROP dataset but which doesn’t
include a comparable non-decomposition baseline
on the same data. Our analysis complements and

4We use the same UnifiedQA-v2 model for both zero-shot
and fine-tuned as it was already trained on QA.

5We also show several other decomposition methods over
various amounts of fine-tuning in Figure 3b, all starting from
T5-base. We see that they perform worse than the No Decomp
method at every point.
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Figure 3: Size Experiments w/HotpotQA. For Figure 3a
with UnifiedQA-v2, the red line shows the score of zero-
shot Explicit while the blue line is the fine-tuned No
Decomp method. For Figure 3b, the red line shows
the score of zero-shot Explicit from valhalla/t5-base-
squad while the blue lines are fine-tuned T5-base with
No Decomp, Explicit Everything, and Explicit methods.
Results are over 3 random seeds and show the mean and
1 SD. See Appendix D for similar results with Alpaca.

unifies our understanding of decompositions by
identifying when decompositions help with respect
to dataset size.

Decompositions in other fields Our results for
decompositions in textual QA helps to unify results
across machine learning, as similar conclusions
(e.g. decompositions being less effective then end-
to-end methods with large data) can be seen from
scores on Computer Vision visual QA leaderboards
(Hudson and Manning, 2019; Li et al., 2021).

Decomposition Strategies and Prompting De-
compositions methods are also related to prompt-
ing, where the explicit decompositions can be seen
as a hard prompt (Liu et al., 2021; Su et al., 2022)
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Question Decompositions Content (shortened) Intermediate
Predictions

Answer Error

Who was born first,
Kwok Kin Pong or
Edison Chen?

#1: when was Kwok Kin Pong
born?
#2: when was Edison Chen
born?
#3: which is the lowest of #1,#2?

Edison Koon-hei Chen
(born 7 October 1980)
.. Kwok Kin Pong
(born 30 March 1987
in Hong Kong) ..

#1. 30 March
1987
#2. 7 October
1980
#3: Kwok

Edison
Chen

Wrong
Prediction at
Last Step
(18%)

Are both
Deerhunter and
Nine Lashes
American Christian
rock bands?

#1. is Deerhunter a American
Christian rock band?
#2. is Nine Lashes a American
Christian rock band?
#3: if both #1 and #2 are true

.. Nine lashes is an
American Christian
rock band ..
Deerhunter is an
American rock band
from Atlanta ..

#1. Yes
#2. Yes
#3. Yes

No Error
propagation
(40%)

What actor from
“Willow" also
starred in “The
Usual Suspects"?

#1: who is the actor that starred
in The Usual Suspects?
#2: #1 that was a actor from
Willow?

.. Kevin Elliot Pollak ..
a role in "Willow" ..
the Usual Suspects
stars Kevin Pollak ..

#1. Kevin
Pollak
#2. Kevin
Pollak

Kevin
Elliot
Pollak

Invalid or
Missing
Annotation
(42%)

Table 2: Error analysis for zero-shot decomposition (i.e. Explicit with no fine-tuning, a la Patel et al. (2022))
on HotpotQA. Percentages calculated from annotation of 50 instances with representative examples shown. See
Appendix B for full data No Decomp or Appendix C for when No Decomp succeeded and Explicit failed.

and the implicit decompositions are similar to soft
prompts (Qin and Eisner, 2021; Liu et al., 2022).

Other research has looked at developing new
prompting methods which either better handle com-
plex questions or automatically generate decompo-
sitions (as opposed to the human-written decom-
positions in BREAK) (Zhou et al., 2022; Weller
et al., 2022, 2023; Press et al., 2022). Our work
focuses only on human written decompositions,
which were shown to be better than automatically
generated decompositions in the BREAK paper.

5 Conclusion

Our work explored when decompositions are help-
ful for machine reading. We showed that decom-
positions are helpful when there is limited data
available, or when parameters cannot be tuned.
However, when enough data exists (empirically
around a few hundred instances) and parameters
can be fine-tuned, it is best to let the model learn
the decompositions implicitly through end-to-end
training. Furthermore, we show that limitations of
not fine-tuned decomposition approaches include
error propagation of intermediate steps while also
introducing more possibilities for annotator error.
We hope that our work will help to inform readers
as they create new datasets and select methods to
use for complex question answering.

6 Limitations

Our work has explored the machine reading setting,
using what is to our knowledge the only large com-

plex question answering datasets that have human-
annotated decompositions. However, it is possi-
ble that in the future someone could create an-
other decomposition-based dataset that could show
slightly different results. We believe this to be un-
likely, as our empirical study holds across models
and datasets. Another limitation is that we do not
use alternate tasks, such as summarization, tagging,
etc. as our work focuses on how decompositions
work in question answering only, given the large
interest in using decompositions for QA.
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A Hyperparameter and Compute Details

We train our models following the hyperparameters
in Wolfson et al. (2020), e.g. a learning rate of 1e-5
for 5 epochs, using early stopping on a holdout of
the training set (5%) to determine the best saved
model. The best models were typically ones trained
for around 2 epochs. We use T5-base, BART-base,
UnifiedQA-V2-Large, LLaMA 7B, and Alpaca 7B.

For the zero-shot decomposition UnifiedQA-v2
approach (perhaps due to its multi-task pre-training
on other QA datasets), we found that using the
original question plus the iterative decompositions
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added a solid boost to final performance and hence
we use those results as it provides the strongest
zero-shot baseline. Each zero-shot decomposition
run took approximately 15-30 minutes to evaluate.

Compute time ranged from 1 hr for the shortest
jobs with smaller data sizes and non-iterative train-
ing to around 18 hours for iterative decompositions
methods with UnifiedQA-v2-large on 1 RTX 6000
GPU. For LLaMA and Alpaca, we use one 80GB
A100 GPU with runs taking between 12-24 hours.

Data was prepared building off of the original
BREAK authors’ code. Models were accessed via
the Huggingface repository (Wolf et al., 2019).

Note that our reported no-decomposition results
on DROP with T5 show comparable or greater per-
formance to Guo et al. (2022) when using only the
BREAK dataset.

B Error Analysis for Full-Data No
Decomp

We also do an error analysis for the full-data ver-
sion of the No Decomp method to compare with the
Explicit error analysis done in the main paper. As
error propagation is not a possible category for this
model, since it is end-to-end, there are only two er-
ror categories we use: (1) Wrong Prediction (54%)
and (2) Invalid or Missing Annotation (46%). We
see that a missing annotation/alias was the cause
of the incorrect answer 46% of the time, which is
comparable to the 42% of the time the zero-shot
Explicit method had an error due to an alias. For
the other 54%, the model would output “yes" when
it should be “no" or extract the wrong string from
the passage leading to an incorrect prediction, etc.

C Error Analysis With No Decomp
succeeded and zero-shot Explicit
Decomp failed

Based on Table 2, the Invalid or Missing Anno-
tation takes up the largest percentage of error,
which could happen to both decomposition and
none-decomposition method. In order to further
strengthen our point that question decompositions
cause error propagation, thus underperforming the
No Decomp method overall, we also conduct an
error analysis where the fine-tuned No Decomp suc-
ceeded and the zero-shot Explicit Decomp failed,
with 20 sampled errors using UnifiedQA-v2. The
new results are: (1) Error Propagation (45%), (2)
Wrong Prediction at Last Step (35%), and Invalid
or Missing Annotation (20%). We see similar re-
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Figure 4: Size Experiments w/HotpotQA using Alpaca.
Explicit and No Decomp results are shown. Results are
over 3 random seeds and show mean and 1 SD.

sults to the error analysis in Table 2 where Error
Propagation causes the most errors.

D Size Experiment for Alpaca

We also performed the size experiment in Section 3
with Alpaca-7B (chavinlo/alpaca-native) and show
the results in Figure 4. Note that Alpaca is roughly
10 points better than T5-base (approximately 60
EM vs 51 EM). The No Decomp method performs
similarly or better than the Explicit method in all
cases with varying training data size. Our conclu-
sion still remains across models and decomposition
strategies: No Decomp is better than or similar to
the Decomp models, when given enough training
examples.
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